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Based on the results of a previous paper (Paper I), by performing the geometrical mapping via coherent states,
phase transitions are investigated and compared within two algebraic cluster models. The difference between the
semimicroscopic algebraic cluster model (SACM) and the phenomenological algebraic cluster model (PACM)
is that the former strictly observes the Pauli exclusion principle between the nucleons of the individual clusters,
while the latter ignores it. From the technical point of view the SACM is more involved mathematically, while
the formalism of the PACM is closer to that of other algebraic models with different physical content. First-
and second-order phase transitions are identified in both models, while in the SACM a critical line also appears.
Analytical results are complemented with numerical studies on α-cluster states of the 20Ne and 24Mg nuclei.
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I. INTRODUCTION

In a former contribution [1], called hereafter Paper I, we
investigated the geometric mapping of the phenomenological
algebraic cluster model (PACM) and the semimicroscopic
algebraic cluster model (SACM) [2,3]. The first does not
observe the Pauli exclusion principle while the second one
does. The PACM belongs to the same family as models like
the vibron model [4]. In both types of models we considered
the same Hamiltonian, while the model space of each differs
quite markedly. In the SACM the number of relative oscillation
quanta is restricted from below, in accordance with the
Wildermuth condition [5], while in the PACM the number
of relative oscillation quanta starts from zero.

The method of geometrical mapping is from Ref. [6] for
the SACM, which reduces to the usual one [7–10] when no
Pauli exclusion principle is taken into account. We showed
in Ref. [1] that the differences in the mapped geometrical
potential are large. However, within the PACM one can
reproduce the geometric potential of the SACM by including
very complicated higher-order interactions.

In this paper we concentrate on the study of phase
transitions. Phase transitions in nuclei and clusters of nuclei
have been studied extensively. The most recent results in this
field relevant for this contribution are Refs. [10–13]. The
models and methods used can be found in Refs. [14,15], while
a general introduction to quantum phase transitions can be
found in Ref. [16]. We will show that not only second-order
phase transitions but also first-order phase transitions may
occur. Furthermore, in the SACM a critical line appears beyond
which no phase transition occurs. Thus, the structure of the
phase diagram of the SACM will be much richer.

We will also apply the mapping to two kind of systems, one
with two spherical clusters and the other one with a deformed
and a spherical cluster. Numerical studies are added. We will
show that the PACM leads to inconsistencies when applied to
real nuclei, while the SACM performs well. This study will be
schematic. Though we will discuss definite cluster structures,

no numerical adjustment to spectral data is done. One can
argue that it would be interesting to relate the discussion to
real physical systems, for example, along an isotopic chain. As
interesting and important this is, it would involve the fitting of
a whole series of nuclei and it would deviate from the principle
points we want to discuss. An investigations of this kind for
cluster systems in the sd shell and of astrophysical interest are
discussed in Ref. [17].

The paper is structured as follows: In Sec. II a general
discussion on phase transition, both in the PACM and SACM,
is given, independent of a particular system. In Sec. III,
results are illustrated with two particular cluster systems, the
α-cluster states of 20Ne and 24Mg. In the former, both clusters
are spherical, while in the latter, one of them is deformed,
leading to a more complex physical situation. Finally, in
Sec. IV conclusions are drawn and a discussion is presented
on the differences between the PACM and the SACM and their
importance in the study of nuclear clusters.

II. PHASE TRANSITIONS IN ALGEBRAIC
CLUSTER MODELS

In what follows we apply the formalism developed in
Paper I [1] to discuss phase transitions in the SACM and
PACM. Before that we present the general framework within
which the discussion will be implemented.

A. Definition of a phase transition

Phase transitions are investigated using the following steps
and the recommendations of [18–20]. This method can be
applied to any system and does not depend on the notion of
symmetries. This presentation does not need the language of
catastrophe theory [21], which simplifies considerations.

(i) In the first step the minima of the potential energy
surface (PES) are determined in the space of the
collective variables αm. In the present case there is only
one relevant variable α. This is due to the fact that
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the distance vector between the clusters can always be
aligned along the intrinsic z axis which connects the
two clusters. The extrema are obtained from dV

dα
= 0.

This determines the position of the extrema at ᾱi

(i = 1, 2, . . . ) and the values V (ᾱi) of the potential
there. The ᾱi are the values of the variable α at the
ith minimum, which is a function of the interaction
parameters �p = (pk), with pk as a short-hand notation
for the parameters k = 1, 2, . . . , nk , with nk being the
number of parameters.

(ii) Once the extrema are obtained, one determines at each
minimum the first and second derivatives of the potential
with respect to the parameters of the model, i.e.,

∂nV (ᾱi)

∂pn
k

, n = 1, 2. (1)

When we discuss the PACM and SACM further below,
we will give first a general discussion on the properties
of phase transitions, independent of the values of
a particular subset of interaction parameters. In the
subsequent concrete applications, however, we will
fix most interaction parameters and vary only x and
y, which control the transition from one effective
symmetry [22] to another. This will give us particular
curves in the space of phase transitions.

(iii) The locations of phase transitions are determined by
identifying the borders in the parameter space where
at least two minima are at equal energy, i.e., V (ᾱi1 ) =
V (ᾱi2 ) for some index values i1 and i2 of the minima.
This results in a relation f (p1, . . . , pnp

) = 0 between
the parameters, which allows one, in principle, to
express one parameter in terms of the others.

(iv) The phase transition is of order m when, up to n = m −
1, the derivatives of the potential with respect to the free
parameters are equal at the point of phase transition,
while the mth derivative of the potential, with respect
to its parameters, is discontinuous at the point of the
phase transition.

Note, again, that this procedure for determining the order
of a phase transition is quite general and does not depend on
identifying the phase with a dynamical symmetry. Thus, this
procedure can also be applied to systems that do not exhibit
dynamical symmetries.

B. Study of phase transitions in the SACM

Paper I [1] contains the general expression of the Hamil-
tonian (in Sec. II B) and the geometrically mapped SACM
potential (in Sec. IV A). Here we recall only the essential
formula, Eq. (17) of Paper I, necessary for the present
discussion,

〈H〉 = C(x, y) − (b + b̄)xy

[
A(x, y)α2 F11(α2)

F00(α2)

−B(x, y)α4 F22(α2)

F00(α2)
+ α6 F33(α2)

F00(α2)

−C(x, y)α2 FN−2
20 (α2)

F00(α2)

]
. (2)

We also note that the x = 0 case relevant to the SO(4) to SO(3)
phase transition has to be discussed separately. (See Eqs. (21)
to (24) in Paper I [1].)

The complex structure of the geometrically mapped poten-
tial complicates an analytic treatment of the problem. It is,
therefore, essential to formulate a set of criteria facilitating
a straightforward way to determine the order of phase
transitions.

The expression inside the parenthesis of Eq. (2) demon-
strates that the explicit dependence of the potential on the
parameters A, B, and C is linear of the type

Ṽ =
∑

k

pkα
mkfk(α), (3)

with mk > 1 and pk being a short-hand notation for the
kth parameter. The fk are given by ratios of the functions
Fpq(α) and are always greater than zero for α �= 0. Only the
function FN−2

20 approaches zero for α → ∞. (See Eq. (27) in
Paper I [1].)

According to the general discussion on phase transitions
in Sec. II A, let us now turn to the potential minima located
at ᾱi . We investigate their dependence on the parameters pk ,
standing for A, B, and C. The structure of Eq. (3) guarantees
that ᾱ1 = 0 is always an extremum. Furthermore, not only its
first-order derivatives but also the function value are zero at
ᾱ1 = 0. It is, thus, sufficient to focus on the second, deformed
minimum, with ᾱ2, for which the following consideration
holds. There are two possibilities: (a) ᾱ2 > 0 or (b) ᾱ2 = 0.
The consequences are seen by determining the first absolute
derivative of the potential with respect to the parameter pk .
This first derivative is given by

dṼ

dpk

= ∂Ṽ

∂pk

+ ∂Ṽ

∂ᾱi

∂ᾱi

∂pk

= ∂Ṽ

∂pk

, (4)

because ∂Ṽ
∂ᾱi

vanishes at the minimum. Taking into account
Eq. (3), this is further expressed as

dṼ

dpk

= ᾱ
mk

2 fk(ᾱ2). (5)

For case (a) this expression differs from zero (remember that
ᾱ2 > 0), while the derivative within the spherical minimum
is equal to zero. In other words, there is a first-order phase
transition.

For case (b), Eq. (5) is equal to zero, and, therefore, the
phase transition must be of higher order. To determine which
order, second-order derivatives are also needed,

d2Ṽ

dp2
k

= d

dpk

(
∂Ṽ

∂pk

)
= ∂ᾱ

mk

2

∂pk

fk(ᾱ2) + ᾱ
mk

2

∂fk(ᾱ2)

ᾱ2

∂ᾱ2

∂pk

. (6)

Here we used the fact that in Eq. (5) there is no explicit
dependence in pk left. Since in this case ᾱ2 = 0, Eq. (6) reduces
to

d2Ṽ

dp2
k

= ∂ᾱ
mk

2

∂pk

fk(ᾱ2). (7)

As both the fk functions and the partial derivatives differ from
zero, so is Eq. (7) in general, i.e., the phase transition is of
second order in case (b).
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FIG. 1. The phase space diagram of the SACM as a function of
the independent parameters A, B, and C. The solid line marks the
change from a second- to a first-order phase transition and the dashed
denotes a “critical line.”

In conclusion, we have the simple identification of phase
transitions: (a) When the deformed solution ᾱ2, at the point of
phase transition, differs from zero, then there is a first-order
phase transition. (b) When the deformed solution ᾱ2 is equal
to zero, then there is a second-order phase transition. With
the help of these results, we now can continue to discuss the
general structure of the phase space within the SACM.

In Fig. 1 the surface where a phase transition takes place is
plotted in the space of the independent parameters A, B, and C.
The solid line marks a change from first-order to second-order
transitions. For larger, positive C the transition is of second
order, while for smaller, negative C it is of first order.

A remarkable finding is that at approximately C ≈ −15
the surface of the phase transition ceases to exist. Beyond that
point, no phase transition can be observed, i.e., the straight
line at approximately C ≈ −15 represents a critical line. This
is shown by a dashed line in Fig. 1. One then can trace a
straight line from below the surface, around the critical line,
ending up above the surface without passing through a phase
transition, which is similar to the critical point in the two-
dimensional phase diagram of water. Fixing all interaction
parameters except x and y (as we will do in the numerical
applications), passing from one dynamical symmetry limit to
another one will trace a line in this three-dimensional space.
Depending on the fixed parameters, this line will or will not
cross the surface of phase transition.

Figure 2 displays ᾱ2 corresponding to the deformed solution
at the point of phase transition as a function in A and C.
(Remember that the spherical solution corresponds to the
always existing extremum at α = 0 in the case it is a local
minimum.) Each point of the surface represents also a given
B at which the phase transition occurs, i.e., B is fixed by
the requirement that there is a phase transition. In this figure
the solid line also represents the change from one type of
phase transition to the other one. For larger, positive C ᾱ2 = 0
holds, and it corresponds to a second-order phase transition.
For smaller, negative C the ᾱ2 > 0 holds at the point of phase
transition, i.e., it corresponds to a first-order phase transition.

The critical line pointed out in Fig. 1 near C ≈ −15 appears
in Fig. 3 too. For a fixed A it corresponds to a critical point.

FIG. 2. The variable ᾱ2 of the deformed solution, as a function
in A and C. B is fixed by the requirement that one is at a point of a
phase transition. The solid line marks the transition from a second- to
a first-order phase transition and the dashed denotes a “critical line.”

This critical point and the whole phase structure of the system
is illustrated in Fig. 3, which corresponds to the fixed value
A = 10. The solid line represents a cut through the phase
transition surface. For C > 0 the phase transition is of second
order, while for C < 0 is of first order. The roman numerals
indicate the following regions: (1) Region I corresponds to
the existence of two minima (one spherical and the other
deformed), with the deformed one as the global minimum.
(2) Region II also corresponds to two minima with the
spherical as the global one. (3) In region III there is only
one spherical minimum while (iv) in region IV there is only
one deformed minimum. The region denoted by a zero refers
to potential with no minimum. The other dashed lines do not
indicate phase transitions; rather, they separate the areas where
two minima exist and the ones where only one minimum
exists. The line of phase transition ends at approximately
C ≈ −15.

The horizontal dotted line represents a division: Above
this line the potential approaches a negative infinite value
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FIG. 3. (Color online) A cut through the phase space at A = 10.
The notation is explained in the text.
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FIG. 4. (Color online) Several potentials for different values of
B and C for A = 10 are shown. Some potentials approach a positive
value, i.e., for N → ∞ they approach to ∞, while others approach
to −∞.

for N → ∞, i.e., the potential gets unstable and the cluster
system dissolves. Below that line the potential approaches plus
infinity for N → ∞, thus, the deformed solution corresponds
to a stable cluster system.

Figure 4 gives a sample of energy functionals at a fixed N

(n0 = 8 and N = 12) in different regions, the specific points
being denoted with lowercase letters in Fig. 3. The upper left
panel shows functionals either side of the first-order phase
transitions, points i) and ii). The upper right one shows graphs
either side of the second-order phase transitions, points iii)
and iv). The lower left panel shows a functional either side
of the dotted line in the region III of greater B, points v) and
vi), showing that while each have a barrier, one is bound as
α → ∞ and the other is unbound. These tails are dependent on
N , with the unbound approaching minus infinity and the bound
plus infinity as N → ∞. Thus, this region is unphysical. The
fourth panel shows a fully unbound potential with no minima
from region 0, point vii).

Note that the discussion of phase transitions is completely
independent of the system considered, which is of great
advantage. In the next section we will consider particular
systems and study the properties of their phase transitions.

C. Study of phase transitions in the PACM

Here we apply the results obtained in Sec. IV B of Paper I
[1]. We display only the expression of the normalized potential
[Eq. (33) of Paper I]:

Ṽ = {Aβ2 − Bβ4 + β6}. (8)

We also remind the reader that the SO(4)-to-SO(3) transition
needs a separate discussion, because in that case the potential

-0.4 -0.2 0 0.2 0.4
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0.04

0.08

A

III

IV

I

II
A = B

A = B

3
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2

2

FIG. 5. (Color online) The parameter phase diagram for the
PACM [23,24]. The horizontal axis is B, while the vertical axis
corresponds to A. In region I and region II two minima exist, one
spherical and one deformed. In region I the global minimum is the
deformed one, while in region II it is the spherical minimum. In
region III only a spherical minimum exists and in region IV the only
minimum is a deformed one.

reduces to a quartic one. (See the discussion in Sec. IV B of
Paper I [1].)

The simple form of the potential enables a simple curve
analysis. There are, in general, two extrema,

β1 = 0
(9)

β2 = { 1
3 (B ± √

B2 − 3A)} 1
2 .

The first solution, β1 = 0, is always an extremum: Depending
on the situation, it is a minimum or a maximum. The second
solution is real only if B2 > 3A and B > 0 holds.

The structure of the phase space is depicted in Fig. 5. The
horizontal line is the B axis while the vertical one is the A axis.
On the left-hand side (B < 0) a spherical minimum exists for
A > 0, while for A < 0 the minimum is deformed. The phase
transition takes place at the line A = 0. For B > 0 and A < 0,
a deformed minimum always exists. For A > 0 and below
the dashed curve A = B2/3 a deformed minimum coexists
with a spherical minimum until A = 0 is reached. The solid
curve is determined by requiring that the potential minima at
β1 and β2 are degenerate, i.e., Ṽ (β1) = Ṽ (β2), which leads
to the condition A = B2

4 . Between the upper dashed and the
solid curves the spherical minimum is the global one, while
below the solid curve the global minimum is the deformed
one. Crossing the solid line a phase transition takes place. It
is of no surprise that the phase diagram in Fig. 5 is similar to
Fig. 2 of Ref. [11].

III. NUMERICAL STUDIES

This section deals with two widely known cluster systems:
20Ne as 16O + α, where both clusters are spherical, and 24Mg
as 20Ne + α, where one of them is deformed.

Since our aim is to study transitions from one particular
dynamical symmetry limit to another one, we first fix all the
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interaction parameters except x and y. The h̄ω parameter
was not adjusted but, rather, it was chosen according to
the harmonic oscillator constant corresponding to the unified
nucleus. The fixed interaction parameters are determined in
such a way that in the dynamical symmetry limits the spectrum
appears with the same scale as the physical measured one. The
spectrum of the real nucleus would probably correspond to
a single point in the (x, y) parameter space. However, our
aim is not to reproduce the exact spectrum but rather to reach
a conceptual understanding of phase transitions when going
from one dynamical symmetry to another and to investigate
the hypothesis that a phase is defined by an effective symmetry.
One alternative method would be to adjust several cluster
systems and to try to find a series of systems which, for
example, would cross the surface of phase transitions at one
point. We do not do this but instead postpone it for later
consideration.

A. Two spherical clusters: 16O + α → 20Ne

In this case the only degree of freedom is the radial motion,
as the clusters do not have an internal structure apart from
the fact that they are composed of fermions. Therefore, the
cluster representation is (λC,μC) = (0, 0). As described in
Paper I [1], the SO(3) limit does not exist as an independent
limit in this case [the SO(3) Hamiltonian is a reduced version of
the SU(3) Hamiltonian], so the y = 1 choice has to be made.
The only transition to consider is, thus, between the SU(3) and
the SO(4) limits.

Concerning the determination of the parameters, one has
to take into account that some parameters appear in both
dynamical symmetry limits, like γ preceding L2 (see Eqs. (11)
and (12) in Paper I [1]). We first determine the parameters in
the SU(3) dynamical symmetry limit, which fixes γ , and then
we determine the remaining parameter c, which appears in the
SO(4) dynamical symmetry limit. The terms C2(λC,μC) and
L2

C do not contribute to the Hamiltonian in this case, so the
corresponding parameters are kept at zero. Note, that in this
case L2

R = L2.

1. The SACM

In the first step the parameters are adjusted within the SU(3)
limit, setting x = 1 and y = 1 and in the SO(4) limit, setting
x = 0 and y = 1. The parameters are depicted in Table I.
The SACM yields reasonable results, because the ground-
state band belongs to nπ = 8, (λ,μ) = (8, 0), where nπ = 8
corresponds to the minimal number of relative oscillation
quanta n0 required by the Wildermuth condition. The first
excited 0+ state corresponds to a 2h̄ω excitation and naturally
lies at high energy as required by the experimental data. The
spectra in the SO(4) and SU(3) limits are shown in the left
and right extremes of the right panel, respectively, of Fig. 6.
The spectrum of experimental 20Ne states, each corresponding
to this clusterization, is shown in the left panel. As already
mentioned, the real nucleus will lie somewhere between x = 1
and x = 0, though, the spectrum at x = 1 is acceptable. In
Ref. [17] the parameters of the Hamiltonian are adjusted to the

TABLE I. Parameter values defining the α-16O interaction. See
Eq. (12) in Paper I [1].

Hamiltonian
a ā γ aClus b̄ b

−0.500 0.000 0.208 0.000 0.000 −0.009
c aC a

(1)
R t

0.250 0.000 0.000 0.000

Clusters
λ1 μ1 N0,1 β1 λ2 μ2 N0,2 β2

0 0 0.00 0.00 0 0 0.00 0

Quanta
h̄ω n0 N

13.2 8 12

experimental spectrum and B(E2)s were also calculated. In
this calculation, the parameter x = 1 seems to be appropriate,
too.

In order to see if a phase transition appears, and of which
order it is, we added a curve to the (A,B,C) phase space
in Fig. 7, depicting the transition from x = 1 to x = 0. The
figure shows only the relevant part of the phase space, i.e.,
the one where the curve crosses the surface associated to the
second-order phase transition. This occurs at approximately
the x = 0.6 parameter value, which can also be appreciated
in Fig. 6, where the density of states is largest at x = 0.6. In
summary, the situation in this example corresponds to a phase
transition of second order.

Figure 8 displays how the expectation value of nπ changes
as the function of x. The lighter (orange online) and darker (red
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FIG. 6. (Color online) The lowest-energy states as the function
of x for 16O + α → 20Ne. The spins and parities are depicted in the
legend. The light gray line corresponds to orange, the darkest gray
line to purple, and the one in between to red. Lines with the same
color indicate the same spin, as can be seen in the right side of the
figure, where the lines start.
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FIG. 7. (Color online) Part of the SACM phase space diagram,
where the curve of the parameter values, as a function of x, crosses
the surface of phase transition. The crossing occurs at approximately
x = 0.6 and happens at the surface related to the second-order phase
transition.

online) curves depict the result of the geometrical mapping
and the numerical diagonalization, respectively. From x = 1
up to the point of phase transition, the effective SU(3) limit
is realized and the expectation value is equal to the minimal
number of π bosons, i.e., n0 = 8. Below x = 0.6 the darker
(red) curve begins to rise slightly, indicating that the structure
of the system is changing.

0 0.2 0.4 0.6 0.8 1
x

7

8

9

10

11

12

<
n π(α

)>
g.

s.

SU(3)SO(4)

FIG. 8. (Color online) The expectation value of nπ (vertical axis)
as the function of x. Starting from x = 1 the expectation value is
8, given by the lowest possible number of π quanta. From x = 0.6
on we observe a rise in the expectation value, reaching nπ = 11 at
x = 0. The phase transition takes place at x = 0.6. The light gray
(orange) line corresponds to the use of the coherent state, while the
darker gray line (red) corresponds to the numerical calculation.

2. The PACM

This type of model was considered in Ref. [25], where
a pure schematic investigation on possible phase transitions
was presented. The model space was restricted to low nπ

excitations. No parameter fit was applied to a physical system.
We show here that the relation to a physical system is of
utmost importance and can discriminate between physical and
nonphysical models.

As a first step, we tried to adjust the parameters of the
model in the SU(3) limit (x = 1 and y = 1) and in the SO(4)
limit (x = 0 and y = 1). However, we already encountered
severe problems in the SU(3) limit: The model space for even
angular momentum starts with nπ = 0, thus, the lowest states
are comprised of nπ = 0, (λ,μ) = (0, 0), which contains one
Jπ = 0+ state, and nπ = 2, (λ,μ) = (2, 0), which contains
a 0+ state and a 2+ state. The problems encountered are as
follows.

(i) Since the factor in front of L2 has to be positive and
supposing that the ground state belongs to nπ = 0 and
the next excited positive parity state belongs to nπ = 2,
the first excited 0+ state will always be lower than the
first excited 2+ state. This contradicts the experimental
spectrum with E(2+

1 ) = 1.634 MeV and E(0+
2 ) = 8.7.

(ii) Since the 2+
1 state belongs to a 2h̄ω excitation, with

h̄ω = 13.2 MeV, the quadrupole-quadrupole interac-
tion has to be unnaturally strong in order to shift the
energy to 1.634 MeV. This, in turn, will move very high
nπ excitations to low energy, even below the supposed
ground state with nπ = 0.

(iii) Due to the completely different SU(3) structure of the
states within the ground-state “band,” one cannot talk
about a rotation band.

Restricting the study to the SU(3) limit, the eigenvalues of
the Hamiltonian are given by [15]

E = h̄ωnπ + (a − bnπ )nπ (nπ + 3) + γL(L + 1). (10)

Here we already see that for γ > 0 and a fixed nπ , higher spin
states are higher in energy. In order to adjust the 2+

1 and the 0+
2

states to the experimental energies, the fitting routine assigns
to both the ground state and the 2+

1 state a different nπ . Using
N = 20, as a result we obtain nπ = 20 (the total number of
bosons was set to be 20) for the 0+

1 and the 2+
1 state, while the

0+
2 state belongs to nπ = 0. When we change the total number

of bosons, we get similar results. The mere fact that we have
to involve states with nπ = N indicates that no convergence is
achieved, considering that N represents a cut-off value.

Similar results are also obtained when the SO(4) limit is
considered. In the SO(4) limit, the energy is given by [15]

E = c

4
(N − ω)(N + ω + 2) + γL(L + 1), (11)

where ω refers now to the SO(4) quantum number with ω = N ,
N − 2,. . ., 0 or 1. The lowest state is normally taken as ω =
N , which contains L = 0, 1, 2, . . . , N for even N and L =
1, 2, 3, . . . , N for odd N . Thus, choosingN = 20, the ground-
state band (ω = 20) is composed of the angular-momentum
states L = 0, 1, 2,. . ., 20 and the first excited band with even
spin (ω = 18) is given by the states L = 0, 1, 2,. . ., 18. Thus, the
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first excited 0+ state can be set at higher energies than the first
excited 2+ state, adjusting the parameter c. Everything seems
to be in order, except for the problems which the following
discussion demonstrates.

The difference with respect to the SU(3) limit is that a SO(4)
state is a mixture of many basis states in SU(3). We adjusted
the spectrum of 20Ne to the SO(4) limit and confirmed that for
L = 0 the expectation value of the operator nπ is given by [15]

〈nπ 〉 = N − 1

2
. (12)

The problem here is that when the cutoff is increased, the
structure of the states changes as 〈nπ 〉 increases, implying that
no convergence has been reached. This also implies high shell
excitations, if we assume that the two clusters are moving in
a shell-model mean field, which has been proven in many
microscopic calculations [26]. In the PACM, however, the
mean field h̄ωnπ has no specific meaning, i.e., the parameter
h̄ω → a1 can be very small. As shown above, the spectrum
can be easily adjusted within the SO(4) limit. The fact that it
adjusts the spectrum suggests that there must be some truth
in it. Nevertheless, the basic degrees of freedom (clusters plus
relative motion) cannot be interpreted as real clusters or relative
motion, as is done in microscopic cluster studies, but must be
in a complicated relation with them. Just what relations these
are remains a big problem.

A possible solution to this problem is to redefine the
pairing operator as [(π † · π †) − R2(σ †)2], i.e., the introduction
of a new parameter R2 which can be set proportional to
1/N . In this way, the N dependence can be eliminated and
physical results can be expected. This procedure was adopted
in Ref. [27], where the vibron model was extended to three
clusters describing the 12C nucleus as an oblate symmetric
top. Though, in Ref. [27] the SO(7) limit in a U(7) algebraic
model, which describes three clusters, is considered, the same
ideas can be translated here.

B. One spherical and one deformed cluster: 20Ne + α → 24Mg

This is the first example where the cluster part has a
structure due to the deformed 20Ne.

1. The SACM

The fitting of the parameters in the SU(3) and SO(4) limit
is performed in the same way as in the former case. The results
are displayed in Table II.

Figures 9 and 10 display the expectation value of nπ and the
lowest states in energy, respectively, for all three transitions.
The darker (red online) curve in Fig. 9 shows the results
of the numerical diagonalization, while the lighter (orange
online) curve shows the one of the geometrical mapping.
The results are qualitatively similar to those encountered
in the former example. The expectation value of nπ starts
in the SU(3) limit at 8 and increases towards the SO(4) limit.
The transition is smooth in the numerical calculation, while
in the geometrical mapping the transition is well pronounced.
The transition is indicated by a sudden change in the slope

TABLE II. Parameter values for the α-20Ne interaction. See
Eq. (12) in Paper I [1].

Hamiltonian
a ā γ aClus b̄ b

−1.396 −0.136 0.197 0.000 −0.116 0.045
c aC a

(1)
R t

0.470 0.079 0.053 0.664

Clusters
λ1 μ1 N0,1 β1 λ2 μ2 N0,2 β2

8 0 48.5 0.73 0 0 4.5 0

Quanta
h̄ω n0 N

12.6 8 12

at about x = 0.25 in the central panel of Fig. 9. The energy
spectrum in Figure 10 does not show a particular structure
at points of phase transition. Therein, the leftmost panel is
again the experimental spectrum used, and the right three are
theoretical results as x and y are adjusted. In the transition
from SU(3) to SO(3) no phase transition appears, because the
global minimum of the potential is always at α = 0. One can
observe a distinct behavior as a function of x and y between
the states with positive and negative parity, marked as solid
and dashed curves, respectively. The latter are more sensitive
to the change in x and y.

Similar properties can be observed in the other limits, i.e.,
see the leftmost panel in Fig. 9. The energy spectrum also
shows an accumulation of states at low energy at the point of
phase transition at x ≈ 0.25.

2. The PACM

Here we find similar inconsistencies with respect to the
model space as in the case of 20Ne in Sec. III A2. The cluster

0.25 0.5 0.75
y

8

10

12

<
n π(α

)>
g.

s.

0.25 0.5 0.75
x

0.75 0.5 0.25
y

x    0 y = 1 x = 1

SO(4)SO(3) SU(3) SO(3)

FIG. 9. (Color online) Expectation value of nπ for the three
transitions, (i) SU(3) to SO(4), (ii) SU(3) to SO(3), and (iii) SO(4)
to SO(3). The light gray (orange) line corresponds to the use of the
coherent state, while the darker gray (red) line corresponds to the
numerical calculation.
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0.2 0.4 0.6 0.8
y

0

4
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12

16

0.2 0.4 0.6 0.8
x

0.8 0.6 0.4 0.2
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en

tr
oi

d 
(M

eV
)

x = 0 y = 1 x = 1

SO(3) SO(3)SO(4) SU(3)
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1
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+

1
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+
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6
+

1

1
-

1

3
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FIG. 10. (Color online) The lowest states in the three transitions,
(i) SU(3) to SO(4), (ii) SU(3) to SO(3), and (iii) SO(4) to SO(3) for
20Ne + α → 24Mg. The light gray line corresponds to orange, the
darkest gray line to purple, and the one in between to red. Lines with
the same color indicate the same spin, as can be appreciated on the
right side of the figure, where the lines start.

irrep of 20Ne is (8,0), while the relative oscillation irreps are
(nπ, 0), with nπ = 0, 1, 2, . . .. Restricting to positive-parity
states only, the lowest energy model space, in the SU(3) limit,
consists of (8, 0) at 0h̄ω and (10,0) and (6,2) for the 2h̄ω

excitation. The ground-state band is a (8,0) irrep and the next
lowest 0+ band (usually associated with K = 2) is the (10,0)
irrep at 2h̄ω. Even if we change h̄ω to an arbitrary small
parameter a1, in order to bring the 2h̄ω states down in energy,
the internal structure of the ground-state band is not what
we expected, namely (8,4). Also there is no B(E2) transition
between the ground-state band and the K = 2 band, because
they belong to different irreps.

For the SO(4) limit one obtains a satisfactory fit, but again
with the fact that the expectation value of the number operator
nπ depends on the cutoff N .

IV. CONCLUSIONS

Phase transitions were investigated in two algebraic cluster
models, one of which observed the Pauli exclusion principle
between the nucleons of the individual clusters (SACM),
while the other (PACM) did not. This analysis was based on
the results of a previous work [1], in which the geometric

mapping of the two models had been performed using the
coherent state formalism, leading to appropriate potential
energy surfaces. The dynamical symmetries of the SACM and
PACM had also been identified in Ref. [1], and in the present
analysis special attention was paid to transitions between
phases associated with the SU(3), SO(3), and SO(4) dynamical
symmetries. The potential energy surfaces depend on the
parameters appearing in the Hamiltonian shared by the SACM
and PACM, including also the x and y variables controlling
the transitions between the three dynamical symmetries.
The phase space was reparameterized in terms of three
parameters A, B, and C.

In the case of the PACM, the potential energy surface
was a sextic oscillator in the intercluster distance variable,
while for the SACM the potential shape was more complex
due to the restrictions enforced by the Pauli principle. The
potential energy surface typically contained up to two minima,
one spherical and one deformed. The analysis identified both
first- and second-order phase transitions for the PACM and the
SACM, while in the latter case a critical line was also found.

The results were illustrated with numerical studies on the
16O + α and 20Ne + α systems, which correspond to two
spherical clusters and to one spherical and one deformed
cluster, respectively. The SU(3) limit was found to be the most
appropriate one in reproducing the data of the cluster systems.
Clear phase transitions were identified in the x parameter
controlling the transition between the SU(3) and SO(4) limits.
It was found that the PACM led to energy spectra that differ
from the observed physical ones.

In the future it seems worthwhile to study many cluster
systems of similar mass and investigate if there is a possibility
that a chain of nuclei crosses a surface of phase transition.
This should result in structural changes in the spectra and
transition values. A first step in this direction will be published
in Ref. [17].
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[3] J. Cseh and G. Lévai, Ann. Phys. (NY) 230, 165 (1994).
[4] F. Iachello, Phys. Rev. C 23, 2778 (1981).

[5] K. Wildermuth and Y. C. Tang, A Unified Theory of the
Nucleus (Friedrich Vieweg & Sohn Verlagsgesselschaft mbH,
Braunschweig, 1977).
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