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Description of single-� hypernuclei with a relativistic point-coupling model
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We extend the relativistic point-coupling model to single-� hypernuclei. For this purpose, we add N -�
effective contact couplings to the model Lagrangian and determine the parameters by fitting to the experimental
data for � binding energies. Our model well reproduces the data over a wide range of mass region although
some of our interactions yield the reverse ordering of the spin-orbit partners from that of nucleons for heavy
hypernuclei. The consistency of the interaction with the quark model predictions is also discussed.
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I. INTRODUCTION

Relativistic mean-field (RMF) theory has been successfully
applied to both finite nuclei and nuclear matter to describe their
bulk properties [1–5]. Starting from an effective Lagrangian in
which nucleon and meson fields are coupled in a covariant
manner, single-particle Dirac equations for nucleons are
derived within the mean-field approximation. In this model,
nucleons are treated as Dirac particles moving independently
in the mean field generated by the mesons. The spin-orbit
interaction with the correct sign and magnitude naturally arises
from the relativistic treatment of nucleons. The success of
the model affirms the meson exchange picture of a nucleon-
nucleon interaction in nuclei.

Recently, another class of relativistic model, that is, the
relativistic point-coupling (RPC) model [6,7] has also been
widely employed [8–14]. This model consists of Skyrme-type
zero-range interactions and has been found to be as capable as
meson exchange RMF models of reproducing the properties
of finite nuclei and nuclear matter [7,8,11–13]. This model
has several advantages compared to the meson exchange
models. First, there is no need to solve the Klein-Gordon
equations for mesons since the mesonic degrees of freedom
are all implicit in the RPC model. Second, the Fock terms
can easily be introduced by using the Fierz transformation
because of its zero-range nature [9,10]. Last, it is much easier
to apply the model to beyond-mean-field methods such as the
generator coordinate method (GCM), and angular momentum
and particle number projections [12,13].

A zero-range-type interaction is suitable also for the three-
dimensional (3D) mesh method for mean-field calculations in
the coordinate space representation [15,16]. With this method,
an arbitrary deformation of nuclei can be efficiently described,
and the method has been widely used in nonrelativistic Skyrme
Hartree-Fock (SHF) calculations together with the imaginary
time technique [15,16]. An extension of this method to the
relativistic approach is not trivial, however. That is, a naive
imaginary time evolution breaks down in relativistic systems
due to the presence of the Dirac sea [17,18]. This is not a
numerical, but rather a fundamental problem related to the
variational principle. Such phenomena have been well-known
under the name of “variational collapse” in the field of
relativistic quantum chemistry [19–23]. For this reason, a 3D
mesh calculation has not yet been carried out with either
RMF or RPC. Recently, a few prescriptions to avoid the

variational collapse have been tested in the nuclear physics
context [17,18]. The prescriptions were found to work well, at
least for simple spherical systems, and a 3D mesh calculation
may now be almost ready to perform.

In this paper, we extend the RPC model to hypernuclei.
Effects of adding a � particle on the shape of nuclei, that is,
the gluelike role, are attracting much attention theoretically
and experimentally [24–30]. The RMF theory with meson
exchange model has been extended to hypernuclei to describe
such effects by adding ordinary scalar and vector couplings of
a � particle to σ and ω mesons, respectively [24,25,31–44].
The authors of Refs. [31,32] fitted the coupling constants in the
strange sector to the experimental data of � binding energies.
In these calculations, the tensor coupling to the ω meson, which
is predicted by the quark model [33,34] to be much stronger for
� than for nucleon, was also included to reproduce rather small
� spin-orbit splittings. Our aim in this paper is to propose a
zero-range version of the phenomenological RMF models for
hypernuclei.

The paper is organized as follows. In Sec. II, we introduce
the model Lagrangian for a point-coupling model extended
to single-� hypernuclei. In Sec. III, the optimal parameter set
is obtained by fitting to experimental single-particle energies
for the � particle. We also test its predictive power and a
consistency with the quark model. In Sec. IV, we summarize
the paper.

II. MODEL

Our model Lagrangian for single-� hypernuclei is given by

L = Lfree + Lem + LNN
int + LN�

int , (1)

in which the free and electromagnetic parts are given by

Lfree = ψ̄N (i∂/ − mN )ψN + ψ̄�(i∂/ − m�)ψ�, (2)

Lem = −eψ̄NA/
1 − τ3

2
ψN − 1

4
FμνF

μν, (3)

respectively. Here, ψN , ψ�, and Aμ are the nucleon, �,
and electromagnetic fields, respectively. Fμν = ∂μAν − ∂νAμ

is the electromagnetic field strength tensor. The masses of
nucleon and � are denoted by mN and m�, respectively. τ3 is
the isospin matrix.
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The RPC model for normal nuclei consists of four-fermion
point couplings L4f , derivative terms Lder, and higher-order
terms Lhot [8]. Here L4f is the leading order of zero-range ap-
proximation to the meson exchange interaction. Lder simulates
the finite ranges of the meson exchanges. Lhot corresponds
to the self-couplings of the scalar and vector mesons, which
introduce a density dependence into N -N contact couplings.
These terms are given by

LNN
int = LNN

4f + LNN
der + LNN

hot , (4)

with

LNN
4f = − 1

2αS(ψ̄NψN )(ψ̄NψN )

− 1
2αV (ψ̄NγμψN )(ψ̄Nγ μψN )

− 1
2αT S(ψ̄N �τψN ) · (ψ̄N �τψN )

− 1
2αT V (ψ̄Nγμ�τψN ) · (ψ̄Nγ μ�τψN ), (5)

LNN
der = − 1

2δS(∂μψ̄NψN )(∂μψ̄NψN )

− 1
2δV (∂μψ̄NγνψN )(∂μψ̄Nγ νψN )

− 1
2δT S(∂μψ̄N �τψN ) · (∂μψ̄N �τψN )

− 1
2δT V (∂μψ̄Nγν �τψN ) · (∂μψ̄Nγ ν �τψN ), (6)

and

LNN
hot = − 1

3βS(ψ̄NψN )3 − 1
4γS(ψ̄NψN )4

− 1
4γV [(ψ̄NγμψN )(ψ̄Nγ μψN )]2. (7)

Notice that the four different spin-isospin vertex structures
labeled by the subscripts S, V , T S, and T V in the coupling
constants correspond to σ , ω, δ, and ρ meson exchanges,
respectively. Thus, we can find one-to-one correspondence of
each term to the meson exchange model.

Noticing that � only couples to the scalar and vector
mesons, we construct N -� interaction as

LN�
int = LN�

4f + LN�
der + LN�

ten , (8)

where

LN�
4f = −α

(N�)
S (ψ̄NψN )(ψ̄�ψ�)

−α
(N�)
V (ψ̄NγμψN )(ψ̄�γ μψ�), (9)

LN�
der = −δ

(N�)
S (∂μψ̄NψN )(∂μψ̄�ψ�)

−δ
(N�)
V (∂μψ̄NγνψN )(∂μψ̄�γ νψ�), (10)

and

LN�
ten = α

(N�)
T (ψ̄�σμνψ�)(∂νψ̄NγμψN ). (11)

For simplicity, we do not consider the higher-order term for the
N� coupling, LN�

hot , in this paper. LN�
ten in Eq. (11) simulates

the �-ω tensor couplingL�ω
ten = f�ω

2m�
(ψ̄�σμνψ�)(∂νωμ). As we

mentioned in the introduction, the quark model suggests that
the tensor coupling of � to ω meson is much stronger than that
of nucleon. That is, the quark model yields the ratio of �-ω
tensor-to-vector coupling constants, f�ω/g�ω, to be −1, while
it yields the corresponding ratio for nucleon to be fNω/gNω =
−0.09 [33]. Thus, this type of coupling plays an important
role in hypernuclei. Because this term is proportional to the
derivative of the mean field, it mainly affects the spin-orbit
splittings of � single-particle energies [31]. It is expected
that the small spin-orbit splittings of � can be reproduced by
tuning the tensor coupling α

(N�)
T . We discuss this point in the

next section.
Our model presented in this paper is similar to the one

adopted in Ref. [35] by Finelli et al., which is based on the
chiral SU(3) dynamics. The N -� part of their model consists
of the density-dependent contact four fermion couplings of the
scalar and the vector types, as well as the derivative term of
the scalar type. A part of the four fermion terms effectively
describes unresolved short-distance physics, while the density
dependence is attributed to in-medium Nambu-Goldstone
boson (two-pion and kaon) exchanges. The coefficients for the
density dependence are fixed by the chiral SU(3) perturbation
theory. The tensor interaction caused by 2π exchange is
treated in the model of Ref. [35] as first-order perturbation
on the Hartree single-particle energies. In contrast to the
model of Finelli et al., we determine all the parameters
phenomenologically, and thus we consider in our model also
the derivative coupling of the vector type, which is absent in
theirs.

The total energy corresponding to the Lagrangian in Eq. (1)
for a single-� hypernucleus with mass number A (i.e., a single
� particle with A − 1 nucleons) in the mean-field (Hartree)
and the no-sea approximations is given by

E =
∫

d3r

(
A−1∑
i=1

ψ
†
i (�α · �p + mNβ)ψi + ψ

†
�(�α · �p + m�β)ψ� + 1

2
eA0ρ

(p)
V + 1

2

∑
K

αKρ2
K + 1

2

∑
K

δKρK�ρK

+1

3
βSρ

3
S + 1

4
γSρ

4
S + 1

4
γV ρ4

V +
∑

K=S,V

α
(N�)
K ρKρ

(�)
K +

∑
K=S,V

δ
(N�)
K ρK�ρ

(�)
K + α

(N�)
T ρ

(�)
T ρV

)
,

(12)

where �α and β are the usual Dirac matrices. Here we have
assumed the time-reversal invariance of the nuclear ground
state. The densities appearing in Eq. (12) are defined as

ρS =
A−1∑
i=1

ψ̄iψi, ρV =
A−1∑
i=1

ψ
†
i ψi, (13)

ρT S =
A−1∑
i=1

ψ̄iτ3ψi, ρT V =
A−1∑
i=1

ψ
†
i τ3ψi, (14)

ρ
(�)
S = ψ̄�ψ�, ρ

(�)
V = ψ

†
�ψ�, (15)

ρ
(�)
T = �∇ · (ψ̄�i �αψ�). (16)
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Here ψi is the wave function for the ith nucleon, and ψ� is the
wave function for the � particle.

The relativistic Hartree equations for the nucleons and �

particle are obtained by taking the variation of the energy with
respect to the wave functions as

δ

δψ
†
i (�r)

⎛
⎝E −

A∑
j=1

εj

∫
d3r ′ψ†

j ψj

⎞
⎠ = 0, (17)

where εi is a Lagrange multiplier which ensures the normal-
ization of the single-particle wave functions. Variation with
respect to the nucleon wave function leads to the Hartree
equation for nucleons,

[�α · �p + VV + VT V τ3 + VC

+ (mN + VS + VT Sτ3) β]ψi = εiψi, (18)

with

VS = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS

+α
(N�)
S ρ

(�)
S + δ

(N�)
S �ρ

(�)
S ,

VV = αV ρV + γV ρ3
V + δV �ρV

+α
(N�)
V ρ

(�)
V + δ

(N�)
V �ρ

(�)
V + α

(N�)
T ρ

(�)
T , (19)

VT S = αT SρT S + δT S�ρT S,

VT V = αT V ρT V + δT V �ρT V ,

VC = eA0 1 − τ3

2
,

(
�A0 = −eρ

(p)
V

)
,

while variation with respect to the � wave function leads to
the Hartree equation for the � particle:

[�α · �p + UV + UT + (m� + US) β]ψ� = ε�ψ�, (20)

with

US = α
(N�)
S ρS + δ

(N�)
S �ρS,

UV = α
(N�)
V ρV + δ

(N�)
V �ρV , (21)

UT = −iα
(N�)
T β �α · ( �∇ρV ).

After having solved these Hartree equations self-consistently,
we obtain the total binding energy as

EB =
A−1∑
i=1

εi + ε� − ECM − (A − 1)mN − m�

−
∫

d3r

(
1

2

∑
K

αKρ2
K + 1

2

∑
K

δKρK�ρK

+2

3
βSρ

3
S + 3

4
γSρ

4
S + 3

4
γV ρ4

V

+
∑

K=S,V

α
(N�)
K ρKρ

(�)
K +

∑
K=S,V

δ
(N�)
K ρK�ρ

(�)
K

+α
(N�)
T ρ

(�)
T ρV + 1

2
eA0ρ

(p)
V

)
, (22)

where the center-of-mass energy ECM is calculated by taking
the expectation value of the kinetic energy for the center-of-
mass motion with respect to the many-body ground state wave

function as

ECM =
〈
P 2

CM

〉
2[(A − 1)mN + m�]

. (23)

See the Appendix for the explicit expression for this term.
The relation of the point-coupling model to the meson

exchange model can be made as follows (see also Eqs. (6)–(10)
in Ref. [8]). By eliminating the meson fields and expanding
the meson propagators to the leading order, the following
approximate relations between the two models can be obtained
[8]:

αS ≈ −g2
Nσ

m2
σ

, αV ≈ g2
Nω

m2
ω

, (24)

α
(N�)
S ≈ −gNσg�σ

m2
σ

, α
(N�)
V ≈ gNωg�ω

m2
ω

,

α
(N�)
T ≈ −gNωf�ω

2m�m2
ω

, (25)

where g’s and m’s are the baryon-meson coupling constants
and the meson masses, respectively. f�ω is the �-ω tensor
coupling constant. Notice that it has been demonstrated that
αS and αV obtained phenomenologically approximately follow
these relations [8] (on the other hand, it has been shown
that the derivative terms, δS and δV , do not follow the
corresponding expected relations [8], and we do not discuss
them in this paper). If we assume the naive quark counting
ratios g�σ = 2

3gNσ and g�ω = 2
3gNω, together with the quark

model prediction for the tensor coupling, f�ω/g�ω = −1, we
obtain

α
(N�)
S ≈ 2

3
αS, α

(N�)
V ≈ 2

3
αV , α

(N�)
T ≈ − αV

3m�

. (26)

We will show in the next section that these expected relations
indeed hold if we include the N -� tensor coupling given by
Eq. (11) in the Lagrangian.

III. RESULTS AND DISCUSSION

With the model described in the previous section, we
calculate � binding energies defined by the mass difference

m(A−1Z) + m� − m
(A

�
Z

) = EB(A−1Z) − EB

(A

�
Z

)
. (27)

To this end, we assume spherical symmetry, and neglect the
pairing correlations for simplicity. For the valence orbit, we
use the filling approximation to determine the occupation
probability. We set the masses of baryons to mN = 938 MeV
and m� = 1115.6 MeV. We use the parameter set PC-F1 [8]
for the N -N part of interaction and fit the five parameters in
the N -� part [see Eqs. (9)–(11)] to the experimental data. The
data to be fitted to are � binding energies for s and p orbitals
in 16

�O, s, p, and d in 40
�Ca, s and d in 51

�V, s, p, d, and
f in 89

�Y, s, p, d, f , and g in 139
�La, and s, p, d, f , and

g in 208
�Pb. These are taken from Refs. [45,46]. In addition,

the spin-orbit splitting for the p orbital of � in 16
�O [47]

is included in the fitting procedure. The value deduced in
Ref. [47] is 300 keV � ε�p1/2 − ε�p3/2 � 600 keV, where the
variation comes from a choice of the interactions. Notice that
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TABLE I. The best fit parameter set PCY-S1 for the RPC model
for hypernuclei. PC-F1 [8] is used for the N -N part. The uncorrelated
errors and the ratios R defined in Eq. (29) with the expected values
given in Eq. (26) are also shown in the table. The χ 2 value per degree
of freedom is χ 2

dof = 0.54.

Coupling Value Uncorrelated R

constant error (%)

α
(N�)
S −2.0305 × 10−4 MeV−2 8.2 × 10−2 0.79

α
(N�)
V 1.6548 × 10−4 MeV−2 9.7 × 10−2 0.96

δ
(N�)
S 2.2929 × 10−9 MeV−4 5.4 × 10−1 –

δ
(N�)
V −2.3872 × 10−9 MeV−4 5.0 × 10−1 –

α
(N�)
T −1.0603 × 10−7 MeV−3 6.8 × 100 1.37

this value is model dependent, and we merely regard it as
a criterion. The coupling constants in the strange sector are
determined by performing a least-squares fit to the data, that
is, by minimizing the quantity

χ2 =
N∑

i=1

(
O theor

i − O
expt
i

�O
expt
i

)2

. (28)

Here N is the number of data points, and O theor
i and O

expt
i

are theoretical and experimental values of the observables,
respectively, with the experimental uncertainties of �O

expt
i .

To find the minimum of χ2 in the 5D parameter space, we
employ an automatic search algorithm Oak Ridge and Oxford
method [48].

The parameter set PCY-S1 so obtained is summarized
in Table I. We also show the uncorrelated errors for the
parameters, which are defined as the range of a parameter that
changes the χ2 value by unity around the minimum value when
the other parameters are kept to be the same. Together with the
coupling constants and their uncorrelated errors, the ratios R

of the resultant N -� coupling constants to the expected values
given in Eq. (26),

R = (resulted value)/(expected value), (29)

are also shown. These ratios are R = 0.79, 0.96, and 1.37 for
α

(N�)
S , α

(N�)
V , and α

(N�)
T , respectively, and the expected values

are approximately realized.
The calculated binding energies of � with this interaction

are shown in Fig. 1(a). One observes that the calculated �

binding energies agree with the experimental values fairly
well, although the binding energies for 28

�Si and 32
�S are

somewhat overestimated. The less satisfactory result for these
latter nuclei, which has been observed also in the previous
RMF calculations for hypernuclei [31,32,39,41], is within
expectation as we do not take into account a strong deformation
of the core nucleus nor the pairing correlation. We have
confirmed that the situation does not change even if we include
these two nuclei in the fitting.

To investigate the role of the tensor coupling, we show in
Table II the parameter set PCY-S2 obtained without including
the tensor coupling term. The � binding energies calculated
with this interaction are shown in Fig. 2(a). As one sees, the
agreement with the experimental data is worsened as compared
to PCY-S1, and the ratios R are strongly suppressed compared
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d

f

g
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FIG. 1. (Color online) Comparison between the experimental
data and the calculated � binding energies B� [Fig. 1(a)] and
spin-orbit splittings of � single-particle energies �Eso [Fig. 1(b)]
obtained with the parameter set PCY-S1. The experimental data are
taken from Refs. [45–47].

to unity. On the other hand, the sum α
(N�)
S + α

(N�)
V has similar

values around −3 × 10−5 MeV−2 for PCY-S1 and PCY-S2.
The suppression of the ratios can be understood as follows.
In the nonrelativistic reduction of a Dirac equation without
the tensor coupling contribution, the central potential and the
spin-orbit potential read

Vcentral = V + S, Vls = 1

2m2

1

r

d

dr
(V − S), (30)

where V and S are the vector and the scalar potentials, respec-
tively. Therefore, to reproduce a small spin-orbit splitting of
� without the tensor interaction, the difference of the vector
and the scalar potential have to be small, keeping their sum
constant. This can be achieved only by lowering the values
of the four fermion N -� couplings, α

(N�)
S and α

(N�)
V , which

roughly determine the strengths of mean potential felt by �.
Notice that V − S does not have to be small in the presence
of the tensor coupling, as there is another contribution to the
spin-orbit potential from the tensor coupling. The importance
of the N -� tensor coupling (originated from the �-ω tensor
coupling) is thus evident. It yields small spin-orbit splittings,
keeping α

(N�)
S and α

(N�)
V at the natural values. In PCY-S1,

TABLE II. The parameter set PCY-S2 obtained by the omitting
the tensor coupling. χ 2

dof is 0.85.

Coupling Value Uncorrelated R

constant error (%)

α
(N�)
S −4.2377 × 10−5 MeV−2 3.6 × 10−1 0.17

α
(N�)
V 1.4268 × 10−5 MeV−2 1.0 × 100 0.08

δ
(N�)
S 1.2986 × 10−9 MeV−4 8.3 × 10−1 –

δ
(N�)
V −1.3850 × 10−9 MeV−4 7.4 × 10−1 –

α
(N�)
T 0 – –
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FIG. 2. (Color online) Same as Fig. 1, but with the parameter set
PCY-S2.

the two predictions of the quark model, that is, the quark
counting ratios and the importance of the tensor coupling
(f�ω/g�ω = −1), are simultaneously satisfied.

Let us now discuss the calculated spin-orbit splittings,
�Eso. These are estimated as a difference of � single-particle
energies between spin-orbit partners, �Eso = ε�,j=l−1/2 −
ε�,j=l+1/2, when the � particle is put in the lowest s orbital.
Those obtained with PCY-S1 and PCY-S2 are shown in
Figs. 1(b) and 2(b), respectively. For both the parameter sets,
although the absolute values of �Eso are smaller by roughly
a factor of 10 than those for nucleon, �Eso alters its sign
depending on the mass number. Notice that the spin-orbit
splittings may be inverted depending on the strength of the
tensor coupling term, as one can see in Fig. 2 of Ref. [31]. One
may consider this inversion somewhat ill favored. We mention,
however, that at present there have been no experimental data
which exclude the possible inversion of the spin-orbit splitting
in the medium and heavier mass region.
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FIG. 3. (Color online) Same as Fig. 1, but with the parameter set
PCY-S3.

TABLE III. The parameter set PCY-S3 obtained without fitting to
the spin-orbit splitting in 16

� O. χ 2
dof is 0.57.

Coupling Value Uncorrelated R

constant error (%)

α
(N�)
S −2.0197 × 10−4 MeV−2 7.4 × 10−2 0.79

α
(N�)
V 1.6449 × 10−4 MeV−2 9.1 × 10−2 0.95

δ
(N�)
S 2.3514 × 10−9 MeV−4 4.5 × 10−1 –

δ
(N�)
V −2.4993 × 10−9 MeV−4 4.5 × 10−1 –

α
(N�)
T −4.0820 × 10−9 MeV−3 5.5 × 102 0.05

If we exclude the spin-orbit splitting of the 1p state of � in
16
�O from the fitting, that is, if we fit only the energy centroid

of each spin-orbit partner, we obtain Fig. 3 for the � binding
energies and the spin-orbit splittings. The parameters for this
set, PCY-S3, are summarized in Table III. For this parameter
set, the vector and scalar couplings of � to nucleon remain
natural, but the tensor coupling is far smaller than the expected
value in Eq. (26). Because there is no constraint on the value
of spin-orbit splitting, this parameter set yields unacceptably
large spin-orbit splitting, some of them stretching even beyond
the experimental uncertainties (i.e., the upper bounds).

Last, we examine the role played by the derivative terms
in the Lagrangian. In Ref. [49], it was pointed out that only
one derivative term is well constrained by the bulk nuclear
observables; that is, inclusion of a single derivative term is
sufficient to obtain a good fit. Finelli et al. have shown that their
model with only a scalar derivative coupling indeed reproduces
well the data for normal nuclei [50] and hypernuclei [35]. For
the same reason, Nikšić et al. [11] constructed their point-
coupling interaction with only a single derivative coupling.
Following Refs. [11,35,50], we construct another parameter
set PCY-S4 by omitting the vector derivative term. The results
are shown in Table IV and Fig. 4. One observes that the quality
of the fit is as good as the other parameter sets. The agreement
with the quark model prediction is also good, and the inversion
of the spin-orbit partner is not seen for this force. Furthermore,
we find that the spin-orbit splittings in the medium-mass region
are relatively larger than those in the light- and the heavy-
mass regions. This is in a similar trend as in the results of the
meson exchange interaction PK1-Y1 [32]. Therefore, PCY-S4
provides an alternative parameter set to PCY-S1, where the
main difference between the two interactions is whether the
spin-orbit splitting is normal (PCY-S4) or inverted (PCY-S1).

TABLE IV. The parameter set PCY-S4 obtained by setting the
vector derivative coupling, δ

(N�)
V , to be zero. χ 2

dof is 0.92.

Coupling Value Uncorrelated R

constant error (%)

α
(N�)
S −1.8594 × 10−4 MeV−2 8.7 × 10−2 0.72

α
(N�)
V 1.4981 × 10−4 MeV−2 1.0 × 10−1 0.87

δ
(N�)
S −1.9958 × 10−10 MeV−4 6.1 × 100 –

δ
(N�)
V 0 – –

α
(N�)
T −5.5322 × 10−8 MeV−3 1.7 × 101 0.71
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FIG. 4. (Color online) Same as Fig. 1, but with the parameter set
PCY-S4.

IV. SUMMARY

We have proposed a new RPC model to describe single-
� hypernuclei in the mean-field approximation. This is a
straightforward extension of the RPC model for nucleons,
which has a similar structure as the Skyrme interaction.
To this end, we added effective contact N -� interactions,
corresponding to the �-σ and �-ω couplings, to the
model Lagrangian. In addition, we introduced the zero-range
N -� tensor coupling as well to mimic the tensor cou-
pling between � and ω meson, following the quark model
suggestion.

We fitted the coupling constants in the strange sector to the
experimental data of � binding energies. The four parameter
sets, PCY-S1, PCY-S2, PCY-S3, and PCY-S4 were proposed,
which well reproduce the experimental data through the whole
mass region. The resulting spin-orbit splittings in PCY-S1,
PCY-S2, and PCY-S4 are smaller than that of nucleon by
roughly a factor of 10 in their absolute values, although
PCY-S3 yields too-large spin-orbit splittings. For PCY-S1 and
PCY-S2 their signs are opposite that of nucleon in some nuclei
in the heavier region. However, for PCY-S4 obtained without
taking into account the vector derivative term, the sign of the
spin-orbit splitting is the same as that for nucleons. High-
precision γ -ray experiments for � single-particle energies
are awaited to see whether the spin-orbit splitting of heavy
hypernuclei is normal or inverted.

We have confirmed that the tensor coupling, which is
ignored in the N -N interaction, is quite important to reproduce
the small spin-orbit splittings of � particle. Without the tensor
coupling, the scalar and the vector couplings of � to nucleon
are forced to be unnaturally weak (PCY-S2). The tensor
coupling suppresses the spin-orbit splittings, keeping the scalar
and the vector couplings consistent with the naive quark
counting. The good consistency with the quark model found
in our interaction can be a useful guide in further extending
the point-coupling model to multi-� or � hypernuclei.

We conclude that the point-coupling model is capable of
describing single-� hypernuclei as well as normal nuclei.
Many studies on hypernuclei have been carried out based on
the finite range RMF models, for example, the halo phenomena
[42], magnetic moment [43], and spin symmetry [44]. It
would be interesting to explore whether the conclusions there
remain the same with the zero-range RPC model proposed
in this paper. The model can be an appropriate tool for
relativistic calculations for hypernuclei on 3D mesh owing
to its numerical simplicity. There has been no relativistic
calculation performed on 3D mesh because of the variational
difficulty. Thus, the primary future work is to develop an
efficient calculation technique for relativistic calculations on
3D mesh that overcomes the “variational collapse.” A work
in this direction is in progress. Further extensions of the
point-coupling model to multi-� and � hypernuclei and an
introduction of explicit density dependences into the coupling
constants are also interesting future works.
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APPENDIX: CENTER-OF-MASS ENERGY

In this Appendix, we give an explicit expression for
the numerator of Eq. (23). Although it has already been
given in Ref. [51], we have found a few typos in their
expression for the relativistic case with spherical sym-
metry. Here we correct the typos and give the correct
formula.

With the spherical symmetry, single-particle (s.p.) wave
functions are given as

ψαm(�r) =
(

ψ (+)
α (r)Y

�
(+)
α jαm

(θ, φ)
iψ (−)

α (r)Y
�

(−)
α jαm

(θ, φ)

)
, (A1)

where α is a shorthand notation for {nα, �(+)
α , jα}, while m =

jz. Here nα is the principal quantum number, �(+)
α is the orbital

angular momentum of the upper component of the s.p. spinor,
and jα is the total angular momentum. The spherical spinor
Y�jm is defined by Y�jm = ∑

m′m′′ 〈�m′ 1
2m′′|jm〉Y�mχ 1

2 m′′ ,
where χ 1

2 m′′ is the spin-wave function. The orbital angular

momentum of the lower component �(−)
α is given by �(−)

α =
2jα − �(+)

α . Following Ref. [51], we compute the center-of-
mass correction in the nonrelativistic approximation. The
expectation value of the squared center-of-mass momentum
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P 2
CM with a mean-field many-body state reads〈

P 2
CM

〉 = −h̄2
∑

α

wα

∑
m

〈ψαm|�|ψαm〉 − h̄2
∑
α,β

[wαwβ + √
wα(1 − wα)wβ(1 − wβ)]

∑
m,m′

|〈ψαm| �∇|ψβm′ 〉|2, (A2)

with ∑
m

〈ψαm|�|ψαm〉 = (2jα + 1)
∑
η=±

∫
dr r2ψ (η)

α

[
∂2

∂r2
+ 2

r

∂

∂r
− �(η)

α (�(η)
α + 1)

r2

]
ψ (η)

α , (A3)

and ∑
m,m′

|〈ψαm| �∇|ψβm′ 〉|2

= (2jα + 1)(2jβ + 1)
∑
η,η′

(−)�
(η)
α +�

(η′ )
β +1

{
jβ jα 1
�(η)

α �
(η)
β

1
2

} {
jβ jα 1
�(η′)

α �
(η′)
β

1
2

}

×
[
δ
�

(η)
α ,�

(η)
β +1

√
�

(η)
α

∫
dr r2ψ (η)

α

(
∂

∂r
− �

(η)
β

r

)
ψ

(η)
β − δ

�
(η)
β ,�

(η)
α +1

√
�

(η)
β

∫
dr r2ψ (η)

α

(
∂

∂r
+ �

(η)
β + 1

r

)
ψ

(η)
β

]

×
[
δ
�

(η′)
β ,�

(η′ )
α +1

√
�

(η′)
β

∫
dr r2ψ

(η′)
β

(
∂

∂r
− �(η′)

α

r

)
ψ (η′)

α − δ
�

(η′)
α ,�

(η′ )
β +1

√
�

(η′)
α

∫
dr r2ψ

(η′)
β

(
∂

∂r
+ �(η′)

α + 1

r

)
ψ (η′)

α

]
, (A4)

where wα is the occupation probability of the level α.
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