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Dipole strength in 78Se below the neutron separation energy from a combined analysis
of 77Se(n, γ ) and 78Se(γ, γ ′) experiments
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1Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiation Physics, D-01328 Dresden, Germany

2Hungarian Academy of Sciences, Institute of Isotopes, H-1525 Budapest, Hungary
3Technische Universität Dresden, Institute of Nuclear and Particle Physics, D-01062 Dresden, Germany

4Charles University, Faculty of Mathematics and Physics, CZ-180 00 Prague 8, Czech Republic
(Received 24 October 2011; published 17 January 2012)

The dipole strength function and the nuclear level density of the compound nucleus 78Se were studied
in a combined analysis of a cold neutron capture experiment on 77Se performed at the research reactor in
Budapest and a photon-scattering experiment on 78Se performed at the electron linear accelerator ELBE with
bremsstrahlung produced at a kinetic electron energy of 11.5 MeV. In the combined analysis we developed the
extreme statistical code γ DEX for the simulation of radiative cascade deexcitations occurring in neutron capture
and photon scattering. Comparisons of experimental and simulated neutron capture spectra allow us to estimate
a temperature of T = 900 keV for the level density according to the constant-temperature model for 78Se. Using
γ DEX, we were also able to estimate ground-state branching ratios and intensities of inelastic transitions for states
in 78Se excited via photon scattering. In this way, we derived the photoabsorption cross section from 4 MeV
up to the neutron separation energy from the measured photon-scattering data. The results obtained match the
photoabsorption cross section derived from (γ, n) measurements and show an enhancement of dipole strength
around 9 MeV.
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I. INTRODUCTION

Radiative capture of neutrons is of special importance for
the transmutation of high-level radioactive waste. Knowledge
of the respective cross sections is essential for the technical
design of future transmutation systems [1] especially when
capture channels compete with fission. In most cases thermal
and cold neutron capture leads to compound nucleus formation
followed by a γ -ray cascade deexcitation toward the ground
state. In photon scattering, nuclei are excited via the absorption
of real photons. If the excitation energy is below the neutron
threshold (Sn), these nuclei also deexcite back to the ground
state via a γ -ray cascade. In both experimental cases informa-
tion about the photon strength function (PSF) and the nuclear
level density (LD), which govern the transition probabilities
of the excited states, can be deduced.

Recently [2], a global parametrization of the electric dipole
strength function in heavy nuclei has been proposed. It shows
that for A > 80 the electric dipole strength is well charac-
terized as the low-energy tail of the isovector giant dipole
resonance (GDR). Its resonance integral, which determines the
energy-integrated photoabsorption cross section, is assumed to
be in accordance with the Thomas-Reiche-Kuhn sum rule [3]
and its spreading width is well parametrized as a function
of its resonance energy. The centroid energy of the GDR is
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predictable using parameters determined from nuclear ground-
state masses using the finite-range droplet model (FRDM). The
splitting of the GDR into three Lorentzian components induced
by the deviation of the nuclear shape from spherical symmetry
has to be taken from nuclear spectroscopic data. The splitting
has an impact on the energy dependence of the capture cross
section because it considerably influences the low-energy tail
of the GDR. Moreover, the triple Lorentzian model (TLO)
concept [2] can be used to describe the electric dipole strength
function derived from photoneutron, photon-scattering, and
averaged resonance neutron capture studies.

In the past, neutron capture and photon-scattering data have
been interpreted in several different ways [4]. Disagreeing
predictions for PSFs have been in use by the two communities
of neutron and photon beam experimenters as visible in the
IAEA reference input parameter library RIPL-2 [5], where
six different analytical formulas based on capture data are
listed for the calculation of E1 PSFs. Further investigations
are urgently needed because the microscopically calculated
E1 PSFs given there are at variance to many neutron capture
data as well as photon-scattering data [2].

In the recently started RIPL-3-initiative [6] some of
these deficiencies have been worked on, but the correlation
between GDR width and nuclear triaxiality [2] is not properly
accounted for. One reason for the contradiction between
the parametrizations resulting from photon-scattering data
compared to that from neutron capture data may be the fact that
often different spins are populated in the two reactions, making
a direct comparison of these data difficult. This difference
can be minimized by using spin 1/2− nuclei with AZ for
neutron capture to be compared to photon-scattering data from
A+1Z. In this case, 1− states are mainly populated in both
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experiments. Unfortunately, only very few such pairs of stable
nuclei are available as targets for the two types of experiments.

In the present work the above-mentioned reactions are
investigated for the pair 77Se-78Se. It is the aim of this paper
to investigate to what extent neutron capture and photon
scattering can be described using the same PSF and LD. In the
following, Sec. II is a brief description of the two experiments
and Sec. III focuses on the statistical description of radiative
deexcitation spectra. The simulation code γ DEX is discussed in
detail in Sec. IV, and finally Sec. V describes the determination
of the average photoabsorption cross section deduced from the
photon-scattering data.

II. EXPERIMENTAL SETUPS

A. The neutron capture experiment

A neutron capture experiment on 77Se was performed at
the 10-MWth research reactor of the Hungarian Academy
of Sciences in Budapest. Neutrons from a cold neutron
source with a mean kinetic energy of approximately 6 meV,
guided by a bent beam tube consisting of neutron super
mirrors to the prompt gamma activation analysis (PGAA)
measurement station [7], were used for radiative capture. The
thermal equivalent neutron flux at the target position was
approximately 108 cm−2 s−1.

A bismuth germanate (BGO) escape-suppression-shielded
Ortec GMX 100 S high-purity germanium (HPGe) detector
with a relative efficiency of 100% mounted at 90◦ with respect
to the beam axis was used for γ -ray detection. The detector
was covered with lead and 6Li-filled plastic sheets to reduce the
background count rate. The beam background from neutron
capture on structural materials was measured with a blank
target. The count rate in the blank target experiment was
150 counts/s, which compares to 2000 counts/s when the
target enriched to 99.66% in 77Se was put into the beam. The
measured and detector-response-corrected 77Se(n, γ ) spectra
are shown in Fig. 1. We sequentially subtracted response
spectra of monoenergetic γ rays simulated in GEANT4 [8] in
steps of 10 keV starting at the high-energy end of the measured
spectrum to deconvolve the measured spectrum for detector

FIG. 1. (Color online) Measured (red) and detector-response-
corrected spectrum (black) in the 77Se(n, γ ) reaction.

response. Moreover, a combination of these simulations and
source measurements was used to obtain the efficiency of the
HPGe detector.

Additionally, we performed a capture experiment on deuter-
ated urea to test the detector response deconvolution. The same
deconvolution algorithm was applied to the urea spectrum.
Subsequently, we normalized the corrected spectrum to the
partial cross section of the 10.83-MeV transition following
neutron capture on 14N and compared the corrected normalized
summed intensity of the spectrum to the summed partial cross
section of all transitions in N, O, C, 1H, and 2H and transitions
from structural background contributions of Fe, Cu, Cl, Al, Pb,
and 6Li above 2.4 MeV from Ref. [9]. We found a difference of
4% between the response-and-efficiency-corrected spectrum
and the tabulated values. Assuming conservation of energy,
we additionally calculated the total capture cross section σγ ,

σγ Sn =
∑

i

σiEi, (1)

from the detector-response-and-efficiency-corrected 77Se
spectrum normalized to σi of the 9.88-MeV transition in 78Se
[9]. In Eq. (1) σi is the partial cross section for a γ transition
with energy Ei following neutron capture. We determined a
value of

σγ = 36(4/2) b, (2)

where the first uncertainty is due to the uncertainty of the
9.88-MeV transition and the second one is due to uncertainty in
the response deconvolution. The obtained value is in agreement
with σγ = 42(4) b given in Ref. [10], but it should be noted that
approximately half of the cross section in Eq. (2) is coming
from the deconvoluted continuum, and not from resolved
photopeaks. The agreement between the calculated and the
literature value of σγ proves the correctness of our algorithm
for detector response and efficiency correction.

Regarding the shape of the corrected experimental
77Se(n, γ ) spectrum, distinct peaks from transitions from the
capture state after cold neutron capture to several of the lowest
excited states in the compound nucleus 78Se are resolved in
the high-energy region of the spectrum (7.5 < Eγ � Sn =
10.5 MeV). In the intermediate region (2 < Eγ � 7.5 MeV), a
quasicontinuum of unresolved and resolved transitions can be
seen. This quasicontinuum consists of weak transitions which
are not resolvable due to the finite energy resolution of the
detector. The low-energy region of the spectrum (0 < Eγ �
2 MeV) is dominated by transitions between the lowest well-
separated excited states in the compound nucleus appearing in
the last steps of a cascade deexcitation. The most prominent
peak appears at 613 keV, corresponding to the ground-state
transition from the first 2+ state in 78Se. The further analysis
below is concentrated on a statistical simulation of the capture
γ spectrum. In particular, the influence of PSF and LD on the
shape of the quasicontinuum region will be investigated.

B. The photon-scattering experiment

Complementary to the radiative-capture experiment on
77Se, a photon-scattering experiment on 78Se was performed
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using the bremsstrahlung facility [11] at the superconducting
electron accelerator ELBE at Helmholtz-Zentrum Dresden-
Rossendorf (HZDR). Bremsstrahlung was produced by an
electron beam of 11.5-MeV kinetic energy and an average
current of 520 μA hitting a 4-μm-thick niobium radiator. A
beam of bremsstrahlung shaped by an Al collimator of 2.6 m
in length with a conical hole of 8 mm at the entrance and
24 mm at the exit was used for photoexcitation of the target. To
increase the intensity ratio of the high-energy to the low-energy
part of the bremsstrahlung spectrum at the target position a
cylindrical Al absorber of 100 mm in length was placed in
front of the collimator. At the target position the collimated
beam had a size of approximately 38 mm in diameter and a
spectral photon flux of approximately 107 MeV−1 cm−2 s−1

at 8.9 MeV.
The target consisted of 2002 mg of 78Se enriched to 99.39%

sandwiched between disks of 212.5 and 105.6 mg of 11B
enriched to 99.5% used for the determination of the photon
fluence. The three target disks had a diameter of 20 mm to
assure a constant photon flux over the target area.

Four HPGe detectors of 100% relative efficiency were
used to detect scattered photons. The HPGe detectors were
equipped with escape-suppression shields consisting of BGO
scintillation detectors. Lead collimators of 10 cm thickness
were placed in front of the detectors to suppress background
radiation scattered from surrounding materials. The BGO
detectors were cylindrically encapsulated by 2-cm-thick lead
layers. Two detectors were placed vertically at 90◦ relative to
the beam direction at a distance of 28 cm from the target. The
other two detectors were placed horizontally at 127◦ relative to
the beam axis at a distance of 32 cm from the target. Additional
absorbers made of 13 mm of Pb plus 3 mm of Cu and 8 mm
of Pb plus 3 mm of Cu were placed in front of the detectors at
90◦ and 127◦, respectively, to reduce the amount of scattered
low-energy photons. A spectrum measured with both detectors
at 127◦ is shown in Fig. 2.

III. STATISTICAL DESCRIPTION OF RADIATIVE
EXCITATION SPECTRA

A. Neutron capture γ spectra

The γ -ray spectra from (cold) neutron capture reveal
interesting information about the structure of nuclei. As will be
shown, they are sensitive to the nuclear level density as well as
to radiative properties such as PSFs of the compound nucleus.
The process of neutron capture can be visualized as a two-step
process. In the first step, a neutron is captured by a target
nucleus (TN) with AZ leading to an excited compound nucleus
(CN) with A+1Z. In cold neutron capture, the excitation energy
of the CN is approximately equal to the neutron separation
energy Sn.

Possible spins JCN of the excited CN after s-wave neutron
capture are |JTN − 1/2| and JTN + 1/2, where JTN is the
ground-state spin of the TN. The parity of the excited state is
given by �n �TN, where �n = +1 is the parity of the s-wave
neutron and �TN is the ground-state parity of the TN. In cold
neutron capture, where the mean kinetic energy and the energy
spread of the incident neutron spectrum is very small compared

FIG. 2. (Color online) Spectrum of photons scattered from 78Se,
measured at 127◦ relative to the incident beam, corrected for room
background and detector response (orange bars), compared to the
simulated spectrum of the atomic background (black line), multiplied
with efficiency and measuring time. The blue spectrum results
from a subtraction of the atomic background from the experimental
spectrum. The prominent peaks at 4.44, 5.02, 7.29, and 8.91 MeV
are transitions in 11B.

to the mean resonance spacing of the CN at Sn, it is assured
that mainly the nearest s-wave resonance to Sn is excited. For
the case of 77Se(n, γ ) this is a 1− resonance at 10.498 MeV
according to Ref. [10].

In the second step after the capture process, the excited
CN deexcites back to the ground state via the emission
of γ radiation. This deexcitation process can either happen
in a direct ground-state transition, leading to the emission
of a single γ ray with energy Eγ ≈ Sn, or in a so-called
cascade deexcitation in which different intermediate states of
the excited nucleus are populated, leading to the emission of
several γ rays with summed transition energy Sn. If one knew
the energies and transition probabilities which are related to
the transition widths between all excited states in the CN up to
Sn, a prediction of the neutron capture γ -ray spectrum would
theoretically be possible. However, in reality this is not feasible
for several reasons:

(i) The energies and transition widths in medium and
heavy nuclei are known only in the low-energy region
(Eex � 3 MeV) from nuclear spectroscopy.

(ii) The number of excited states in nuclei increases
exponentially. For example, in 78Se there are in total
approximately 105 states up to Sn.

(iii) The transition widths strongly fluctuate around their
mean, implying that many weak transitions are below
the detection threshold.

Therefore, it is only possible to use an extreme statistical
ansatz that the number of counts in a energy bin �E in an
experimentally measured neutron capture γ spectrum results
from various transitions between various initial and final states.
Using this assumption makes it valid to calculate and use
average values of the transition widths for the description of
the deexcitation spectrum.
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In general, the number of emitted primary γ rays, Ybin,
from an initially excited state i ending in a finite energy bin
[Ef − �

2 , Ef + �
2 ] is proportional to

Ybin ∝
∑

f ′,Ef ′ ∈bin

�if ′

�i,tot
=

∑
f ′,Ef ′ ∈bin

yif ′ 〈�if ′ 〉
�i,tot

, (3)

where �if ′ is the partial transition width from i to a final state
f ′ and �i,tot is the total radiative width of i. In the right part
of Eq. (3), �if ′ is expressed by its mean value 〈�if ′ 〉 times
a random number yif ′ , which describes the fluctuation of the
transition widths. If, on the one hand, the energy bin is big
enough to assure that there are many possible final states in
the bin and on the other hand it is small enough so that the
mean transition width does not vary too much over the bin,
one obtains

Ybin ∝ 〈�if 〉
�i,tot

∑
f ′,Ef ′ ∈bin

yif ′ ≈ Nbin
〈�if 〉
�i,tot

. (4)

In the right part of Eq. (4), the sum over all fluctuation
factors was replaced by the number of final states in the bin,
Nbin, which is justified if there is a sufficiently high number of
possible final states in the bin so that the fluctuations cancel
out. This is the case for transitions to the quasicontinuum,
but not for ones to low-lying excited states. Finally, by using
the definition of the PSF given in Ref. [12] for replacing
the average transition width one obtains for the spectral
distribution of primary γ rays

Ybin,XL(Eγ ) ∝ �XL(Ei − Eγ )
fXL(Eγ ) E2L+1

γ

�i,tot �(Ei)
, (5)

where XL defines the type of multipole radiation with X

standing for electric (E) or magnetic (M) and L representing
the multipole order. Eγ = Ei − Ef is the transition energy,
fXL(Eγ ) is the PSF for an XL transition, �XL(Ei − Eγ ) is
the density of possible final states reachable from the initial
state by a transition of type XL, and �(Ei) is the level
density at the initial excitation energy. Regarding Eq. (5), it is
obvious that the spectral shape of Ybin,XL(Eγ ) is determined by
two quantities: �XL(Ei − Eγ ) and fXL(Eγ ). Figure 3 shows
Ybin,E1(Eγ ) calculated using the constant-temperature model
(CTM) for the LD and a Lorentzian E1 PSF. The rise and fall
of Ybin,E1(Eγ ) is caused by the PSF rising with Eγ and the
exponential decline of �XL(Ei − Eγ ).

In addition to primary γ rays, the complete neutron-capture
γ -ray spectrum consists of higher order γ rays. If one knows
the primary γ distribution, it is straightforward to calculate
the distribution of secondary transitions. This distribution
is the weighted superposition of primary γ distributions
starting from different excitation energies populated after the
first deexcitation step. In contrast, a derivation of an analytic
expression for third- and higher-order γ rays is nontrivial.
However, by using a Monte Carlo simulation for cascade
deexcitations based on the primary γ -ray distribution [see
Eq. (5)] the complete neutron capture spectrum can be simu-
lated. For this purpose, we developed the statistical simulation
code γ DEX, which will be explained in detail in Sec. IV.
The comparison of such simulated spectra with experimental

FIG. 3. (Color online) Spectrum of primary E1 transitions (gray
area) from an excited state at 10.5 MeV as a product of the LD at
the final state (blue solid line) and the E1 PSF (orange dashed line)
given by the tail of the GDR. The LD is exponentially declining on
this scale because it is plotted as a function of the transition energy
Eγ . The scale of the ordinate is linear.

data for the performed neutron capture experiment on 77Se is
discussed in Sec. IV B.

B. Photon-scattering γ spectra

As in the case of neutron capture, γ rays from excited states
are measured in photon-scattering experiments. However,
in contrast to neutron capture, various states of the target
nucleus are excited in photon scattering using a continuous
bremsstrahlung distribution for excitation. That means, if the
endpoint energy of the bremsstrahlung distribution is above Sn,
the measured spectrum is a superposition of the deexcitation
spectra of all excited states up to Sn if we assume that above Sn,
�γ,n 	 �γ,γ , where �γ,n is the partial width for photoneutron
reactions and �γ,γ is the partial width for photon scattering.

Under the assumption of the extreme statistical ansatz
of Sec. III A and the Axel-Brink hypothesis [13,14], the
deexcitation spectra of the various excited states can also be
calculated using Eq. (5). However, care has to be taken with
regard to the influences of fluctuations in the transition widths.
As will be shown in Appendix A, they lead to an enhancement
of elastic (direct-ground-state) transitions. The simulation
of deexcitation spectra in photon scattering is discussed in
Sec. IV C. These simulations are used to determine the average
photoabsorption cross section as presented in Sec. V.

IV. STATISTICAL SIMULATION OF RADIATIVE
DEEXCITATION SPECTRA

A. General approach

For the description of radiative deexcitations of excited
states at or below the neutron separation energy into the
quasicontinuum region and to low-lying excited states, we
developed the simulation code γ DEX, which uses a fast and
efficient computational approach shown in Fig. 4.
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FIG. 4. (Color online) Block diagram and scheme of the algorithm for the simulation of nuclear radiative deexcitations.

First, the range of possible final energies is divided into bins
of equal width (typically 200 keV). In each bin the number of
possible final states is calculated for spins up to J = 5 (for
an even-even compound nucleus) and both parities separately.
Below 2.3 MeV these numbers are taken from the discrete level
library in Ref. [6]. In our calculations, we used the energies,
spins, and branching ratios of the first 10 excited states, which
all have positive parity. Above 2.3 MeV, the total number of
excited states is calculated according to a total LD. As standard
input the CTM is used as a model for the total LD:

�tot
CTM(E) = 1

T
e(E−E0)/T , (6)

where E is the excitation energy, E0 is the back-shift energy,
and T is the CTM temperature. Recently, it has been shown
in Refs. [15–17] that this model describes the dynamics of
different nuclear reactions such as energy transfer between
fission fragments or particle evaporation spectra better than
the back-shifted Fermi gas model (BFM). The three articles
state that the CTM gives good agreement with experimental
data up to excitation energies of Sn.

Above 2.3 MeV, we assumed equal LDs for states with
positive and negative parities of the same spin. This assumption
has recently been justified by the good agreement of calculated

and experimental level densities of 1+ states in the energy
range from 5 to 10 MeV obtained from the 90Zr(3He, t)90Nb
reaction [18] and with experimental level densities of 2+ and
2− states in 90Zr studied in 90Zr(e, e′) and 90Zr(p, p′) reactions
[19]. In addition, the globally fitted empirical formula for the
parity distribution given in Ref. [20] shows that the difference
between the LDs for states with positive and negative parities
of the same spin above 4 MeV is less than 3%. In the energy
range between 2.3 and 4 MeV, the average relative difference
between the parity distribution of Ref. [20] and our used
equal distribution of positive and negative parities is 25%.
It should be mentioned that recent calculations on the basis of
Poisson-distributed independent quasiparticles combined with
BCS occupation numbers predict different level densities for
the two parities in 78Sr below 7.5 MeV [21]. Nevertheless,
we used an equal distribution of parities above 2.3 MeV
in our calculations because Ref. [21] does not provide any
parity ratios for 78Se. For the spin distribution of states above
2.3 MeV the factor

f (J, σ ) = e−J 2/2σ 2 − e−(J+1)2/2σ 2
(7)

derived in Ref. [22] is used, where σ is the energy-dependent
spin cutoff factor taken from Ref. [23].
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In the next step, the spectral distribution of primary γ rays is
calculated according to Eq. (5) for E1, M1, and E2 transitions
using models for the PSFs and information about possible final
states in each bin from the above described LD model and
experimentally known excited states. For the E1 PSF, the TLO
[2], which describes the GDR as a sum of three Lorentzians
corresponding to oscillations along the three axes in a triaxially
deformed nucleus, is the standard input in γ DEX. The M1 PSF
was parametrized according to data from Ref. [24] as a sum
of three Gaussian components corresponding to the scissors
mode and the isoscalar and isovectorial spin-flip mode. The
parameters of this M1 PSF are shown in Appendix B and
a detailed discussion will be given in a further publication.
The E2 PSF is calculated as a single Lorentzian according to
Ref. [6].

After normalizing the total primary γ -ray distribution, a
uniformly distributed random number is used to choose a
final bin with a certain spin and parity for the γ transition.
This procedure is repeated using the chosen final energy, spin,
and parity as new starting properties until the ground state is
reached. During the deexcitations, the transition energies and
the energies, spins, and parities of the populated final states
are stored.

The code γ DEX developed in the present work has similar-
ities but also different approaches compared with other codes
such as DICEBOX [25], which was developed to simulate γ -ray
deexcitations of excited nuclei with a statistical approach.
The advantage of DICEBOX is the correct treatment of Porter-
Thomas fluctuations [26] that may significantly influence the
spectral shape, especially in regions with low level densities.
The knowledge of the uncertainties in neutron capture γ

spectra resulting from those fluctuations is necessary for a
correct interpretation. On the other hand, due to the great
number of excited states in medium and heavy nuclei up to
Sn (≈ 105), many transition widths have to be calculated,
making the computation very time consuming. Therefore, we
developed γ DEX, which uses a faster approach by calculating
only transitions between energy bins containing several excited
states.

We performed a test to check the consistency of both
approaches by simulating the 77Se(n, γ ) spectrum with both
codes using the same input PSF and LD. The simulation
of neutron capture spectra with γ DEX is explained in detail
in Sec. IV B. The results of the consistency test are shown
for comparison in Fig. 5, where it can be seen that the two
computational approaches are in good agreement. Moreover,
the comparison with DICEBOX allows us to estimate the
uncertainties of the simulated spectra arising from fluctuations
of the transition widths.

B. Simulation of neutron capture γ spectra

The code γ DEX described in the previous section was used
to simulate the measured 77Se(n, γ ) spectrum. However, the
code was slightly adjusted to the conditions in cold neutron
capture. As mentioned before, when using cold neutrons it
is assured that only the capture state at Sn in the CN is
excited. That means that the intensity in a typical 200-keV

FIG. 5. (Color online) Simulated 77Se(n, γ ) spectrum using γ DEX

(orange bars) and DICEBOX (transparent bars with black edges and
black error bars). In both cases identical CTM LD (T = 900 keV,
D0 = 121 eV) and PSFs were used. The DICEBOX spectrum is the
mean of 200 nuclear realizations, each containing 105 simulated
deexcitations. The error bars represent one standard deviation of the
200 realizations. The γ DEX spectrum contains 106 simulated events
and is normalized to the intensity of the transition at 10.5 MeV
obtained in DICEBOX.

bin in the high-energy region of the measured spectrum
results from single transitions of the initial excited resonance
to the lowest-lying excited states. For these transition ener-
gies, the assumption made in Eq. (4) that the fluctuations
of the transition widths cancel out clearly does not hold.
Therefore the intensities of these transition energies are
adjusted to experimental data taken from Ref. [9].

In contrast, the γ -intensity of a typical 200-keV bin in the
continuum region can result from many different transitions,
which assures that fluctuations in the transition width are
averaged out. For example, for 77Se(n, γ ), a measured 4-MeV
transition could be a primary transition from 10.5 to 6.5 MeV
but also a secondary transition from 8 to 4 MeV or even a
third-order transition.

To understand the influence of the main ingredients for
the simulation, the LD and PSF, simulations of 77Se(n, γ )
with different models and parameters for LD and PSF were
performed. In the first step, the influence of the level density
was investigated by performing simulations with a CTM
LD with different temperatures T in steps of 50 keV. The
back-shift energy E0 was calculated from the known mean
s-wave neutron resonance spacing D0 = 121 eV taken from
Ref. [10] using Eq. (7) for the spin distribution at Sn. In
these simulations we used a quadrupole deformation β =
0.27 [27] and a triaxiality parameter γ = 27◦ [28] for the
TLO E1 PSF. The quadrupole deformation is compatible
with the one deduced from experimental B(E2) values in
Ref. [29]. The simulated spectra are shown in comparison
with the rebinned response-and-efficiency-corrected measured
spectrum in Fig. 6 and are subdivided into primary, secondary,
and higher-order transitions.

Regarding Fig. 6, a good agreement between the simulated
spectra, which are normalized to the intensity of the direct-
ground-state transition bin, and the measured spectra is visible.
Furthermore, it can be seen that the γ -ray multiplicity of the
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FIG. 6. (Color online) Rebinned experimental spectrum (trans-
parent bars with black edges) corrected for detector response and
efficiency in comparisons with simulated 77Se(n, γ ) spectra (colored
bars) using different CTM temperatures. The simulated spectra are
divided into primary (red bars), secondary (gray bars), and higher
order γ rays (orange bars) plotted on top of each other. In all cases
106 deexcitations were simulated. The parameters (T and E0) of the
CTM LD model are 700 and 2329 keV in (a), 900 and −230 keV in
(b), and 1100 and −2836 keV in (c). The back-shift energy E0 was
calculated separately for each T from D0 = 121 eV using Eqs. (6)
and (7) and a spin cutoff parameter σ (Sn) = 4.4.

reaction 77Se(n, γ ), M ≈ 3.6, is only weakly dependent on T .
With increasing T , the distribution of primary transitions gets
broader and its mean is shifted to higher energies. Moreover,
the slope of the continuum region (2 � Eγ � 5.5 MeV) of the
total simulated spectra flattens. The goodness of fit between
the simulated and measured spectra in this region is displayed

FIG. 7. (Color online) Same as Fig. 6 using a CTM LD with
T = 900 keV and E0 = −230 keV and the E1 PSF obtained in the
(γ ,γ ′) analysis shown in Fig. 11(b).

as χ2
ν and was used to estimate T for the CTM LD. For the

calculation of χ2
ν we estimated a relative uncertainty of 10% for

the simulated spectra in the energy region 2 � Eγ � 5.5 MeV
arising from Porter-Thomas fluctuations. We obtained a value
of T = 900 keV as best fit for the CTM LD temperature, which
is in agreement with the values of 850 keV given in Ref. [23]
and 890 keV given in [30].

In addition, we simulated the neutron capture spectrum
using a CTM LD with the best-fit temperature T = 900 keV
and the E1 PSF obtained from the analysis of the photon-
scattering experiment described in Sec. V and shown in
Fig. 11(b). The result of this simulation displayed in Fig. 7
is in better agreement with the experimental data compared to
the simulations using the TLO E1 PSF.

However, it can be seen that the experimental spectrum
exceeds all simulated ones in the energy region around
6.3 MeV. As visible in Fig. 5, the uncertainties arising
from Porter-Thomas in this energy region are large (>50%).
Therefore, it remains unclear whether the experimental extra
intensity in this region has its origin in an enhanced PSF or
LD or is a result of fluctuations.

C. Simulations of photon-scattering deexcitation spectra

In addition to the simulation of neutron capture spectra,
γ DEX was also used to simulate average deexcitation spectra
of states in 78Se excited via photon scattering. As shown in
Ref. [31], average radiative deexcitation spectra for various
excitation energies have to be simulated to deduce the average
photoabsorption cross section 〈σγ,abs〉 or the related dipole PSF
from a photon-scattering experiment with bremsstrahlung. On
the one hand, these simulations can be used to subtract inelastic
transitions from the measured spectrum; on the other hand,
they can be used to estimate ground-state branching ratios of
states excited in photon scattering. However, in the simulation
of photon-scattering deexcitation spectra, the influence of
fluctuations in the transition width must be treated with care.

Equation (5), the basis for the calculations in γ DEX, is able
to predict the average ground-state branching ratio of excited
states in an energy interval around a particular excitation
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FIG. 8. (Color online) Simulated deexcitation spectra for excited
1− states in 78Se(γ ,γ ′) in steps of 200 keV. For each excitation
energy 250, 000 deexcitations were simulated. A CTM level density
with T = 900 keV and an E1 PSF that was obtained from an iterative
analysis of the photon-scattering data as shown in Fig. 11(b) were
used as input parameters.

energy. This average ground-state branching ratio is an equally
weighted average of the ground-state branching ratios of all
states in the energy interval. However, in a photon-scattering
experiment using bremsstrahlung, not all states in an interval
around a certain excitation energy are excited with equal
strength because of fluctuations in the transition widths. States
with a large ground-state transition width will be excited with a
higher probability than states with a small one. Subsequently,
those states with a large ground-state transition width will
decay with a higher probability directly back to the ground
state than the other ones, leading to an enhancement of elastic
photon scattering compared to other reaction channels. This
phenomenon was already discussed in Ref. [32] for (γ,p) and
in Ref. [33] for neutron-induced reactions.

The elastic enhancement effect in photon scattering can
be described with an energy-dependent statistical fluctuation
factor S mentioned in Ref. [12]. A method to calculate S

is explained in detail in Appendix A. Simulated 78Se(γ ,γ ′)
deexcitation spectra for excited 1− states using γ DEX and
taking into account the effect of elastic enhancement are shown
in Fig. 8.

This figure shows simulated deexcitation spectra using the
best-fit CTM LD with T = 900 keV and D0 = 121 eV taken
from the analysis of 77Se(n, γ ) and an E1 PSF obtained from
the iterative analysis of 78Se(γ, γ ) shown in Fig. 11(b). In the
high-energy region of the simulated spectra, the ground-state
transitions and the transitions to the lowest excited 0+ and
2+ states (diagonal structures) are visible. Moreover, in the
low-energy region the transitions deexciting the lowest-lying
excited states (vertical structures) can be seen. The enhanced
ground-state branching ratios calculated in γ DEX and the
statistical fluctuation factors used are shown in Fig. 9.

The γ DEX simulations predict mean ground-state branching
ratios of approximately 8% at Sn (10.5 MeV), 35% at 6.1 MeV,

and 62% at 3.1 MeV for excited 1− states in photon scattering
in 78Se. The decrease of the branching ratio with increasing
excitation energy is based on the exponential increase of
excited states to which the initial state can deexcite. The

FIG. 9. (Color online) Simulated enhanced ground-state branch-
ing ratios (blue circles, left ordinate) and statistical fluctuation factors
(orange squares, right ordinate) for excited 1− states in 78Se using the
same LD and PSFs as in Fig. 8.

displayed uncertainties in the enhanced branching ratio result
from the uncertainties in the simulation of S explained in
Appendix A. By using the simulated deexcitation spectra
and ground-state branching ratios it is possible to calculate
the average photoabsorption cross section from measured
78Se(γ ,γ ′) data, as will be discussed in the following section.

V. DETERMINATION OF THE AVERAGE
PHOTOABSORPTION CROSS SECTION FROM THE

PHOTON-SCATTERING EXPERIMENT

The energy-integrated photoabsorption cross section Iabs

can be calculated for a target measured in photon-scattering
experiments relative to the known integrated photoabsorption
cross section Iabs,B of a state in 11B [34,35] at energy EB by

Iabs(E,�E)

Iabs,B(EB)
= Yabs(E,�E)

NT �E(E)
× NB �E(EB)

Yabs(EB)
, (8)

where Yabs is the deduced number of photons absorbed in the
target, NT and NB are the numbers of scattering target atoms
and boron target atoms in the beam, and �E is the spectral
photon fluence at the target position. After a background
subtraction, the measured photon-scattering spectrum contains
elastic and inelastic transitions. From the measured number of
counts, Ymeas, in a bin �E, the number of absorbed photons in
the target can be determined by

Yabs(E,�E) = Yelas(E,�E)

B0(E) S(E) W (θ )

= Ymeas(E,�E)/ε(E) − Yinelas(E,�E)

B0(E) S(E) W (θ )
, (9)

where Yelas is the deduced number of elastically scattered
photons from the target in a bin �E, Yinelas is the simulated
number of inelastically scattered photons from the target, ε(E)
is the total detector efficiency, B0(E) is the average ground-
state branching ratio, S(E) is the statistical enhancement factor
discussed in Appendix A, and W (θ ) is an angular correction
coefficient that takes into account the angular distribution of
the scattered photons. Thus, the following steps have to be
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FIG. 10. Spectral bremsstrahlung fluence at the target deduced
from four known transitions in 11B (black circles) and the simulated
detector efficiency. The dashed black line shows the calculated fluence
distribution using the Seltzer and Berger formula [36]. The solid
black line takes the influence of the aluminum hardener in front
of the collimator into account. Both curves are normalized to the
fluence at 8.92 MeV. The gray bands correspond to the uncertainty
arising from a 200-keV uncertainty of the 11.5-MeV kinetic electron
endpoint energy.

performed to determine the average photoabsorption cross
section, which is related to the energy-integrated cross section
from the measured photon-scattering data:

(i) Determine the photon fluence at the target position.
(ii) Subtract the room background.

(iii) Correct the measured spectrum for detector response
and efficiency.

(iv) Subtract the non-nuclear (atomic) background.
(v) Subtract inelastic transitions and correct for branching,

angular distribution effects, and elastic enhancement.
(vi) Normalize to a known cross section using Eq. (8).

The photon fluence at the target position shown in Fig. 10
was calculated according to the Seltzer and Berger formula
[36] using a kinetic electron energy of 11.5 MeV. Moreover,
the spectral shape was corrected for the influence of the Al
hardener in front of the collimator. The absolute value was
normalized to the fluence deduced from the 8.92-MeV 11B
transition. Figure 10 also shows the fluence values deduced
from the other known transition in 11B. The transition at
7.29 MeV has been omitted here since it shows a contamination
by an unresolved transition in the measured spectrum. The
total uncertainty in the photon fluence can be estimated to 9%,
consisting of a 7.4% uncertainty in the fluence deduced from
the 11B transition and a 200-keV uncertainty in the endpoint
energy.

In the next step of the analysis, a room background
spectrum normalized by means of the 1.461-MeV transition
in the decay of 40K was subtracted from the measured
spectrum. We simulated detector response spectra of incoming
monoenergetic γ rays in steps of 10 keV using the program
package GEANT4 [8] to correct the experimentally measured
spectrum for detector response. The reliability of the simulated
detector response is shown in Refs. [31,37]. The simulated
detector response spectra were subtracted sequentially starting

at the high-energy end of the measured spectrum, which was
rebinned to 10 keV. Subsequently, the peaks resulting from
the transitions in 11B were subtracted.

Calibration source measurements with 60Co and 226Ra
were performed to calculate the absolute detector efficiency.
Additionally, GEANT4 simulations normalized to the cali-
bration source measurements were used to determine the
absolute efficiency in the energy range from 0 to 12 MeV.
Measurements of (p, γ ) reactions at the Tandetron accel-
erator at HZDR have shown that the simulated efficiencies
are in agreement with the experimentally determined ones
within their uncertainties of 5% up to energies of about
9 MeV [38].

Figure 2 shows the response-corrected experimental spec-
trum in comparison with the simulated atomic background
which was calculated with GEANT4 and multiplied with the
detector efficiency. In addition the spectrum resulting from a
subtraction of the atomic background from the experimental
spectrum is shown. As can be seen, the measured spectrum is
dominated by the atomic background below 4 MeV, whereas
at transition energies above 6 MeV the contribution of the
atomic background is negligible. Moreover, a continuum of
weak unresolved transitions that is clearly higher than the
atomic background exists. This unresolved continuum is a
consequence of the increasing LD and fluctuations in the
transition widths, which lead to many weak unresolvable
transitions.

As can be seen in Eq. (9), the contribution of inelastic
transitions to the number of measured γ transitions has to
be simulated and subtracted. For this purpose we used the
code γ DEX adjusted to the conditions in photon scattering to
simulate average deexcitation spectra of 1− and 1+ states,
excited by E1 and M1 excitations, respectively, from the
ground state at different excitation energies as discussed in
Sec. IV C. In the first step, the simulations were performed
with a TLO E1 strength function, an M1 strength function
consisting of three Gaussians, an E2 strength function de-
scribed in Sec. IV A, and a CTM LD determined from the
77Se(n, γ ) analysis with T = 900 keV and D0 = 121 eV,
corresponding to E0 = −230 keV using a spin cutoff factor
of σ (Sn) = 4.4 [23]. Porter-Thomas fluctuations were used
to simulate the statistical fluctuation factor S, describing the
elastic enhancement in photon scattering. The simulated deex-
citation spectra, the enhanced average ground-state branching
ratio, and the statistical fluctuation factor are shown in
Figs. 8 and 9.

After a step-by-step subtraction of the simulated inelastic
transitions starting at the highest transition energy, the number
of elastic transitions was obtained. Finally, we determined the
number of absorbed photons by dividing the number of elastic
transitions by the simulated enhanced average ground-state
branching ratios and by the angular distribution correction
factor W (θ ). Subsequently, the average photoabsorption cross
section was calculated using Eq. (8). Assuming that photoab-
sorption is dominated by dipole excitations, we obtained the
dipole PSF f1 using the relation derived in Ref. [12]:

〈σγ,abs〉 = 3(πh̄c)2Eγ f1(Eγ ). (10)
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FIG. 11. (Color online) Iterative determination of the dipole PSF
from photon scattering. The black circles are data from the (γ ,γ ′)
experiment corrected for inelastic transitions and branching. The
black squares are (γ, n) data from Ref. [39] scaled with 0.85 following
a proposal in Ref. [40]. The black triangles are the sum of (γ ,γ ′) and
(γ, n) in the region near the neutron threshold. The solid red line
and the orange band are the deduced E1 PSF corresponding to a
global fit and its 95% confidence interval to all data using a tail of
the GDR plus an extra Lorentzian resonance. Since the correction
for inelastic transitions and branching itself depends on the PSFs
below the neutron threshold, the input E1 (blue dashed line) and M1
PSF (black dotted line) are shown for comparison. The values for the
dipole PSF obtained in the first iteration using a TLO E1 PSF as input
are shown in (a). Moreover, the results of the fourth iteration using
an input E1 PSF fitted to the data of the third iteration are displayed
in (b).

The deduced dipole PSF was compared to the ones used for
the simulation of the deexcitation spectra which is shown in
Fig. 11.

After the first iteration of the correction for inelastic
transitions we found a discrepancy between the deduced PSF
values and the ones used as input for the simulations of the
number of inelastic transitions. Therefore, the obtained data
from photon scattering were fitted together with the (γ,n)
data from Ref. [39] scaled with 0.85 following a proposal in
Ref. [40]. For the fit we used a PSF consisting of the tail
of the GDR plus an extra Lorentzian. In the next step of
the iterative analysis this fitted function was used as input
for the simulation of the deexcitation spectra needed for the
subtraction of inelastic transitions and the estimate of the

FIG. 12. (Color online) Cross section from uncorrected data (blue
triangles), elastic photon-scattering cross section (gray squares), and
photoabsorption cross section (orange circles) measured via photon
scattering at HZDR in comparison with (γ, n) data from Ref. [39]
(black squares) scaled with 0.85 following a proposal in Ref. [40]. In
addition the prediction of the E1 TLO (black solid line) [2], E1 SLO
(black dashed line) [6], and E1 TLO plus M1 (black dotted line) [24]
models for the average photoabsorption cross section calculated from
the PSFs are shown.

ground-state branching ratios. This procedure was repeated
until the input PSF for the simulations and output PSF from
the (γ ,γ ′) analysis were self-consistent.

We performed two different independent analyses. In the
first one, the extra Lorentzian strength was assumed to be of
E1 type whereas in the second one it was assumed to be of
M1 type. As shown in Fig. 11, the resulting output data are
only weakly influenced by the different input PSFs used in the
single iteration steps, which is consistent with a test of various
input PSFs in our earlier study of 90Zr [41].

We obtained self-consistent results for the dipole PSF
and the related average photoabsorption cross section after
four iteration steps. The two different analyses just described
yielded similar results. The mean deviation between the PSFs
obtained in the two methods below Sn was found to be less
than 15%. However, with respect to Ref. [24], an extra M1
strength of this magnitude seems unrealistic. The final elastic
scattering and photoabsorption cross section deduced with the
E1 analysis are shown in Fig. 12. The data not corrected for
inelastic transitions and the measured (γ,n) cross section of
78Se from Ref. [39] are shown for comparison. The (γ,n) data
were scaled with a factor of 0.85 proposed in Ref. [40] and
confirmed in Refs. [42,43]. In addition, the predictions of the
TLO [2] and the standard Lorentzian model (SLO) [6] for the
average photoabsorption cross section calculated from the E1
PSF are shown.

In the energy region just below Sn, the elastic scattering
cross section coincides with the cross section obtained from
the uncorrected data, because excited states there are not fed
from above. States at lower excitation energies are strongly
fed from cascade deexcitations of higher-lying excited states,
which is why the elastic scattering cross section is lower than
the uncorrected cross section in the low-energy region. The
step-by-step subtraction of inelastic transitions from the flat
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uncorrected data below 8.2 MeV leads to a local maximum in
the elastic scattering cross section at 8.2 MeV (see Fig. 12).

The deduced average photoabsorption cross section exceeds
that of the two pure Lorentzian models and shows broad
enhanced strength around 9 MeV, corresponding to approxi-
mately 2% of the Thomas-Reiche-Kuhn sum rule. This extra
strength is comparable to our earlier findings for 88Sr, 90Zr,
89Y, and 139La (see Refs. [31,41,44,45]).

VI. CONCLUSION

The level density and dipole strength function in the com-
pound nucleus 78Se have been studied in a combined analysis
of a cold neutron capture experiment on 77Se performed
at the research reactor in Budapest and a photon-scattering
experiment at the ELBE accelerator in Dresden using a
kinetic electron energy of 11.5 MeV. For the analysis of
both experiments we developed the extreme statistical code
γ DEX for the simulation of radiative deexcitation spectra of
excited nuclear states. The analysis of 77Se(n, γ ) allowed
us to estimate a CTM level density temperature of T =
900 keV by comparing simulated and experimental spectra.
In complementary fashion, this information about the level
density in the compound nucleus 78Se was used in connection
with the code γ DEX to determine the average photoabsorption
cross section from the measured photon-scattering data.

In comparisons with different Lorentzian models for the
GDR, extra strength was observed in a broad distribution
around 9 MeV, corresponding to approximately 2% of the
Thomas-Reiche-Kuhn sum rule as found in earlier (γ ,γ ′) stud-
ies of 88Sr, 90Zr, 89Y, and 139La. This enhanced strength also fits
the systematics of observed extra strengths in various nuclei
investigated in Refs. [46] and [47]. Moreover, we achieved a
very good agreement between the experimentally measured
neutron capture spectrum and a simulated one using the PSF
obtained from the analysis of the photon-scattering data.

It is very satisfying that a main aim of this investigation
could be accomplished. By doing the neutron capture on a spin
1/2− target nucleus, the differences in the spins of the states
populated in neutron capture and in photon scattering were
minimized. Under these conditions, it was possible to fit both
the capture and scattering data with the same level density and
the same E1 PSF, even including an anomalous contribution
at 9 MeV. This is contrary to the belief that a different PSF
is needed to fit the radiative capture from that which fits the
photon scattering. It is our intent to further investigate the use
of this technique of populating similar states with other nuclear
pairs.

Furthermore, it could be shown that fluctuations in the
transition widths lead to an enhancement of elastic transitions
in photon scattering compared to the prediction of the average
branching ratio. This enhancement could be quantified in a
statistical simulation discussed in Appendix A.
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APPENDIX A: ELASTIC ENHANCEMENT IN PHOTON
SCATTERING

Gamma spectroscopy measurements in nuclear physics at
high excitation energies face the problem that the average level
spacing is smaller than the energy resolution of commonly
used HPGe detectors. Hence, the observed quasicontinuum
can only be used to derive average quantities such as the
average photoabsorption cross section. As shown in Ref. [32]
for (γ,p) reactions and in Ref. [33] for neutron-induced
reactions, fluctuations in the transition widths lead to an
enhancement of elastic transitions compared to predictions of
a calculated average ground-state branching ratio. This general
phenomenon also occurs in photon scattering.

If the photon-scattering average ground-state branching
ratio of states i in an interval � around a certain excitation
energy is to be calculated, the quantity

B0 = 〈�i0〉
〈�i,tot〉 , (A1)

which is the ratio of the average ground-state transition
width 〈�i0〉 to the average total radiative width 〈�i,tot〉,
is a wrong estimate. This is because of the fact that in
Eq. (A1) the transition widths of all states in � are weighted
equally. However, in photon scattering, not all excited states
in � are excited equally. Those with a large ground-state
transition width because of fluctuations are excited with a
greater probability than those with a small one. After the
excitation, those states with a large ground-state transition
width will also deexcite directly back to the ground state with
a greater probability than the other ones. Hence, Eq. (A1)
underestimates the average ground-state branching ratio of
states excited in photon scattering. In order to quantify this
underestimate, the average cross sections for photoabsorption
and photon scattering have to be compared.

According to Ref. [48] the average cross section for
photoabsorption of transition type XL is given by

〈σγ,abs,XL〉 = 3

(
πh̄c

E

)2

〈�i0XL〉�(Ei), (A2)

where Ei is the excitation energy, �(Ei) is the density of states
i that can be excited with respect to the transition rules in the
bin � around E, and �ijXL is the transition width between
the states i and j for an XL transition. The average is taken
over all states i in � around E. Furthermore, the average cross
section for elastic photon scattering of transition type XL is
given by

〈σγ,γ,XL〉 = 3

(
πh̄c

E

)2〈
�i0XL

�i0XL

�i,tot

〉
�(Ei), (A3)

which takes into account that only a fraction of the excited
states i deexcites directly back to the ground state. As
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suggested in Ref. [12], Eq. (A3) can be formally rewritten to

〈σγ,γ,XL〉 = 〈σγ,abs,XL〉 〈�i0XL〉
〈�i,tot〉 SXL (A4)

by defining the statistical fluctuation factor

SXL =
〈
�i0XL

�i0XL

�i,tot

〉/( 〈�i0XL〉〈�i0XL〉
〈�i,tot〉

)
. (A5)

This definition of SXL is reasonable to use in order to
deduce the average photoabsorption cross section from the
average elastic scattering cross section which can be measured
in photon-scattering experiments. For this purpose, the fraction
〈�i0XL〉/〈�i,tot〉 can be calculated using the relation between
the average transition width 〈�ijXL〉 and the PSF fXL for
transitions of type XL:

〈�ijXL〉 = fXL(Eγ ) E2L+1
γ

�(Ei)
(A6)

and the definition of the total radiative width:

�i,tot =
∑
j,XL

�ijXL, (A7)

where Eγ = Ei − Ej is the transition energy and fXL is the
PSF for an XL transition. In order to evaluate the statistical
enhancement factor SXL, the expression 〈�i0XL�i0XL/�i,tot〉
has to be calculated. Assuming that the fluctuations of the
transition widths follow a certain distribution we are justified
in writing

�ijXL = yij 〈�ijXL〉, (A8)

where yij is a random number from the distribution of the
fluctuations. By taking the average over all N states i in a
sufficiently small interval � such that 〈�i0XL〉 is constant for
all states in the bin, we obtain〈

�i0XL

�i0XL

�i,tot

〉
= 〈�i0XL〉2

N

N∑
i=1

y2
0i

�i,tot
, (A9)

At very high excitation energies, where on the one hand
the level density is very high such that N is large and on the
other hand the total radiative width is the sum of many partial
widths such that according to the central limit theorem it does
not fluctuate strongly, we obtain〈

�i0XL

�i0XL

�i,tot

〉
= 〈�i0XL〉2

N〈�i,tot〉
N∑

i=1

y2
0i = 〈�i0XL〉2

〈�i,tot〉
〈
y2

0i

〉
, (A10)

which is equivalent to

SXL(N → ∞) = 〈
y2

0i

〉
. (A11)

That means, for the limiting case of N → ∞, SXL is given
by the mean of the squared fluctuation distribution. Assuming
a reduced χ2 distribution with ν degrees of freedom for this
distribution, we obtain

SXL(N → ∞) = 1 + 2

ν
, (A12)

which is 3 for Porter-Thomas fluctuations [26]. For the analysis
of the performed photon-scattering experiments, SXL must be
calculated for excitation energies from several MeV to Sn for
E1 and M1 excitations. In this energy region the assumptions

made in Eq. (A10) do not hold. Therefore, SXL has to be
simulated in a statistical way. For this purpose a simulation
code was developed that works in the following way:

(i) The simulation code generates a nuclear random level
scheme, with Ntot states up to an energy E + �

2
according to the nuclear level density. By assuming
that photon scattering is dominated by E1 and M1
excitations and target nuclei with ground-state spin-
parity 0+ are used, only 0+, 0−, 1+, 1−, 2+, and 2−
levels are distributed because only those states can be
populated in a two-step process consisting of an E1 or
M1 excitation and an E1 or M1 deexcitation.

(ii) All average transition widths 〈�ijXL〉 between all
excited states are calculated using Eq. (A6).

(iii) Each average transition width is multiplied with a ran-
dom variable yif drawn from a reduced χ2 distribution
with ν degrees of freedom.

(iv) The two quantities 〈�i0XL�i0XL/�i,tot〉 and
〈�i0XL〉〈�i0XL〉/〈�i,tot〉 are calculated, where the
averaging is done over all 1− states for E1 excitations
or over all 1+ states for M1 excitations in the bin
[E − �

2 , E + �
2 ]. By division of these last two

quantities, the statistical fluctuation factor SXL is
obtained for elastic ground-state transitions for one
random level scheme.

(v) The simulation algorithm is executed several times,
each time with a new random scheme of excited states
and new fluctuations of the transition widths. In the
end the mean value for SXL deduced from all random
level schemes is taken. At low excitation energies
the algorithm is executed 10000 times and at high
excitation energies it is executed 50 times.

SXL factors as a function of excitation energy simulated for
E1 and M1 excitations in 78Se are shown in Fig. 13. For all
simulations the averaging was done over all 1−/1+ states in

FIG. 13. (Color online) Statistical enhancement factor SXL for E1
excitations (black circles) and for M1 excitations (orange squares) as
a function of excitation energy simulated for 78Se using the E1 PSF
obtained from the analysis of the (γ ,γ ′) experiment and M1 according
to the data from Ref. [24] and a CTM LD with T = 900 keV and
D0 = 121 eV. The uncertainties correspond to one standard deviation
of all runs performed for one excitation energy and the gray dashed
lines indicate the asymptotic values for S.
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FIG. 14. (Color online) Statistical enhancement factor S for E1
excitations simulated with different CTM level densities with T =
700 keV (orange squares), T = 900 keV (black circles), and T =
1100 keV (blue triangles). For all simulations D0 = 121 eV and the
PSF shown in Fig. 11(b) were used. The uncertainties have been
omitted for better visibility. (a) S as a function of the excitation
energy. (b) S as a function of the ratio of the average total transition
width to the average ground-state transition width. The gray dashed
lines indicate the asymptotic values for S.

a 200-keV interval around the excitation energy. A CTM LD
with T = 900 keV and D0 = 121 eV was used to distribute the
excited states in the random level scheme above 2.3 MeV. The
spins of the excited states were assigned according to Eq. (7)
with a spin cutoff factor taken from Ref. [23]. The distribution
of states with positive and negative parity was assumed to
be equal. Below 2.3 MeV we used the energies, spins, and
parities of the first 10 excited states [6] in the level schemes.
The fluctuation factors yij were drawn from a Porter-Thomas

TABLE I. Parameters of the parametrization of the M1 PSF. Here,
Ak is the amplitude, Ek is the peak energy, and σk is the standard
deviation of the M1 component. Z is the atomic number, A is the
mass number, β is the quadrupole deformation, and EGDR is the
centroid energy of the TLO E1 PSF given in Ref. [2].

Component Ak (GeV−3) Ek (MeV) σk (MeV)

orbital/scissors (Zβ)2/62 0.21 EGDR 0.85
isoscalar spin-flip A/9.3 34 A−1/3 0.85
isovector spin-flip A/9.3 44 A−1/3 1.27

distribution. In the low-energy region (Eex � 3 MeV), where
on average there is approximately one state in the averaging
interval, SXL is close to unity. With increasing excitation
energies, SXL increases as well, until it reaches the limiting
value of 3 at high excitation energies for the assumed Porter-
Thomas distribution.

Figure 14 shows simulated fluctuation factors SE1 as a
function of the ratio R of average total transition width to
average elastic transition width, for different level densities.
In regions where R > 3, approximately corresponding to
Eex > 5.5 MeV for 78Se, SE1 as a function of R is independent
of the LD. Furthermore, it can be seen that SE1 approaches
3 when R approaches infinity, which corresponds to very
high excitation energies. However, in regions of very high
R corresponding to excitation energies above the particle
thresholds, other reaction channels are open. Thus the to-
tal width �i,tot contains also partial particle widths which
influence S [32].

APPENDIX B: PARAMETRIZATION OF THE M1 PHOTON
STRENGTH FUNCTION

The M1 PSF was parametrized according to the data
of Ref. [24] as a sum of three Gaussians corresponding
to the orbital and the isoscalar and isovector spin-flip
mode:

fM1(Eγ ) =
3∑

k=1

Ak e

−(Eγ −Ek )2

2σ2
k . (B1)

Here, Eγ is the transition energy, Ak are the amplitudes, Ek

are the peak energies, and σk are the standard deviations of the
Gaussians. The parameter Ak , Ek , and σk are given in Table I
for the three components.
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