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The geometrical mapping of algebraic nuclear cluster models is investigated within the coherent state
formalism. Two models are considered: the semimicroscopic algebraic cluster model (SACM) and the
phenomenological algebraic cluster model (PACM), which is a special limit of the SACM. The SACM strictly
observes the Pauli exclusion principle while the PACM does not. The discussion of the SACM is adapted to the
coherent state formalism by introducing the new SO(3) dynamical symmetry limit and third-order interaction
terms in the Hamiltonian. The potential energy surface is constructed in both models and it is found that the
effects of the Pauli principle can be simulated by higher-order interaction terms in the PACM. The present study
is also meant to serve as a starting point for investigating phase transitions in the two algebraic cluster models.
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I. INTRODUCTION

Clustering in nuclei has been known since the early days
of modern nuclear physics. Its importance manifests itself not
only in well-known clustering phenomena like the α-cluster
sructure of light nuclei, but also in nuclear molecular states
in heavy-ion reactions and the decay of heavy nuclei via
the emission of both α particles and heavier clusters [1,2].
More recently, the importance of the cluster structure of nuclei
has also been revealed in reactions playing a key role in
nuclear astrophysics. In describing this special excitation of
the nucleus, cluster models [3] have to take into account the
fact that the nucleus is a strongly interacting many-body system
consisting of protons and neutrons, i.e. fermions, therefore the
Pauli exclusion principle has to be observed by the applica-
tion of fully antisymmetrized wave functions. Microscopic
cluster models take this requirement strictly into account
in constructing both the model space and the interactions
[4]. Fully microscopic treatment can become prohibitively
complicated beyond light nuclei, so cluster models making
use of various approximations have also been constructed. In
phenomenological cluster models [5] the antisymmetrization
requirement is not observed strictly, and the interactions are
also approximated by intercluster forces. Semimicroscopic
models also apply phenomenologic interactions but combine
them with a microscopic model space.

In order to exploit various symmetries of nuclei and nuclear
cluster systems, algebraic models have been developed. The
first model of this kind was the vibron model [6], which
was originally developed for molecular physical applications
[7–9], but it was also applied to nuclear molecular states of
the 12C + 12C system [10]. It was also developed further to
describe internal excitations of the clusters [11,12]. The vibron
model and its extensions belong to the family of phenomeno-
logical cluster models for reasons described previously.

In another algebraic model, called the semimicroscopic
algebraic cluster model (SACM) [13,14], the Pauli exclusion
principle is taken into account in an elegant manner, such that

explicit antisymmetrization is not necessary, which simplifies
the calculation considerably. The semimicroscopic nature of
the model is represented by combining the microscopic model
space with phenomenologic interactions, as will be discussed
in Sec. II.

Recently, there has been much interest in the analysis of var-
ious phases of nuclear systems and phase transitions between
them. The first such studies date back to the 1970s [15]. The
principal method here is the use of coherent states [16], which
are especially suited to algebraic models. The expectation
value of the algebraic Hamiltonian with respect to a coherent
state is defined as the semiclassical potential. Through the
behavior of that potential as a function in the parameter space,
phase transitions and their order can be studied. The basic
description, applied to the interacting boson approximation
(IBA) [17], was presented in Ref. [16] and more recent reviews
can be found in Refs. [18–21]. The method of coherent states
also delivers a geometrical mapping of the algebraic model in
consideration, providing in this manner an easy interpretation
of the dynamical symmetry limits. Other studies on phase
transitions in the IBA are published in Ref. [22].

In Ref. [18] a complete classification of phase transitions in
algebraic models is presented, restricted to Hamiltonians with
up to two-body interactions. For the vibron model [23,24]
the transitions turned out to be of second order. In Ref. [25],
a second-order phase transition was also encountered. In
Ref. [26] the U(3) boson model was studied and it was noted
that for very large number of bosons, the transition may turn
over into one of first order. The transitions were investigated
using the overlap of the ground state with that of the O(2)
limit and searching for a steplike behavior. In other words,
no discontinuities of the derivatives of the potential were
considered.

Coherent states have been applied not only to the IBA or
atomic molecules [7,9,18,23,24] but also to other algebraic
models, which have a microscopic origin within the shell
model. In Ref. [27] the geometrical mapping, using the
vector coherent state method [28], was applied mapping the
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pseudosymplectic model [29] to the geometric model of the
nucleus [30]. The geometrical mapping turned out to be very
useful in calculations of nuclear spectra [31,32] and predicting
the spectra of superheavy nuclei [33]. Phase transitions in
single nuclear systems were also investigated in Refs. [34,35],
related to the symplectic model of the nucleus.

Note that phase transitions in nuclei, though not explicitly
stated as such, were already studied in 1972 in the first edition
of Ref. [30]. A standard curve discussion was applied, while
a phase transition was denoted as a shape transition. In the
recent treatments, the main difference is the classification in
terms of the order of phase transitions. A more general discus-
sion on quantum phase transitions can be found in Ref. [36].

Recent results concerning the phase transitions in atomic
and nuclear molecules [25,37–39] inspired us to extend these
studies to the SACM [13,14], too. The coherent state formalism
and the geometric mapping already have been developed
for this model [40], offering a suitable starting point for
the present study. Similarly to other algebraic models, phase
changes can be investigated here, too, between limits defined
by dynamical symmetries, notably the SU(3) and SO(4) limits
describing various types of nuclear two-cluster systems. Two
groups of models will be discussed: the phenomenological
algebraic cluster model (PACM) and the SACM. The vibron
model belongs to the group PACM [6,11]. In the PACM the
minimal number of relative oscillation quanta is always zero.
In contrast, in the SACM there is a minimal number of relative
oscillation quanta, n0, required by the antisymmetrization.

Some of the important questions we would like to discuss
in this and a forthcoming publication are as follows: What is
the difference between taking into account or not the Pauli
exclusion principle? What are the orders of the phase transi-
tions in the models discussed? How does one define the
thermodynamical limit? Normally, only second-order phase
transitions appear between the SU(3) and SO(4) dynamical
symmetries [18,25]. So, is it also possible to obtain, under
certain circumstances, a first-order phase transition?

This contribution restricts itself to the geometric mapping
of an algebraic Hamiltonian within the PACM and SACM.
Already some important differences arise. One main result will
be that in order for the PACM to reproduce the same results
as the SACM, higher-order interaction terms are necessary
which simulate the effects of the Pauli exclusion principle.
Differences and common features between the PACM and
SACM will be discussed. The main reason for the differences
is the large overlap of the clusters, making it necessary to
antisymmetrize the many-nucleon system. The PACM, which
ignores the Pauli exclusion principle, will, consequently, fail in
satisfying basic conditions. For atomic molecules this problem
does not arise, because the two atomic nuclei are separated in
space, and, thus, no exchange effects play a role. Some caution
must be exercised using the comparison; because the structures
of the individual clusters are described within the SACM by
the shell model, we are obliged to compare to a PACM that
also uses the SU(3) model. In general, the IBA model has been
used in the literature [11,12]. Additionally, the parameter by
which the number operator of π bosons is multiplied is fixed
in the SACM because it describes the mean field. Within the
PACM this parameter can be chosen arbitrarily.

The paper is structured as follows: In Sec. II the SACM
is revisited, introducing some novel features, including the
definition of the PACM as a special limit of the SACM not
observing the Pauli principle. In Sec. III the coherent state
formalism will be implemented to both models. The PACM
coherent state can be recovered from the SACM when one sets
the minimal number of relative oscillation quanta, n0, to zero.
In Sec. IV the geometrically mapped potentials are derived for
the two models, and, finally, in Sec. V, conclusions are drawn
and a discussion is presented on the differences of the PACM
to the SACM.

II. THE SEMIMICROSCOPIC ALGEBRAIC CLUSTER
MODEL RECONSIDERED

Previous applications of the SACM concerned describing
the spectroscopic properties of core + α-type [41] and
other [42] two-cluster systems. In this section we present a
brief overview of the SACM [13,14] and introduce further
amendments of it necessary for our study. These new elements
appear in all three subsections.

A. The model space

We start with reviewing the vibron model [6], in which
the relevant degrees of freedom are oscillations in the relative
motion of two structureless clusters in three dimensions. The
operators describing them are boson creation and annihilation
operators with angular momentum 1:

π †
m,πm, m = 0,±1. (1)

To this system one adds the spinless σ † boson creation and
σ annihilation operators. They define a cutoff, through the
condition that the total number of bosons N = nπ + nσ is kept
constant. The σ bosons have no physical significance but will
play a role later on if one intends to define a thermodynamical
limit. The πm operators satisfy the relation

πm = (−1)1−mπ−m. (2)

The 16 boson number-conserving operators

π †
mπm′

, π †
mσ , σ †πm, σ †σ (3)

act as the generators of the UR(4) group, where R stands for
relative motion. There are two subgroup chains that contain
the SOR(3) rotation group. The irreducible representations of
the subgroups supply quantum numbers to define bases that
are associated with the two dynamical symmetries:

UR(4) ⊃ SUR(3) ⊃ SOR(3) ⊃ SOR(2)

[N, 0, 0, 0] (nπ, 0) LR MR,
(4)

where

nπ = N,N − 1, . . . , 1, 0,

LR = nπ, nπ − 2, . . . , 1 or 0, (5)

MR = LR,LR − 1, . . . ,−LR,

and

UR(4) ⊃ SOR(4) ⊃ SOR(3) ⊃ SOR(2)

[N, 0, 0, 0] (ω, 0) LR MR,
(6)
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where

ω = N,N − 2, . . . , 1 or 0,

LR = ω,ω − 1, . . . , 1, 0, (7)

MR = LR,LR − 1, . . . ,−LR.

The SU(3) dynamical symmetry is generally believed to be the
vibrational limit of the system around a spherical equilibrium
shape, while the SO(4) dynamical symmetry describes static
dipole deformation.

The vibron model formalism reviewed up to this point
handles only the relative motion of the clusters and neglects
their internal structure. In order to incorporate these degrees
of freedom, too, the SACM applies Elliott’s SU(3) model [43].
The internal structure of the clusters is then described by the
SUCk

(3) group, where Ck refers to the kth cluster, k = 1, 2.
The Elliott model applies LS coupling, but in many cases the
S spin degree of freedom does not play a role. This is the
case, for example, with even-even clusters, and for the sake
of simplicity we shall consider clusters of this type in what
follows.

It is essential that in the SACM the SU(3) group appears not
only in the description of the relative motion and the individual
clusters but also in the description of the unified nucleus. The
typical group structure associated with a two-cluster system in
the SACM is then

SUC1 (3) ⊗ SUC2 (3) ⊗ SUR(3) ⊃ SUC(3) ⊗ SUR(3) ⊃
(λ1, μ1) (λ2, μ2) (nπ, 0) (λC,μC)

(8)
SU(3) ⊃ SO(3) ⊃ SO(2)

(λ,μ) κL M,

where (λk, μk) refers to the SUCk
(3) irreducible represen-

tations (irreps) of the individual clusters, which are then
coupled to intermediate irrep (λC,μC). These irreps are the
ones associated with the ground-state configuration of the
kth cluster. nπ is the number of relative oscillator quanta,
while (λ,μ) is the total SU(3) irrep. L and M are the angular
momentum and its projection, and κ is used to distinguish
multiple occurrences of a given L in (λ,μ).

The model space of the SACM is obtained by determining
the direct product

(λ1, μ1) ⊗ (λ2, μ2) ⊗ (nπ, 0) =
∑
λμ

mλμ(λ,μ), (9)

where the result is a sum of the irreps of SU(3) with multiplicity
mλμ. The sum still contains irreps which are not allowed by
the Pauli-exclusion principle. In order to determine which
irreps are allowed, one has to match the result with the fully
antisymmetrized shell-model space. The overlap constitutes
the model space of the SACM. Computer codes determining
the model space are available and can be obtained on request. In
most cases, however, it is easy to retrieve the irreps by hand. In
this manner the Pauli exclusion principle is observed (for some
illustrative examples, see Refs. [13,14]). The SU(3) basis is
also useful in eliminating the spurious center-of-mass motion.

We note that the above SU(3) matching procedure also
reproduces the Wildermuth condition [3] in a natural way. This
condition prescribes a minimal number of oscillator quanta

(i.e., nπ ) in the relative motion. For example, consider the
cluster system 16O + α → 20Ne. Within the shell model,
the number of oscillation quanta in 16O is 12, while for
the α particle it is zero. The number of oscillation quanta
for 20Ne is 20. Thus, in order to satisfy the Pauli exclusion
principle one has to add the difference, i.e., eight oscillation
quanta corresponding to lifting the four nucleons of the α

particle to the sd shell. States with less oscillation quanta
automatically do not fulfill the condition of antisymmetry
and are by construction excluded in the above-mentioned
procedure. For closed-shell clusters, the Wildermuth condition
is sufficient to assure antisymmetrization. However, for open
clusters this condition is not sufficient and one has to apply
additionally the comparison with the shell-model space.

It is now worthwhile to discuss the possible dynamical
symmetries of the SACM based on those of the vibron model.
The SU(3) dynamical symmetry is clearly associated with
the (8) group chain. The equivalent of the SO(4) dynamical
symmetry of the vibron model, however, can be considered
only an approximate dynamical symmetry in the SACM. The
reason is that due to the Pauli principle part of the set of
SO(4) basis states has to be excluded from the model space.
Although nπ is not a good quantum number in the SO(4) limit,
the SO(4) basis states can be written as linear combinations of
SU(3) states, so excluding these below the minimal allowed
nπ value distorts the structure of the SO(4) basis. Finally, a
third dynamical symmetry can also be derived from the SU(3)
dynamical symmetry of the SACM. Strictly speaking, this is
not a dynamical symmetry according to the standard definition.
Our definition [44] is that the following chain corresponds to
a Hamiltonian which does not contain any SU(3) coupling but
only interactions on the level of the SO(3) groups. In other
words, apart from h̄ωnπ only the interaction terms L2

C , L2
R ,

and L2 appear. The group structure associated with this SO(3)
dynamical symmetry is

SUC(3) ⊗ UR(4) ⊃ SOC(3) ⊗SOR(3) ⊃ SO(3) ⊃ SO(2)

(λC.μC) [N, 0, 0, 0] LC LR L M.

(10)

The difference between the previously mostly ignored chain
[Eq. (10)] and the one appearing in Eq. (8) is of dynamical
nature in the sense that the interaction in the former case
does not contain terms typical of the coupled SU(3) degrees
of freedom, e.g., quadrupole-quadrupole terms. In fact, the
SU(3) groups do not play a role other than supplying labels for
classification of the states. In terms of interactions we can call
the scenarios associated with the Eqs. (8) and (10) chains as
weak and strong coupling limits, respectively. The two limits
are the same when the two clusters are both closed-shell nuclei
(then LC = 0 and LR = L), but when at least one of them is
not [i.e., its internal (λk, μk) irrep differs from (0,0)], a clear
difference between the two limits arises.

Before closing this subsection it is worthwhile to comment
on the typical selection rules characterizing the dynamical
symmetries. This is also related to the band structure de-
termined by the appropriate group structure. In the basis
associated with the SU(3) dynamical symmetry of the SACM
the bands are defined by the (λ,μ) and κ quantum numbers

014316-3
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[see Eq. (8)], where κ is obsolete when either λ or μ is zero,
as is also the case in the SU(3) limit of the vibron model
[see Eq. (4)]. The states belonging to the same SU(3) irrep
are connected by the quadrupole operator, the SU(3) tensorial
character of which is (1, 1). This operator leaves nπ and the
parity intact and changes the angular momentum by two units,
so it describes electric quadrupole transitions. On the other
hand, bands associated with the SO(4) dynamical symmetry
are characterized by the (ω, 0) irrep of SO(4) [see Eq. (6)] and
contain states with both even and odd angular momentum, i.e.,
with both positive and negative parity. The in-band transitions
are described by the SO(4) generators, which play the role of
the electric dipole operator. The two dynamical symmetries
thus lead to different selection rules, and this has to be taken
into account when they are applied to some concrete physical
problem.

B. The Hamiltonian

Let us now turn to the Hamiltonian associated with the
SACM. While in most typical applications it is sufficient to
consider interaction terms constructed as two-body terms,
here we argue that a specific third-order interaction term
is also necessary to stabilize the spectrum. Furthermore,
as another new element we shall separate the Hamiltonian
into terms associated with the three dynamical symmetries
identified above. The parametrization introduced this way
allows interpolation between the dynamical symmetries using
control parameters. We consider two cases: (i) both clusters
spherical and (ii) one spherical cluster plus a deformed one.
Examples for these two scenarios are the 16O + α → 20Ne and
20Ne + α → 24Mg systems, examined in second paper of this
series.

The Hamiltonian is given by

H = xy HSU(3) + y(1 − x)HSO(4) + (1 − y)HSO(3) (11)

with

HSU(3) = h̄ωnπ + aClusC2(λC,μC) + (a − b�nπ )C2(λ,μ)

+ (ā − b̄�nπ )C2(nπ , 0) + γ L2 + t K 2

HSO(4) = aC LC
2 + a

(1)
R L R

2 + γ L2 + c

4
[(π † · π †) − (σ †)2]

× [(π · π ) − (σ )2] (12)

HSO(3) = h̄ωnπ + aClusC2(λC,μC) + aC LC
2

+ a
(1)
R L2

R + γ L2,

with �nπ = nπ − n0, n0 being the minimal number of
quanta. The aClus is the strength of the quadrupole-quadrupole
interaction, restricted to the cluster part, while R and C

denote the contributions related to the relative and cluster
parts, respectively. Further interaction terms are the total
angular-momentum operator, L2, and the K 2 operator, defined
in Refs. [13,14] which classifies the rotational bands, giving
the projection of the angular momentum onto the intrinsic z

axis. For the case of two spherical clusters, the second-order
Casimir operator of SU(3) is just given by nπ (nπ + 3). Note
that in the case of deformed clusters the information about the
deformation only enters in the SU(3) dynamical limit.

Note that the division in Eq. (12) is done according to
dynamical symmetry limits and not according to two terms,
referring to each cluster, one to the relative motion and one
to the interactions between them. If one wishes to do that, all
what has to be done is to decouple the different contributions.
For example, the L2 operator can be written as (LC + LR)2 =
[L2

C + L2
R + 2(LC · LR)]. The first and second terms refer

to the cluster and relative angular momentum, respectively,
while the last term refers to the coupling between the channels.
This can be further divided by writing the cluster angular
momentum as LC = (LC1 + LC2 ).

The division according to dynamical symmetries in Eq. (12)
was done as follows: In the SU(3) limit the coupling of
interaction operators is on the level of SU(3), i.e., Casimir
operators of SUC(3) and SU(3) have to appear. The SO(3)
limit couples only at the SO(3) level, i.e., only the angular-
momentum operators appear [no second- and higher-order
SU(3) Casimir operators, except nπ ]. These were introduced
in the previous subsection as the strong- and weak-coupling
limits, respectively. This is a deviation from the literature,
where these two limits are both referred to as the SU(3) limit.
The SO(4) limit is defined through the appearance of the
second-order Casimir operator of SO(4). This limit is called
the deformed limit because the interaction will always produce
a potential with a deformed minimum. In principle, one can
add the angular-momentum operator of the deformed clusters
(L2

k , k = 1, 2). We exclude this interaction for the moment.
The new higher-order interaction appearing in the third

term of HSU(3) needs some explanation. The whole term is
related to the quadrupole-quadrupole interaction, which is
present in any nuclear system. However, without the −b�nπ

(with −b > 0) correction, states which contain a sufficiently
large nπ will be lower in energy than states with the minimal
number of π bosons, n0. This is due to the dependence on
n2

π in the second-order Casimir operator, which will finally
dominate over the h̄ωnπ term for a sufficiently large number of
π bosons. In the standard treatment, when nπ is conserved, a
simple restriction to small �nπ suffices to circumvent the
problem, i.e., states with large �nπ are simply not taken into
account in the model space.

This effect was studied in Ref. [45] within the context of
the symplectic model of the nucleus [29,46,47]. In addition,
the quadrupole-quadrupole interaction dominates over the
kinetic energy and, finally, will promote high-nπ states to low
energies, even below the physical ground state. This problem
was solved by subtracting from the quadrupole-quadrupole
interaction the so-called trace equivalent part [45], which
insures that the average mean field is still represented by
a harmonic potential. When no correction is applied, the
mean-field shell structure is destroyed and a mean oscillator
structure, one of the main assumptions of the shell model,
cannot be assumed anymore. This was also noted within the
SACM in Ref. [14], where correction terms of the type �nπ ,
mentioned here, were included. Without these corrections
the problem increases significantly when interactions mixing
states with different nπ are considered. Then, avoiding states
with large nπ is not an option, as is in the case of conserved
nπ , when the model space can be limited in nπ using physical
arguments.
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C. PACM: The phenomenological limit of the SACM

The minimal number of π bosons is an essential require-
ment in the SACM to incorporate the Pauli principle. However,
the formalism allows setting this minimal number to zero. This
limit of the SACM can be defined as the PACM. It has to be
stressed that the difference between the SACM and the PACM
manifests itself only in the model space, while the two models
share the same Hamiltonian and other operators. Obviously,
the different model space will lead to different matrix elements
in the two models. Note that the minimal number of relative
oscillation quanta is either 0 or n0. It is not allowed to choose a
number in between, because each of such a number violates the
Pauli exclusion principle. When both clusters are closed-shell
nuclei, the PACM essentially recovers the vibron model [6].

One of the main objectives of the present work is to
investigate the similarities and differences between the two
approaches. This is especially interesting within the context
of the coherent state formalism, because in other models
restrictions similar to those in the SACM (i.e., restricting the
boson number) are unknown. In this sense the formalism of
the PACM is closer to that of other models. Due to the minimal
number of π bosons the formalism of the SACM will obviously
become more involved. It is our aim to explore this conflict
between the physical importance of a fundamental principle
(i.e., the Pauli principle) and the technically more complicated
formalism that arises due to it.

III. COHERENT STATES AND
THE GEOMETRICAL MAPPING

In this section the coherent state is presented, which is used
to obtain a geometrical mapping of the SACM and PACM in
the next section.

The use of coherent states is the most common method of
applying a geometrical mapping [9,15,16,18,21,23,24,27,40].
One advantage is that the coherent state can be expanded in
terms of the complete set of states for a given total number
of bosons, N (in the SACM, this refers to all allowed basis
states for a given total number of quanta). The ground-state
energy is usually reproduced very well. The coherent state also
provides a transparent relation to collective variables. Its use is
justified by noting that it corresponds to the Gaussian overlap
approximation within the generator coordinate method [48],
skipping the term of the zero-point motion. As shown in
Ref. [48], this method allows the definition of a potential with
usually good results. However, the mass parameters of the
kinetic energy are usually not reproduced very well. In order
to obtain a kinetic energy, too, the coherent state variables
have to be defined as complex variables [23,24]. We do not
consider the kinetic energy due to the reason mentioned above
and focus on the potential.

The coherent state within the SACM was introduced in
Ref. [40]

|α〉 = NN,n0 (α · π †)n0 [σ † + (α · π †)]N |0〉
= NN,n0

N !

(N + n0)!

dn0

dγ
n0
1

[σ † + γ1(α · π †)]N+n0 |0〉, (13)

where, for convenience, we redefined the total number of
relative oscillation quanta as (N + n0), while the γ1 parameter

has to be set equal to 1 after the differentiation. The
normalization factor is given by Eq. (A5) in the Appendix.
The PACM coherent state is obtained from Eqs. (13) and (A5)
by setting n0 = 0.

The α is a short-hand notation for the, in general, complex
variables αm (m = 1, 0,−1). The coherent state with complex
α coefficients is the most general linear combination of the
boson creation operators. For static problems the requirement
[23,24]

α∗
m = (−1)1−mα−m (14)

reduces the number of real parameters to three, namely to α0,
and the real plus the imaginary part of α+1.

In the Appendix we present the results for the geometrical
mapping for the important interaction terms appearing in the
Hamiltonians. We define

(α · α) =
∑
m

(−1)1−mαmα−m = α2, (15)

where α represents a measure of the intercluster distance [40]
and α2 a short-hand notation for (α · α). Because the only
relevant variable is the intercluster distance, we can express
the potential in terms of this sole variable α.

The importance of the coherent states resides in the fact
that they provide us with the possibility to define a potential
energy surface

V (α) = 〈α|H|α〉, (16)

in terms of the collective variables αm.

IV. THE GEOMETRICALLY MAPPED POTENTIAL

As discussed previously, the difference between the SACM
and PACM model spaces manifests itself in the difference of
the matrix elements of physical operators, even if the operators
themselves are the same in the two approaches. In this section
we determine the potential energy surfaces in both models and
explore the relation between them.

A. The SACM

Applying the coherent state for the SACM to the Hamilto-
nian (11), one obtains the geometrically mapped potential

〈H〉 = C(x, y) − (b + b̄)xy

[
A(x, y)α2 F11(α2)

F00(α2)

−B(x, y)α4 F22(α2)

F00(α2)
+ α6 F33(α2)

F00(α2)

−C(x, y)α2 FN−2
20 (α2)

F00(α2)

]
, (17)

where

C(x, y) = 〈(aClus + a + bn0)C2(λC,μC) + γ LC
2

+ (1 − xy)aC LC
2〉 + xyt〈K 2〉

+ c

4
(N + n0)(N + n0 − 1)y(1 − x) (18)

and the Fij (α2) functions are defined by Eq. (A15) in the
Appendix. Further, the coefficients appearing in Eq. (17) are
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defined as

A(x, y) = − 1

(b + b)xy

{
h̄ω[yx + 1 − y]

+ 2
[
γ + (1 − yx)a(1)

R

] + xy[a − b][4 + 
1 + 
2]

+ 4xy[a − b] + xybn0[4 + 
1 + 
2] + 4xyn0b

− bxyC2(λC,μC) − c

2
y(1 − x)(N + n0 − 1)

}
B(x, y) = 1

(b + b)xy

{
xy[a + a − 6b − 6b (19)

− b{
1 + 
2} + n0(b + b)] + c

2
y(1 − x)

}
C(x, y) = −

c
2y(1 − x)

(b + b)xy
,

where 
k , according to Ref. [40], is given by


k = 〈(λk, μk)| QCluster(k)
m |(λk, μk)〉

=
√

5

π

[
nk + 3

2
(Ak − 1)

]
α2m(k)

=
√

5

π
N0,kβk. (20)

(This was obtained by a geometric mapping of the symplectic
model [27,31,32].) The (λk, μk) denotes the SU(3) irrep of
the deformed cluster number k. In the case that it is spherical,

k = 0. The N0k is the sum of the total number of quanta nk of
the deformed cluster plus 3

2 (Ak − 1), where Ak is the number
of nucleons in the kth cluster. This last term is the zero-point
energy with the contribution of the center of mass already
extracted. The α2m(k) is the deformation variable of cluster
number k. In Eq. (20) we used only the m = 0 component of
α2m(k) and defined it βk , the deformation of cluster k. This
implies that the deformed cluster is assumed to be axially
symmetric and it is in line with the intercluster z axis, which
connects both clusters. When the z axis of the deformed cluster
is inclined with respect to the molecular z axis by an angle θ ,
the deformation value βk is multiplied by a matrix element of
the rotation matrix, which only changes the numerical value of
βk , i.e., β ′

k = d2
00(θ )βk . For simplicity we do not include these

orientations in the discussion. Furthermore, it will not change
the basic results.

In discussing the phase transitions it is possible to choose as
the independent parameters of the theory A, B, and C, which
themselves are the functions of all interaction parameters of the
model. This structure will be used in the second paper inves-
tigating the possible phase transitions and the phase diagram.

For x = 0 in Eq. (11), i.e., in the case of the SO(4)-to-SO(3)
phase transition, the discussion has to be modified due to the
xy factor appearing in the denominators in Eq. (19). In this
case the potential maps to

V = 〈H〉

→
[
Aα2 F11(α2)

F00(α2)
− Bα4 F22(α2)

F00(α2)
− Cα4 FN−2

20 (α2)

F00(α2)

]
+ C

(21)

with

A =
{
h̄ω[1 − y] + 2

[
γ + a

(1)
R

] − c

2
y(N + n0 − 1)

}
(22)

B = −
(

c

2
y

)
(23)

C = c

2
y = −B. (24)

In this case only two independent parameters A and B appear.
Note that for c > 0, the C is positive (remember that −b > 0).
When C < 0, the situation corresponds in the SO(4) limit
to a ground state where all bosons are decoupled and the
highest state is the one where all bosons are coupled in pairs.
In Eq. (17) we have to add a constant term, such that the
geometrically mapped potential is zero at α = 0. This is
a permitted renormalization of the zero-point energy. This
constant will be determined further below.

A very useful consideration is the investigation of the
potential in the α → ∞ and α → 0 limits. In the first limit
we will see that the potential approaches a constant value
depending on (N + n0), which is due to the finite size of the
boson space. For large values of α the coherent state contains
only π bosons and cannot increase the energy any further. The
second limit (α → 0) is necessary to adjust V (α = 0) = 0.

(i) Limit α → ∞:
The relevant formulas are

α2 F11

F00
→ (N + n0)

α4 F22

F00
→ (N + n0)(N + n0 − 1)

α6 F33

F00
→ (N + n0)(N + n0 − 1)(N + n0 − 2)

α2 FN−2
20

F00
→ N (N − 1)

1

α2
→ 0. (25)

With this, the limit of the complete geometric potential (18) is
given by

V → C − bxy{A(N + n0) − B(N + n0)(N + n0 − 1)

+ (N + n0)(N + n0 − 1)(N + n0 − 2)}. (26)

Depending on the signs and values of A and B, this limit
is either positive or negative. For the positive value the limit
for (N + n0) → ∞ is then +∞, leading to a stable potential,
while if it is negative the limit leads to −∞, leading to an
unstable potential.

(ii) Limit α → 0:
The relevant formulas are

α2 F11

F00
→ n0

α4 F22

F00
→ n0(n0 − 1)

α6 F33

F00
→ n0(n0 − 1)(n0 − 2)

α2 FN−2
20

F00
→ N (N − 1)(n0 + 1)(n0 + 2)

α2

2
→ 0. (27)
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With this, the limit of the complete geometric potential (18) is
given by

V (α = 0) → C − bxy{An0 − Bn0(n0 − 1)

+ n0(n0 − 1)(n0 − 2)}, (28)

which is independent of N . This result can be used to adjust
the potential to zero at α = 0.

B. The PACM

In this subsection it is more convenient to use the parameter

β2 = α2

1 + α2
. (29)

While the range of α is from zero to ∞, the range of β is from
zero to 1.

Using the Hamiltonian as introduced in Sec. II and the
coherent state of Sec. III, for the case when the Pauli exclusion
principle is not taken into account, the potential is obtained by
calculating the expectation value of the Hamiltonian as

〈H〉 = V (β)

= (aClus + a)C2(λC,μC) + c

4
N (N − 1)y(1 − x)

+Nβ2
{
[h̄ω(xy + 1 − y) + (a − b)(4 + 
1 + 
2)

+ 4(ā − b̄) − b C2(λC,μC)] − (1 − x)yc(N − 1)

+ 2
[
γ + (1 − xy)a(1)

R

]} + N (N − 1)

×β4{xy[a + ā − 6b − 6b̄ − b(
1 + 
2)]

+ (1 − x)yc} − N (N − 1)(N − 2)β6xy(b + b̄)

+ C2(λC,μC)axy + 1

4
(1 − x)ycN (N − 1). (30)

Defining

A = −[(b + b)xy(N − 1)(N − 2)]−1

×{
h̄ω(yx + 1 − y) + 2

[
γ + (1 − yx)a(1)

R

]
.

+ 4xy(a − b ) + xy(a − b)(4 + 
1 + 
2)

− bxyC2(λC,μC) − y(1 − x)c(N − 1)
}

B = xy[a + a − 6(b + b ) − b(
1 + 
2)] + cy(1 − x)

(N − 2)(b + b)xy

C = 〈(aClus + a)C2(λC,μC) + γ LC
2 + (1 − xy)LC

2〉
+ xyt〈K 2〉 + c

4
N (N − 1)y(1 − x), (31)

the potential acquires the form [49,50]

V = N (N − 1)(N − 2)[ − (b + b̄)xy]{Aβ2 − Bβ4 +β6} + C.

(32)

This allows us to define a new, normalized potential,

Ṽ = {Aβ2 − Bβ4 + β6}. (33)

In the definition of Ṽ we extracted the factor (b + b̄)xy, such
that there appears no factor in front of the β6 term. However,

for the SO(4) to SO(3) transition, the x value is always zero.
For this case we include the x value within the parenthesis,
yielding a vanishing factor of the six-order term.

Comparing the potentials obtained from the same Hamilto-
nian in the SACM and PACM approaches leads to a remarkable
finding. The potential in the SACM framework differs rather
markedly from its PACM counterpart; however, a similar
potential can also be generated within the latter framework.
This can be achieved by including higher-order interactions of
the type F1(nπ )/F2(nπ ), with appropriate functions Fk(nπ ).
This demonstrates that observing the Pauli exclusion principle
acts as if one used high-order interactions in a model which
does not observe the Pauli exclusion principle. In fact, the
higher-order terms simulate the presence of the Pauli exclusion
principle.

V. CONCLUSIONS

In order to investigate possible phase transitions between
different limits corresponding to various dynamical symme-
tries, we reparametrized the Hamiltonian of the SACM such
that it allowed interpolation between the three possible limits.
These were the strong coupling limit [SU(3)], the deformed
limit [SO(4)], and the weak coupling limit [SO(3)]. The latter
limit was proposed in Ref. [44] and it differs from the strong
coupling limit in the level on which the interaction terms of
the relative motion and those of the internal cluster structure
are coupled: In the weak coupling limit this is done on the
SO(3) (i.e., angular momentum) level, while in the strong
coupling limit the SU(3) algebra plays a role, introducing,
e.g., quadrupole-quadrupole interactions between the two
sectors. In the case of a system with two spherical clusters
the weak-coupling Hamiltonian is a simplified version of the
strong coupling one, so it does not stand as a separate limit
in itself. The SO(4) limit also has its limitations due to the
truncation of the model space in the nπ quantum number.

The PACM was introduced as a special limit of the
SACM with the minimal number of the π bosons set to
zero. This choice corresponds to neglecting the effects of the
Pauli exclusion principle. Although this means giving up a
fundamental physical requirement, this decision was inspired
by the fact that the formalism of the PACM is closer to other
similar models using the coherent state method. It appears
instructive to study the differences and similarities between
the SACM and PACM within this latter approach.

The present work is meant to be the basis for a further study
in which phase transitions are investigated by interpolating
between two dynamical symmetry limits. This method requires
the application of large boson numbers, so as another new
ingredient, the Hamiltonian was implemented with a third-
order term in order to stabilize the energy spectrum in
this situation. The potential energy surface was constructed
in terms of a variable controlling the relative distance of
the clusters. This was done both in the SACM and PACM
framework. It was found that the potential obtained from
the SACM can be reproduced within the PACM approach as
well by including higher-order terms in the Hamiltonian. This
indicates that, studying only the Hamiltonian, the effects of the
Pauli principle can be simulated by higher-order interactions.
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The present results will be used in a forthcoming pub-
lication that focuses on phase transitions between phases
determined by different dynamical symmetries of the SACM
and the PACM.
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APPENDIX : THE COHERENT STATE FOR THE SACM

We choose the most general structure for the coherent
state, allowing arbitrary parameters, am, which only coincide
with αm when the static problem is considered. This will
be important in future work, when we intend to treat the
cranking formalism within the PACM and SACM, similar to
the formalism presented in Refs. [51,52]. Nevertheless, as long
as we are only interested in the potential energy surface for
systems without rotation, the parameters αm will form a simple
tensor.

We use the definition

(α · π †) =
∑
m

αmπ †
m. (A1)

The αm are in general complex and arbitrary. The complex
conjugate is denoted by α∗

m. We also use

α̃m = (−1)1−mα−m. (A2)

This will be important when we apply πm = (−1)1−mπ−m to
the coherent state on the right.

The conjugate coherent state is given by

〈α| = NNn0〈0|[σ + (α∗ · π)]N (α∗ · π )n0 , (A3)

with

(α∗ · π ) =
∑
m

α∗
mπm. (A4)

Thus, the π
†
m acts on the left as an annihilation operator. Note

that here we do not assume a tensorial behavior of the αm,
contrary to what we used in the body of the paper. In order
to relate this αm to the one used in the paper, we have to
assume α∗

m = (−1)mα−m. This is justified for a static problem,
as discussed in the paper. The situation changes, when for
example the cranking formalism is applied or not only the
potential is intended to derive but also the kinetic energy.

NNn0 is the normalization factor, given by

N−2
Nn0

= N !2

(N + n0)!

dn0

dγ
n0
1

dn0

dγ
n0
2

[1 + γ1γ2(α∗ · α)]N+n0 , (A5)

taken at γ1 = γ2 = 1, after performing the derivation.
Acting with π

†
m to the left, commutators of the type

[πm1 ,π
†
m2 ] appear and will give expressions proportional to

α∗
m. However, acting with πm, as it appears in a coupled

expression, to the right, it will give expressions proportional
to α̃m = (−1)1−mα−m, because we, first, have to lift the index
of the annihilation operator, obtaining (−1)1−mπ−m. Note that

(α∗ · α) =
∑
m

α∗
mαm =

∑
m

|αm|2 (A6)

is a real number.
The formulas are now similar to those of Ref. [40], but

without the use of a possible tensor character of the αm and
with the appearance of complex conjugate α∗

m and α̃m. One of
the interesting matrix element is given by Ref. [40]〈

[π † ⊗ π ][S]
m

〉 = (N + n0)[α∗ × α̃][S]
m N 2

Nn0

N !2

(N + n0)!

× dn0

dγ
n0
1

dn0

dγ
n0
2

γ1γ2[1 + γ1γ2(α∗ · α)]N+n0−1.

We have

[α∗ × α̃][S]
m =

∑
m1m2

(1m1, 1m2|Sμ)α∗
m1

α̃m2 , (A7)

where the coupling sign “×” instead of “⊗” was used in order
to indicate that we do not couple tensors. This is just a short-
hand notation.

In the geometrical mapping one has to take into account
that

(α · π †) = α0π
†
0 + α1π

†
+1 + α−1π

†
−1 (A8)

and, thus,

[πm, (α · π †)] = (−1)1−mα−m = α̃m,
(A9)

[(α∗ · π ),π †
m] = α∗

m.

Note the difference in the phase.
In this sense, the mapping of different operators is com-

pletely parallel to the one given in Ref. [40], with the exception
of the definition in the coupling of αm. The geometrical
mapping of more relevant operators is given by

〈α|σ †πm|α〉
= (−1)1−m(N + n0)α̃mN 2

Nn0

(N !)2

(N + n0)!

× dn0

dγ
n0
1

dn0

dγ
n0
2

[γ2[1 + γ1γ2(α∗ · α)]N+n0−1]

〈α|π †
mσ |α〉

= (−1)1−m(N + n0)α∗
mN 2

Nn0

(N !)2

(N + n0)!

× dn0

dγ
n0
1

dn0

dγ
n0
2

[γ2[1 + γ1γ2(α∗ · α)]N+n0−1]
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〈α|σ †σ |α〉

= N2
N 2

Nn0

N 2
(N−1)n0

〈α|[[π † ⊗ π †][S1] ⊗ [π ⊗ π][S2]][S3]
m |α〉

= (N + n0)(N + n0 − 1)N 2
Nn0

(N !)2

(N + n0)!

× [[α∗ × α∗][S1] × [α̃ × α̃][S2]][S3]
m

× dn0

dγ
n0
1

dn0

dγ
n0
2

(γ1γ2)2[1 + γ1γ2(α∗ · α)]N+n0−2

〈α|[π † ⊗ π †][S]
μ (σ )2|α〉

= (N + n0)(N + n0 − 1)N 2
Nn0

(N !)2

(N + n0)!
[α∗ × α∗][S]

μ

× dn0

dγ
n0
1

dn0

dγ
n0
2

{
γ 2

2 [1 + γ1γ2(α∗ · α)]N+n0−2
}

〈α|(σ †)2[π ⊗ π ][S]
μ |α〉

= (N + n0)(N + n0 − 1)N 2
Nn0

(N !)2

(N + n0)!
[α̃ × α̃][S]

μ

× dn0

dγ
n0
1

dn0

dγ
n0
2

{
γ 2

1 [1 + γ1γ2(α∗ · α)]N+n0−2
}

〈α|(σ †)2(σ )2|α〉

= N (N − 1)
N 2

Nn0

N 2
(N−2)n0

. (A10)

These equations also give us the mapping of nπ and n2
π as

special cases. For completeness we also give the mapping of
n3

π , which is

〈α|n2
π + 2

∑
i,j

π
†
i π

†
jπ

iπ j +
∑
i,j,k

π
†
i π

†
jπ

†
kπ

iπ jπ k|α〉

= 〈α|3{[ π † ⊗ π †]0
0[ π ⊗ π]0

0

+
√

5[[ π † ⊗ π †]2 ⊗ [ π ⊗ π ]2]0
0}|α〉

+ 〈α|
∑
i,j,k

π
†
i π

†
jπ

†
kπ

iπ jπ k + nπ |α〉. (A11)

Note that the mapping is now more complicated than when
no Pauli exclusion principle is taken into account due to the
distinct property of αm. (It is not a tensor any more.) Also note
that

[α̃ × α̃][0]
0 = 1√

3

∑
m

(−1)1−mαmα−m,

(A12)

[α∗ × α∗][0]
0 = 1√

3

∑
m

(−1)1−mα∗
mα∗

−m.

Thus, the sum of both is real. Because they always appear in a
sum in the expectation value of the Hamiltonian with respect
to the coherent state, the expectation value is always real. This
is a remarkable sign of consistency.

The mapping, concerning the individual clusters, is the
same as given in Ref. [40]. There, one has to take into account
that the coherent state acquires the form of a direct product of
the state describing the relative motion and the one giving the
cluster coupling

|α〉|[C1 × C2]C〉, (A13)

where the last factor refers to the coupling of the two cluster
states, which is fixed [40].

Next we have to expand the above expressions in powers
of (α · α). In Ref. [40] the n0 was neglected compared to N .
Here, we will take into account the contributions of n0. The
list of expansions is

dn0

dγ
n0
1

dn0

dγ
n0
2

[1 + γ1γ2(α∗ · α)]N+n0 |γ1=γ2=1

=
N+n0∑
k=n0

(
N + n0

k

) [
k!

(k − n0)!

]2

(α∗ · α)k

dn0

dγ
n0
1

dn0

dγ
n0
2

γ1γ2[1 + γ1γ2(α∗ · α)]N+n0−1|γ1=γ2=1

=
N+n0−1∑

k=max(n0−1,0)

(
N + n0 − 1

k

) [
(k + 1)!

(k + 1 − n0)!

]2

(α∗ · α)k

dn0

dγ
n0
1

dn0

dγ
n0
2

γ2[1 + γ1γ2(α∗ · α)]N+n0−1|γ1=γ2=1

=
N+n0−1∑

k=n0

(
N + n0 − 1

k

)[
k!

(k − n0)!

]

× (k + 1)

(k + 1 − n0)
(α∗ · α)k

dn0

dγ
n0
1

dn0

dγ
n0
2

(γ1γ2)2[1 + γ1γ2(α∗ · α)]N+n0−2|γ1=γ2=1

=
N+n0−2∑

k=max(n0−2,0)

(
N + n0 − 2

k

) [
(k + 2)!

(k + 2 − n0)!

]2

(α∗ · α)k

dn0

dγ
n0
1

dn0

dγ
n0
2

(γ2)2[1 + γ1γ2(α∗ · α)]N+n0−2|γ1=γ2=1

=
N+n0−2∑

k=max(n0,0)

(
N + n0 − 2

k

) [
(k + 2)!

(k + 2 − n0)!

]

×
[

k!

(k − n0)!

]
(α∗ · α)k. (A14)

The equations in (A14) can be simplified using the abbrevia-
tion

Fpq(α2) = N !2

(N + n0)!

(N + n0)!

[N + n0 − max(p, q)]!

×
N+n0−max(p,q)∑

k=max(n0−p,n0−q,0)

[
N + n0 − max(p, q)

k

]

×
[

(k + p)!

(k + p − n0)!

] [
(k + q)!

(k + q − n0)!

]
α2k.

(A15)
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[40] P. O. Hess, G. Lévai, and J. Cseh, Phys. Rev. C 54, 2345 (1996).
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