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Upgraded formulation of the nuclear eigenvalue problem in a microscopic multiphonon basis
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An equation of motion method for solving the nuclear eigenvalue problem in a basis of microscopic multiphonon
states is reformulated consistently in terms of Tamm-Dancoff phonons. The potential and limits of the method
are illustrated through the calculation of the nuclear response to dipole and quadrupole external fields in 16O.
The calculation is performed using either a Nilsson or a Hartree-Fock basis. The role of the multiphonon states
is shown to depend strongly on the choice of the basis. The effect of the truncation of the three-phonon subspace
is also discussed.
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I. INTRODUCTION

Extensions of the random-phase approximation (RPA) are
needed in order to account for the fragmentation of the nuclear
giant resonances [1] and to describe the anharmonic features of
the multiphonon levels whose evidence is growing at low [2,3]
and high [4] energy.

These extensions, known as second RPA (SRPA) [5,6],
couple the particle-hole (ph) or quasiparticle (qp) RPA modes
to the 2p2h or 4qp configurations.

The SRPA equations were solved in several approxima-
tions. The most drastic one was to neglect the mutual coupling
among 2p2h states [7,8]. Another consisted in replacing one ph
pair with a correlated state (RPA phonon) thereby obtaining a
particle-phonon coupling [9–12]. A recent calculation using a
Skyrme force takes into partial account the interaction between
2p2h states [13,14].

On equivalent approximations relies the relativistic RPA
(RRPA) plus phonon coupling [15,16], based on Green
function techniques originally developed within a nonrela-
tivistic frame [17]. An upgraded version, dubbed relativistic
quasiparticle time blocking approximation (RQTBA) [18,19],
exploits updated techniques of the Landau-Migdal theory
[20,21] to treat consistently the quasiparticle-phonon coupling.

All the above approaches include up to two ph or qp
phonons. A selected set of qp RPA three-phonon states is taken
into consideration only in the quasiparticle phonon model
(QPM) [22]. This approach adopts a two-body Hamiltonian of
separable form, which simplifies enormously the eigenvalue
equations.

The SRPA and its relativistic variants as well as the QPM
have become precious tools for investigating the fine structure
of nuclear resonances. In particular they were used to analyze
the properties of the dipole excitations observed in the low-
energy queue of the giant dipole resonance (GDR), in nuclei
with neutron excess. These excitations are associated to the
pygmy dipole resonance (PDR), promoted by the oscillation
of the neutron skin against the core. A rather complete and

*Permanent address: Faculty of Mathematics and Physics, Charles
University in Prague, Czech Republic.

updated list of references on this subject may be found in
Ref. [23].

Recently, we developed an equation of motion phonon
method (EMPM) [24,25] which generates iteratively a mul-
tiphonon basis built of phonons obtained in ph Tamm-Dancoff
approximation (TDA) and solves the eigenvalue problem in
such a basis.

The formulation, however, was not entirely consistent.
The n-phonon basis states, in fact, were obtained by act-
ing with ph operators on the (n − 1)-phonon states. Thus,
eigenvalue equations, states and observables were expressed
partly in terms of ph states and partly in terms of phonons.
Such a hybrid structure inhibited the possibility of taking
advantage of the phonon composition of the states to operate
reliable truncations of the full space. We were thus forced
to perform calculations in a rather restricted shell model
space.

This inconsistency is removed in this new scheme where the
ph operators are replaced by TDA phonons in the construction
of each n-phonon basis state. In virtue of this simple change,
the eigenvalue equations yield, with the same accuracy of
shell model, states and observables expressed consistently and
solely in terms of phonons.

With respect to the old formulation, this new version results
to be more elegant and flexible. It enables us, for instance,
to truncate the multiphonon space while taking high energy
configurations into account. Indeed, the final goal of the
phonon scheme is to achieve a maximal space truncation by
selecting only the relevant phonons.

The eigenvalue problem is formulated first in the spin
uncoupled basis and, then, in the j − j coupled scheme. The
first formulation provides equations of simple and physically
transparent structure. The second, which results to be only
slightly more involved, is more suited for numerical applica-
tions.

The method is applied to the doubly magic 16O. We
construct and solve the eigenvalue equations and use the
eigenstates to study the dipole and quadrupole responses.
The calculation is performed using either a Nilsson or a
Hartree-Fock (HF) single particle basis within a space which
includes the full two-phonon subspace and an appreciable
fraction of three-phonon states.
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Such a numerical implementation is meant to clarify the
relevance of the different phonon subspaces to the nuclear
response, to test if and how their role depends on the single
particle basis, and, finally, to explore to what extent a truncation
of the three-phonon subspace affects spectra and transitions.

II. THE METHOD

As in Refs. [24,25], we write a two-body Hamiltonian H

of general form in the second quantized form

H =
∑

i

εia
†
i ai + 1

4

∑
ijkl

Vijkl a
†
i a

†
j alak , (1)

where εi are the single-particle energies, a
†
i (ai) the creation

(annihilation) particle operators with respect to the physical
vacuum, and Vijkl = 〈ij |V |kl〉A are antisymmetrized matrix
elements of the nucleon-nucleon interaction.

A. Tamm-Dancoff approximation

The preliminary step consists in solving the TDA eigen-
value problem ∑

p′h′
Aph;p′h′cλ

p′h′ = Eλc
λ
ph, (2)

where

Aph;p′h′ = δhh′δpp′(εp − εh) + Vph̄′h̄p′ (3)

and h̄ denotes time reversal. The solution of the TDA equations
allows to construct the phonon operator

O
†
λ =

∑
ph

cλ
pha

†
pah̄ , (4)

where a
†
p (ah̄) creates a particle (hole) out of the unperturbed

ground state |0〉, the ph vacuum.
The transition amplitudes of the one-body operator

Mλ =
∑
rs

〈r|Mλ|s〉a†
r as (5)

are

〈λ|Mλ|0〉 =
∑
ph

c
(λ)
ph〈p|Mλ|h̄〉. (6)

An important quantity is the TDA density matrix:

ρλλ′(rs) = 〈λ′|a†
r as |λ〉 =

∑
k

c
(λ′)
rk c

(λ)
sk , (7)

where k = p or h according that (rs) = (h1h2) or (rs) =
(p1p2), respectively. In the above formula a

†
r as are considered

in normal order. Thus the contribution from the core is
neglected.

B. Equations of motion and multiphonon basis

Our goal is to construct n-phonon states |n; β〉 so composed

|n; β〉 =
∑
λα

C
(β)
λα O

†
λ |n − 1; α〉. (8)

It is to be noticed the change with respect to the previous
version [24,25], where the basis states were constructed out of
a
†
pah̄|n − 1; α〉.

The procedure starts with writing the equations of motion

〈n, β|[H,O
†
λ]|n − 1, α〉 = (Eβ − Eα)X(β)

λα , (9)

where

X
(β)
λα = 〈n, β|O†

λ|n − 1, α〉. (10)

The above amplitudes are related to the expansion coefficients
C

(β)
λα of the states |n; β〉 [Eq. (8)] by

X
(β)
λα =

∑
λ′α′

Dλα,λ′α′C
(β)
λ′α′ , (11)

where

Dλα,λ′α′ = 〈n − 1, α′|Oλ′O
†
λ|n − 1, α〉 (12)

is the metric matrix.
We now expand the commutator and follow exactly the

procedure of Refs. [24,25] to obtain∑
γphp′h′

cλ
phAαγ (ph; p′h′)〈n; β|a†

p′ah̄′ |n − 1; γ 〉 = EβX
(β)
λα ,

(13)

where

Aαγ (ph; p′h′)

= δ(n)
αγ

[
δhh′δpp′

(
εp − εh + E(n−1)

α

) + Vph̄′h̄p′
]

+
∑
h1h2

[
δhh′ Vp′h1ph2 − δpp′

1

2
Vhh1h′h2

]
ρ(n−1)

αγ (h1h2)

+
∑
p1p2

[
1

2
δhh′ Vp′p1pp2 − δpp′ Vhp1h′p2

]
ρ(n−1)

αγ (p1p2).

(14)

The quantities

ρ(n)
αγ (rs) ≡ 〈n; γ |a†

r as |n; α〉 (15)

with (rs) = (pp′) or (rs) = (hh′) are the one-body density
matrices in the n-phonon subspace. The matrix A contains the
TDA matrix A given by Eq. (3). It actually turns into A for
n = 1.

We now invert Eq. (4) to express the ph in terms of the
phonon operators O

†
λ and obtain

〈n; β|a†
pah̄|n − 1; γ 〉 =

∑
λ

cλ
ph〈n, β|O†

λ|n − 1, γ 〉. (16)

Once this quantity is inserted into Eq. (13), we observe that
the coefficients cλ

ph bring the TDA matrix contained in Aαγ to
diagonal form∑

php′h′
cλ
phA(ph, p′h′)cλ′

p′h′ = δλλ′Eλ. (17)
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=> = + + ...

FIG. 1. From particle-hole to phonon propagators.

In virtue of this property, Eq. (13) becomes

∑
λ′α′

Aλα,λ′α′X
β

λ′α′ = EβX
β

λα, (18)

where the matrix A is expressed solely in terms of phonons

Aλα,λ′α′ = (Eλ + Eα)δλλ′δαα′ + Vλα,λ′α′ . (19)

Here, Eλ and Eα are, respectively, the one- and (n − 1)-phonon
energies and V the phonon-phonon potential of the form

Vλα,λ′α′ =
∑
rs

Vλλ′(rs)ρ(n)
αα′(rs), (20)

where

Vλλ′(rs) =
∑
tq

Vtrqsρλλ′(qt). (21)

The attention should be focused on the formal analogy of the
structure (19) of the phonon matrix Aλα,λ′α′ with the form (3)
of the TDA matrix Aph;p′h′ . Formally, the first is deduced from
the second by replacing the particle-hole energies with the
sum of phonon energies and the particle-hole interaction with
a phonon-phonon interaction.

This correspondence can be illustrated in terms of diagrams.
The TDA ph lines are replaced by phonons (Fig. 1) and each
TDA ph vertex is turned into a phonon-phonon vertex (Fig. 2)
which amounts to a sum of infinite diagrams in the two-body
potential.

Unlike the case of TDA, however, Eq. (18) is not yet an
eigenvalue equation. This is obtained once we express the X

amplitudes in terms of the expansion coefficients C defined

=>

FIG. 2. From particle-hole to phonon-phonon interaction.

by Eq. (8). Equation (18) is thus turned into the generalized
eigenvalue equation within the n-phonon space

HC = (AD)C = EC (22)

or, more explicitly,∑
λ′α′

H(λα, λ′α′)Cβ

λ′α′ =
∑
λ′α′

(AD)(λα, λ′α′)Cβ

λ′α′

= Eβ

∑
λ′α′

Dλα,λ′α′C
β

λ′α′ . (23)

The metric matrix can be shown to have the following
expression:

Dλα,λ′α′ = δλλ′δαα′ +
∑

γ

X
(α)
λ′γ X

(α′)
λγ −

∑
rs

ρλλ′(rs)ρ(n−1)
αα′ (rs).

(24)

The corrective terms to unity are induced by the redundancy
of the O

†
λ|n − 1; α〉 states and enforce the Pauli principle.

The one-body densities in the n-phonon subspaces (n > 1)
are given by

ρ
(n)
αα′ (rs) = 〈n, α′|a†

r as |n, α〉
=

∑
γ δλλ′

C
(α)
λγ X

(α′)
λ′δ

[
δγ δρλλ′ (rs) + δλλ′ρ

(n−1)
γ δ (rs)

]
. (25)

Since recursive formulas hold for all quantities, the eigenvalue
Eq. (23) can be solved iteratively once the TDA phonons are
generated.

The redundant states are eliminated by the procedure out-
lined in Refs. [24,25], based on the Cholesky decomposition
method. This method selects a basis of linear independent
states O

†
λ |n − 1; α〉 spanning the physical subspace of the

correct dimensions Nn < Nr and, thus, enables us to construct
a Nn × Nn nonsingular matrix Dn. By the left multiplication
in the Nn-dimensional subspace we get from Eq. (22)[

D−1
n (AD)

]
C = EC. (26)

This equation determines only the coefficients C
(β)
λα of the

Nn-dimensional physical subspace. The remaining redundant
Nr − Nn coefficients are undetermined and, therefore, can be
safely put equal to zero. The eigenvalue problem is thereby
solved exactly. A set of orthonormal multiphonon states
{|0〉, |1, λ〉, . . . |n, α〉 . . .} is thus generated.

C. Eigenvalue problem in the multiphonon basis

The Hamiltonian is diagonal within each n-phonon sub-
space. For its complete diagonalization it is necessary to
compute the nondiagonal pieces 〈n′, β|H |n, α〉. The only
nonvanishing terms are those connecting states differing by
one or two phonons. They are given by

〈n; β| H |n − 1; α〉 =
∑
λγ

Vαγ (λ)X(β)
λγ , (27)

〈n; β|H |n − 2; α〉 =
∑
λλ′γ

Vλλ′X
β

λγ X
γ

λ′α, (28)
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FIG. 3. Phonon coupling vertices.

where

Vαγ (λ) = 1

2

∑
rstq

c
(λ)
tq V

(λ)
rtsqρ

(n−1)
αγ (rs), (29)

V(λλ′) = 1

4

∑
rstq

Vrtsqc
λ
rsc

λ′
tq . (30)

The above coupling terms may be represented diagrammati-
cally as in Fig. 3.

The resulting Hamiltonian can be easily brought to diagonal
form and yields eigenfunctions having the structure

|	ν〉 =
∑
nα

C(ν)
α |n; α〉. (31)

The above formula holds also for the ground state which,
therefore, is explicitly correlated. For instance, as shown in
Fig. 4, the vertex coupling the n = 0 to the n = 2 phonon
states amounts to a sum of an infinite series of diagrams
promoting a highly correlated ground state. Indeed, our
multiphonon eigenvalue problem is equivalent to shell model
and extends RPA without having to rely on the quasiboson
approximation.

D. Transition amplitudes of one-body operators

Using the above wave functions we can compute the
transition amplitudes of the one-body operator Mλ, given by

= + +

+ ...

FIG. 4. Phonon vertex responsible for the ground state correlations.

Eq. (5), obtaining the expressions

Mλ(i → f ) = 〈	νf
|Mλ|	νi

〉
=

∑
βiβf

C
(νi )
βi

C
(νf )
βf

〈nf , βf |Mλ|ni, αi〉, (32)

where

〈nf , βf |Mλ|ni, βi〉
= δnf ni

∑
rs

〈s|Mλ|r〉ρ(ni )
βiβf

(rs)

+ δnf (ni−1)

∑
x

〈xλ|M(λ)|0〉X(βf )
(xλ)βi

+ δnf (ni+1)

∑
x

〈xλ|M(λ)|0〉X(βi )
(xλ)βf

. (33)

The first is a scattering term where states with the same
number of phonons are coupled though the single-particle
transition matrix elements, 〈s|Mλ|r〉, weighted by the particle
or hole density matrices. The other two terms contain the TDA
transition amplitudes 〈xλ|M(λ)|0〉 given by Eq. (6). The label
x distinguishes the TDA states with the same quantum numbers
λ. These two terms are responsible for the coupling between
multiphonon components differing by one phonon.

III. EMPM IN THE COUPLED SCHEME

The eigenvalue equations keep a simple structure even in
the coupled j − j scheme. The two pieces of the Hamiltonian

H = H0 + V (34)

assume the form

H0 =
∑

r

[r]1/2εr (a†
r × br )0, (35)

V = −1

4

�∑
ijkl

[�]1/2V �
rsqt [(a

†
r × a†

s )� × (bq × bt )
�]0, (36)

where

V �
rsqt = 〈(q × t)�|V |(r × s)�〉

− (−)r+s−�〈(q × t)�|V |(s × r)�〉. (37)

Following French notation [26], we have put br =
(−)jr+mr ajr−mr

and [�] = 2� + 1 = (2J� + 1).
It is useful to write the two-body potential (36) in the

recoupled form

V = 1

4

∑
rsqtσ

[σ ]1/2Fσ
rsqt [(a

†
r × bs)

σ × (a†
q × bt )

σ ]0, (38)

where

Fσ
rsqt =

∑
�

[�](−)r+t−σ−�W (rsqt ; σ�)V �
rqst (39)

and W (rsqt ; σ�) are Racah coefficients.
The states to be generated in the j − j coupled scheme

must have the structure

|n; β〉 =
∑
λα

C
(β)
λα {O†

λ × |n − 1, α〉}β. (40)
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To this purpose, we start with the equations of motion

〈n, β|{[H,O
†
λ] × |n − 1, α〉}β

= (Eβ − Eα)〈n, β|{O†
λ × |n − 1, α〉}β. (41)

Using the Wigner Eckart theorem we get

〈n, β‖[H,O
†
λ]‖n − 1, α〉

= (Eβ − Eα)〈n, β‖O†
λ‖n − 1, α〉. (42)

We now expand the commutator and follow the same procedure
as in the uncoupled case. The derivation is, of course, more
involved since one has to make a massive use of Racah algebra.
The outcome of this series of operations is∑

λ′γ

A(λα, λ′γ )Xβ

λ′γ = EβX
β

λα, (43)

where

X
β

λα = 〈n, β‖O†
λ‖n − 1, α〉. (44)

Expanding X
β

λα in terms of the coefficients C
β

λα , defined by
Eq. (40), we obtain the generalized eigenvalue equation∑

λ′γ λ′′γ ′
Aλα,λ′γDβ

λ′γ,λ′′γ ′C
β

λ′′γ ′ = Eβ

∑
λ′γ

Dβ

λα,λ′γ C
β

λ′γ . (45)

The matrix A has the simple structure

Aλα,λ′γ = (Eλ + Eα)δλλ′δαγ

+
∑

σ

W (βλ′ασ ; γ λ)Vσ
λα,λ′γ . (46)

The phonon-phonon potential is given by

Vσ
λα,λ′γ =

(π)∑
rs

Vσ
λλ′(rs)ρ(n)

αγ ([r × s]σ ), (47)

where

Vσ
λλ′(rs) =

∑
tq

ρλλ′([q × t]σ )Fσ
qtrs . (48)

The metric matrix is given by

D(β)(αλ; α′λ′) = [〈n − 1, α′| × Oλ′]β[O†
λ × |n − 1′α〉]β

= δλλ′δαα′ +
∑

γ

W (α′λλ′α; γβ)Xα
γλ′X

α′
γ λ

+ (−)α+β+λ
∑

σ

W (λ′λα′α; σβ)Rλα,λ′α′ ,

(49)

having put

Rλα,λ′α′ =
∑
rs

ρλλ′([r × s]σ )ρ(n−1)
αα′ ([r × s]σ ). (50)

The TDA density matrix has the expression

ρλλ′([r × s]σ ) = 〈λ′‖(a†
r × bs)

σ‖λ〉
= [λλ′σ ]1/2

∑
t

cλ
ts cλ′

trW (λ′tσ s; rλ), (51)

where it is meant that t = p when (rs) = (hh′) and t = h when
(rs) = (pp′).

For the n-phonon density matrix we obtain

ρ
(n)
αα′ ([r × s]σ ) = 〈n; α′‖[a†

r × bs]
σ‖n; α〉

=
∑
λλ′

ρλλ′ ([r × s]σ )Y σ
λλ′(αα′)

+
∑
γ γ ′

ρ
(n−1)
γ γ ′ ([r × s]σ )Y σ

γγ ′(αα′), (52)

where

Y σ
λλ′(αα′) = [α]1/2

∑
γ

W (α′σγ λ; αλ′)Cα
λγ Xα′

λ′γ ,

Y σ
γ γ ′(αα′) = [α]1/2

∑
λ

(−)α−α′+γ−γ ′

×W (α′σλγ ; αγ ′)Cα
λγ Xα′

λγ ′ . (53)

Having constructed the generalized eigenvalue Eq. (45), we
can generate a basis of multiphonon states by following the
procedure outlined in Sec. II B for the uncoupled scheme,
based on the Cholesky decomposition method.

It remains, therefore, to derive and compute the nondiagonal
terms. For the states differing by one phonon we get

〈n, β|H |n − 1, α〉 = [β]−1
∑
σγ

Vσ
αγ X(β)

σγ , (54)

where

Vσ
αγ = (−)α+γ+σ

∑
rs

Vσ
rsρ

(n−1)
αγ ([r × s]σ ) (55)

and

Vσ
rs = 1

2

∑
ph

cσ
phF

σ
phrs . (56)

The matrix elements of H between states differing by two
phonons are given by

〈n, β|H |n− 2, α〉= [β]−1(−)β+γ

γ∑
(ik)σ

(−)σX
β

(iσ )γ X
γ

(kσ )αVσ
ik,

(57)

where i and k label the states with the same angular momentum
σ and

Vσ
ik = 1

4

∑
php1h1

Fσ
php1h1

ciσ
phc

kσ
p1h1

. (58)

The multiphonon Hamiltonian matrix can now be brought
to diagonal form. The resulting eigenstates may be used to
compute the transition amplitudes.

In the coupled scheme, the one-body operator has the form

Mλμ = 1

[λ]1/2

∑
rs

〈r‖Mλ‖s〉[a†
r × as]λμ. (59)

The reduced transition amplitudes are given by

〈	νf Jf
‖Mλ‖	νiJi

〉
=

∑
βiβf

C
(νi )
βi

C
(νf )
βf

〈nf , βf Jf ‖Mλ‖ni, αiJi〉, (60)
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where the matrix elements of Mλ between multiphonon states
are

〈nf ; βf Jf ‖Mλ‖ni ; βiJi〉

= [λ]−1/2

[
δnf ni

∑
rs

〈r‖Mλ‖s〉ρ(ni )
βiβf

([r × s]λ)

+ δnf (ni+1)

∑
x

M[0 → (xλ)]X
(βf )
xλβi

+ δnf (ni−1)

∑
x

M[0 → (xλ)](−)Jf −Ji+λX
βi

xλβf

]
. (61)

Here

M[0 → (xλ)] = 〈xλ‖Mλ‖0〉 =
∑
ph

c
(xλ)
ph 〈p‖Mλ‖h〉

(62)

are the TDA reduced transition amplitudes.

IV. NUMERICAL IMPLEMENTATION

The practical implementation starts with the following
preliminary calculations:

(i) Solve the TDA eigenvalue equations (3) (n = 1) and
obtain the eigenvalues Eλ and the eigenstates |λ〉.

(ii) Use the expansion coefficients cλ
ph of the TDA states

|λ〉 to compute the matrix elements of the renormalized
interaction Vσ

λλ′(rs) given by Eq. (48) and the TDA
density matrix ρλλ′([r × s]σ ) given by Eq. (51).

The quantities Eλ,Vσ
λλ′(rs) and ρλλ′([r × s]σ ) are the entries

for the iterative procedure which generates the multiphonon
basis. This goes through the following steps:

For n = 2, 3, . . .

(i) Compute the density matrix ρ(n−1) through Eq. (52).
(ii) Compute the metric matrix D through Eq. (49) using

ρ(n−1) and X(n − 1).
(iii) Compute the matrix A [Eq. (46)] using Eλ and V as

input and the just computed density matrices ρ(n−1).
(iv) Perform the Cholesky decomposition method to extract

the linear independent O
†
λ|(n − 1), α〉 states.

(v) Construct the inverse matrix D−1
n and perform the

matrix multiplication D−1
n AD.

(vi) Solve the generalized eigenvalue problem (26) for the
n-phonon subspace.

(vii) Repeat the same procedure for n′ = n + 1 starting from
step (i).

It must be stressed that no approximations are involved
in the process of generating such a multiphonon basis. On
the other hand, we have to pay a price for it. The number of
redundant states increases very rapidly with the number of
phonons. Though eliminated at the end of the process, they
enter in the formulas defining the matrices A and D. This
redundancy has the effect of slowing down considerably the
procedure if we keep all basis states.

Once generated, the multiphonon basis can be used to
complete the construction of the Hamiltonian matrix by
computing the nondiagonal matrix elements (54) and (57).
We are finally able to solve the eigenvalue equations in the full
multiphonon space obtaining the eigenvalues and eigenvectors
of the nuclear Hamiltonian.

V. NUCLEAR RESPONSE TO EXTERNAL FIELDS IN 16O

Our EMPM calculations were focused on the study of
giant resonances in 16O. A similar calculation was recently
performed in SRPA [13] using a density dependent Skyrme
potential, which accounts for the coupling between ph and
2p2h. Here, we included up to three phonons.

We used a Brueckner G matrix [27,28] derived from the
CD-Bonn NN potential [29] and treated the Hamiltonian
in both Nilsson and HF bases. For the Nilsson Hamilto-
nian we chose the parameters appropriate for A = 16 [30].
The harmonic oscillator frequency was taken to be h̄ω =
41A−1/3 MeV. For the spin-orbit coupling constant C =
−2h̄ωκ we put κ = 0.12, while we took a vanishing value
for the l2 term.

The configuration space covered up to the (p, f ) shell. The
number of states increases very rapidly as the configuration
space is enlarged and/or the number of phonons increases. We
kept all two-phonon states and performed a truncation of the
three-phonon space by keeping all the states up to some energy
value.

A. Removal of the center-of-mass motion

In computing the nuclear response it is important to get
eigenstates free of center-of-mass spurious admixtures. As in
Refs. [24,25], we followed the widely adopted prescription
[31,32] of adding to the nuclear Hamiltonian H an harmonic
oscillator Hamiltonian in the center-of-mass coordinates R
and P

Hg = g

(
P 2

2Am
+ 1

2
mAω2R2 − 3

2
h̄ω

)
, (63)

where g is a multiplicative constant.
In the shell model, the center-of-mass spurious state can be

completely eliminated as long as a pure harmonic oscillator
basis is adopted and only and all configurations up to a given
Nmax major shell are included.

This condition was necessary also in the previous version
of the EMPM due to the ph composition of the multiphonon
states. Thus we were forced to include only the configurations
up to 3h̄ω.

This constraint is removed in the present phonon context.
Indeed, we have first separated the TDA Jπ = 1− spurious
phonons from the other TDA states. This separation is
practically exact in the Nilsson basis and achieved with good
approximation also in the HF basis no matter how large is the
ph space. In fact, the center of mass Hamiltonian couples only
the Jπ = 1− ph states of energy 1h̄ω.

The phonon composition of the basis states guarantees
that, for a sufficiently large constant g, the multiphonon states
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containing the spurious TDA Jπ = 1− are pushed up in energy
and, finally, eliminated.

This prescription removes the necessity of considering only
and all the shell model states up to a given Nmax major shell
and, therefore, allows us to include configurations of arbitrary
excitation energy with obvious advantages. In our case, for
instance, the energies of the multiphonon basis states range
from 1h̄ω up to 9h̄ω.

B. Strength function and cross section

The properties of giant resonances were investigated
through the nuclear response to external probes. To this
purpose it was useful to compute the strength functions

S(Eλ,ω) =
∑

ν

Bν(Eλ) δ(ω − ων)

≈
∑

ν

Bν(Eλ) ρ�(ω − ων), (64)

where ω is the energy variable, ων the energy of the transition
of multipolarity Eλ from the ground to the νth excited state
	νλ of spin J = λ and

ρ�(ω − ων) = �

2π

1

(ω − ων)2 + (
�
2

)2 (65)

is a Lorentzian of width �, which replaces the δ function as a
weight of the reduced transition probability

Bν(Eλ) = |〈	νλ‖M(Eλ)‖	0〉|2 . (66)

For all the Eλ transitions, we adopted the standard multipole
operator

M(Eλμ) = e

2

A∑
i=1

(
1 − τ i

3

)
rλ
i Yλμ(r̂i), (67)

where τ3 = 1 for neutrons and τ3 = −1 for protons.

For the giant dipole resonance, the cross section was also
computed through the formula

σint =
∫ E

E0

σ (ω)dω = 16π3e2

9h̄c

∫ E

E0

ωS(E1, ω)dω. (68)

C. Results and discussion

As already mentioned, the space used for solving the
eigenvalue equations covers the whole one- + two-phonon
subspaces. The three-phonon states O

†
λ|n = 2, α〉 included in

the calculations were those obtained by coupling all one-
phonons O

†
λ to the two-phonons |n = 2, α〉 of energy Eα �

Emax. We chose Emax = 25 MeV. The resulting eigenfunctions
were used to compute the Eλ transition amplitudes.

Let us analyze first the E1 response. Figure 5 shows
the strength function computed in the Nilsson (left) and HF
(right) bases. In the Nilsson basis, the TDA strength is peaked
around ∼22 MeV, in agreement with experiments. The strength
distribution does not undergo appreciable changes in going
from the TDA to the multiphonon space.

The most visible effect is the ∼16 MeV shift toward higher
energies once the two-phonon space is added. The peaks are
pushed down as the three-phonon states are included and tend
to approach the TDA peaks if we increase the number of three-
phonon states by raising the upper limit for the two-phonon
energy from Emax = 25 MeV to Emax = 30 MeV. In order to
reach eventually the region of the TDA peaks, as requested by
the data, we should enlarge further the three-phonon subspace.
This, however, would require too long computing time.

If a HF basis is adopted, the E1 response gets considerably
damped and fragmented already at the TDA level, as shown
in the right panels of Fig. 5. This result can be easily
understood. One may conceive each Nilsson ph state as a linear
combination of several HF ph components. Thus, the strength,
which in the Nilsson basis is concentrated into a relatively
short energy range, is redistributed over many more HF states
spread over a much wider energy interval.

(a)

(b)

(c)

(a)

(b)

(c)

FIG. 5. (Color online) E1 strength function in a Nilsson (left) and a HF (right) basis in 16O. (a), (b), and (c) show the response computed
in the one-, (one + two)-, and (one + two + three)-phonon spaces, respectively.
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Nils HF

FIG. 6. (Color online) E1 cross section computed in a Nilsson (left) and a HF (right) basis in 16O. The experimental data taken from
Ref. [33] are shown for comparison.

The phonon coupling is much weaker than in the Nilsson
basis. In fact, the two-phonon subspace pushes the peaks
upward by ∼ 5.5 MeV, while the three-phonon states bring
the strength back to approximately the TDA energies. The net
result is that the main peak is around ∼30 MeV, well above
the experimental one.

The E1 cross section computed in the multiphonon space
using the Nilsson basis is somewhat quenched with respect
to TDA. As shown in Fig. 6 (left), it is in fair agreement
with the experimental data [33], if the peaks are shifted down
to the experimental region. This artificial shift is somewhat
justified. It has been pointed out, in fact, that the computed
strength approaches more and more the region of the main
experimental peaks as an increasing number of three-phonon
states is taken into consideration.

Of comparable quality is the agreement with the data of the
E1 cross section computed in the HF basis [Fig. 6 (right)].
The cross section remains practically unchanged in going
from TDA to the three-phonon space. The slight energy shift
could be eliminated by increasing the number of three-phonon
states.

Figure 7 shows the E2 strength function computed in the
Nilsson (left) and HF (right) bases. As in the case of the dipole
response, the isoscalar E2 strength, computed in the Nilsson
basis, is shifted upward, though to a less extent (∼12 MeV),
when the TDA states are coupled to the two-phonon space.
It is, then, pushed downward toward the TDA peak, once the
three-phonon states are included. Whether computed in TDA
or in the multiphonon space, the E2 spectrum is at too high
energy with respect to the observed 2+ levels.

Unlike the dipole response, the E2 strength gets strongly
damped and fragmented once the two phonons are added. A
further redistribution of the strength is induced by the three-
phonon states.

The HF basis severely quenches and fragments the E2
strength already at the TDA level (right panels of Fig. 7). The
role of the phonons is nonetheless important. The damping and
fragmentation of the strength increase considerably as we add
the two- and three-phonon spaces. The energy of the lowest

2+ states is far above the experimental values, just as in the
Nilsson case.

Let us try to understand why the multiphonon states play
a very different role according that a Nilsson or a HF basis is
adopted and why they have a different impact on the dipole
and quadrupole responses.

Two factors play an important role, the energy scale of
the multiphonon states and the hierarchy ruling the different
phonon couplings.

According to this hierarchy, the spaces differing by two
phonons are coupled by the Hamiltonian more strongly than
those differing by one phonon. This implies that the ph vacuum
|0〉 is strongly coupled to the |n = 2, α〉 two-phonon states,
the one-phonon states |λ〉 couple strongly to the three-phonon
states |n = 3, α〉 and so on.

It follows that the ground state 	0 is strongly pushed down
in energy by the coupling between the |0〉 vacuum and the
two-phonon states. In the Nilsson basis, the shift amounts to
�E = −20.8 MeV.

The negative parity 1− states are little affected by the
two-phonon states. These, being built of a tensor product of
negative parity ∼1h̄ω and positive parity ∼2h̄ω phonons, have
unperturbed energies of the order ∼3h̄ω. The weak one- to
two-phonon coupling is not sufficient to admix them with the
TDA 1− phonons.

The three-phonon states, though having energies of the
same order ∼3h̄ω, are strongly coupled to the TDA phonons
by the Hamiltonian. This coupling pushes the energies of the
1− states downward and tends to counterbalance the shift of
the ground state induced by the coupling between the vacuum
and the two phonons.

In the case of the E2 response, one- and two-phonon
components of the 2+ states, having both energies of the order
∼2h̄ω, get admixed, even though their mutual coupling is rela-
tively weak. Hence, the much more pronounced fragmentation
of the E2 strength with respect to the dipole response. The
three-phonon components are at much higher energies, �4h̄ω

and are less effective in pushing the 2+ states down in energy
through their coupling with the one-phonon components.
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(a)

(b)

(c)

(a)

(b)

(c)

FIG. 7. (Color online) Isoscalar E2 reduced strength in a Nilsson (left) and a HF (right) basis in 16O. (a), (b), and (c) show the response
computed in the one-, (one + two)-, and (one + two + three)-phonon spaces, respectively.

The impact of phonons is much weaker in the HF basis,
especially in the case of the E1 response. The HF states,
indeed, admix the low-lying with the high-energy harmonic
oscillator shells. These admixtures induce a large separation
between the single particle energies and therefore shift the
TDA phonons at higher energies. The single particle admixing
has also the effect of weakening the phonon coupling. Such
a coupling is rendered even less effective when the energy
separation between states with different phonons is too high
as in the 1− states.

Even in HF, however, the effect of the multiphonon states
is not negligible. Especially important is their contribution
to the E2 response, given the comparable energy of one and
two-phonon components. Appreciable is also the energy shift
of the ground state, �E ∼ −6 MeV, induced by the coupling
of the vacuum with the two-phonon states.

The role of the multiphonon components emerges also from
the structure of the states. In the case of the Nilsson basis, the
ground state 	0 is characterized mainly by the ph vacuum
with an appreciably large two-phonon component (∼25%)

[Fig. 8(a)]. One and three phonons are practically absent. This
composition reflects the dominance of the coupling between
the |0〉 vacuum and the two-phonon subspace.

An analogous structure is obtained for 	0 in the HF
basis [Fig. 8(b)]. The ground state correlations, however,
get drastically reduced. The two-phonon components, in fact,
account for ∼10%.

Figure 8 shows the occurrence at low energy of 0+ states
with a two-phonon dominance. The presence of states so
composed is not surprising. One- and two-phonon states have
comparable energies and get admixed.

The multiphonon states play an important role also in the
2+ states, whose structure is similar to the one of the excited
0+. In the Nilsson basis, several 2+ are characterized by large
two-phonon components, as is the case of the ones shown
in Fig. 9(a). The same figure shows that the two-phonon
components may be dominant in the 2+ states also when the
HF basis is adopted [Fig. 9(b)].

The above analysis offers a key for explaining why the
lowest 2+ (and 0+) states are at too high energy compared to

(a) (b)

FIG. 8. (Color online) Phonon structure of some 0+ states in a Nilsson (a) and a HF (b) basis in 16O.
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(a) (b)

FIG. 9. (Color online) Phonon structure of some 2+ states in a Nilsson (a) and a HF (b) basis in 16O.

the experimental levels. Several 2+, especially in the Nilsson,
are dominantly two-phonon states and, therefore, are supposed
to couple strongly to the four-phonon states which are at
∼4h̄ω. Thus, in order to push down their energies toward
the experimental values, we need to include the four-phonon
subspace, at least. This is consistent with the results obtained
in the large scale shell model calculations [34,35], where the
states are classified according to their Nh̄ω excitations.

The first two 1− states, including the one corresponding
to the strongest peak, have a dominant one-phonon structure
[Fig. 10(a)]. In the Nilsson basis, the three-phonon components
account for about ∼15%, more than the two-phonon share.
Both two- and three-phonon weights are quite small in the HF
basis [Fig. 10(b)].

VI. CONCLUDING REMARKS

In this upgraded version of the method, the equations
of motions generate multiphonon basis states consistently
composed of TDA phonons, rather than particle-hole states.
These equations have a very simple, physically transparent,

structure. They are, in fact, the phonon analog of the ph TDA
equations.

This consistent scheme is more flexible and allows to
truncate the multiphonon space while accounting for high
energy configurations incorporated in the TDA phonons.

The calculation of the nuclear response to dipole and
quadrupole external fields in 16O shows that the effect of the
multiphonon states depends critically on the single particle
basis adopted and differs strongly in going from the dipole to
the quadrupole response.

In the Nilsson basis, the E1 resonance, while keeping its
shape, is strongly pushed up in energy once the space is
enlarged so as to include the two-phonon states and then shifted
backward as we add the three phonons.

An analogous, though less strong, energy shift mechanism
holds for the E2 transitions. Unlike the E1 response, the E2
strength gets strongly fragmented in going from TDA to the
multiphonon space.

The energy shifts and the strength fragmentation result from
a competition between the energies of the multiphonon states
and their mutual coupling. This is weak or strong according

(a) (b)

FIG. 10. (Color online) Phonon structure of some 1− states in a Nilsson (a) and a HF (b) basis in 16O.
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that the coupled states differ by one or two phonons. In
particular, the coupling of the ph vacuum with the two-phonon
states induces strong correlations in the ground state and
shifts downward its energy. This shift is ignored in most
approaches due to their approximate treatment of the ground
state correlations.

The role of phonons becomes less important if a HF basis is
adopted. Such a basis induces a fragmentation of the strength,
already at the TDA level, for both dipole and quadrupole
responses and weakens drastically the phonon coupling. Thus,
the energy shift of the strengths induced by such a coupling
is more modest than in the Nilsson case. On the other hand,
the HF basis pushes the dipole peaks at too high energy with
respect to experiments. A similar result was found in higher
RPA calculations [36,37].

The E2 peaks fall at too high energy with respect to exper-
iments whether a Nilsson or a HF basis is adopted. In fact, the
lowest 2+ states, having a multiphonon nature, can be pushed
down in energy only by coupling the two-phonon components
to the four-phonon subspace. Enlarging the space so as to
include states with a number n > 3 of phonons is too time
consuming unless we perform some drastic space truncation.

We have already cut the three-phonon states above some
given energy. Apparently, the cut came out to be too severe,
at least in the Nilsson basis. In fact, the three-phonon states
taken into account were not sufficient to induce on the 1−
states a downward shift comparable to the one induced by the
full two-phonon subspace on the ground state. Thus, the E1

peaks could not be brought back to the position obtained in
TDA as required by the experiments. Increasing the number
of three-phonon states becomes too time consuming for the
configuration space we used and is prohibitive if such a space
is enlarged.

We have therefore to try another route. We may select a
restricted set of TDA phonons according to their energy and
collectivity and use only them to construct a multiphonon
basis. This option should allow us to incorporate an arbitrarily
large number of ph states in the TDA phonons while including
the multiphonon states of lowest energy and of collective
character. The cut in the number of TDA phonons is also
necessary in order to extend the multiphonon approach to
heavy nuclei.

The present scheme is only suited to doubly magic
nuclei. We have now formulated the method in terms of the
Bogoliubov quasiparticle states so as to face the study of open
shell nuclei. Its numerical implementation is completed and
the results will be presented in a separate paper.
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