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Microscopic theory of the γ decay of nuclear giant resonances
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In the past decades, the γ decay of giant resonances has been studied using phenomenological models. In
keeping with possible future studies performed with exotic beams, microscopically based frameworks should be
envisaged. In the present paper, we introduce a model which is entirely based on Skyrme effective interactions,
and treats the ground-state decay within the fully self-consistent random phase approximation (RPA) and the
decay to low-lying states at the lowest order beyond RPA. The model is applied to 208Pb and 90Zr, and the results
are compared with the experimental data.
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I. INTRODUCTION

Giant resonances (GRs) have been known for several
decades to be the clear manifestation of the existence of nuclear
collective motion. They carry definite quantum numbers
(spatial angular momentum L, spin S, isospin T ) and, as a rule,
they exhaust a large fraction of the associated energy-weighted
sum rule. Accordingly, the macroscopic picture of a giant
resonance is often thought to be that of a coherent motion
of all nucleons. Although a number of experimental data
and theoretical studies have been cumulated, as reviewed in
monographic volumes [1,2], the question still exists whether
we can access only the inclusive properties of the GRs
(energy and the fraction of energy-weighted sum rule), or more
exclusive properties associated with the wave function of the
GR. Ultimately, we can say that we miss an unambiguous
confirmation of the macroscopic picture of this collective
motion.

Giant resonances have a finite lifetime. Being excited by
one-body external fields, they are as a first approximation
described by coherent superpositions of one-particle–one-hole
(1p-1h) configurations. The most probable damping mech-
anism is their coupling to progressively more complicated
states of two-particle–two-hole (2p-2h), . . . , np-nh character
(up to the eventual compound nucleus state). The associated
contribution to the total width, the so-called spreading width
�↓, is the dominant one. The decay width associated with the
emission of one nucleon in the continuum (escape width �↑)
is of some relevance in light nuclei but much less important
in heavy nuclei. The γ -decay width �γ is a small fraction
(≈10−3) of the total width. Despite this, the study of the γ

decay of GRs has been considered a valuable tool for about
30 years [3,4].

In these works, the fact that γ decay can be a sensitive probe
of the excited multipolarity, and that γ -ejectile coincidence
measurements can improve the extraction of the properties of
GRs, has been thoroughly discussed. Generally speaking, the
study of the GR decay products (whether particles or photons)
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is probably the only way to shed light on the microscopic
properties of the states. To provide an example different from
the standard electric GRs discussed in Refs. [3,4], we can add
that in stable nuclei or in neutron-rich unstable nuclei some
information exist on the so-called low-lying or “pygmy” dipole
states. Their nature (collective or noncollective, isoscalar or
isovector, compressional or toroidal) is under strong debate.
For these, as for other states, exclusive decay measurements
will be of paramount importance as they can validate some
theoretical picture.

In this spirit we present here a consistent study of the γ

decay of giant resonances, both to the ground and low-lying
excited states, not considering the compound γ decay [5].
In the past, the theoretical study of the γ decay of GRs has
been undertaken using frameworks like the nuclear field theory
(NFT) [6] or the theory of finite Fermi systems [7]. These
studies have elucidated the basic physical mechanisms that
explain the small γ -decay probabilities and have provided
results in quite reasonable agreement with the experiment.
As we discuss below, in Ref. [6] the quenching mechanisms
for the decay of the isoscalar giant quadrupole resonance
(ISGQR) to a low-lying isoscalar states were clearly pointed
out. However, these studies were based on phenomenological
models.

After several decades, self-consistent mean-field (SCMF)
or density functional theory (DFT) based models have been
developed and have reached considerable success for the
overall description of many nuclear properties. Among these
models, we can single out those based, respectively, on the
nonrelativistic Skyrme and Gogny effective interactions or on
covariant (or relativistic) effective Lagrangians. Years ago,
some of us developed a microscopic description of the particle
decay of GRs based on the use of Skyrme forces [8,9].
It is timely to dispose of a fully microscopic description
of the γ decay with Skyrme effective interactions and to
assess how large a predictive power it can have, and which
limitations show up. A further motivation is provided by the
recent measurements carried out at the Laboratori Nazionali
di Legnaro (LNL) [10].

In this work, we develop such a model and we apply it
to the γ decay of the ISGQR in 208Pb and 90Zr, both to the
ground state and to the low-lying 3− state. The outline of the
paper is as follows. In Sec. II we present the formalism that
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we employ. Section III is devoted to the results we obtain, also
comparing them with the available experimental data and with
other theoretical calculations found in the literature. In Sec. IV
we draw our conclusions and eventually, in the Appendix, we
briefly give a guideline for the calculation of the perturbative
diagrams needed for the decay of RPA-excited states into low-
lying collective states, as explained in Sec. II.

II. FORMALISM

In this section we discuss our theoretical framework. The
transition amplitude for the emission of a photon of a given
multipolarity from the nucleus is proportional to the matrix
element of the electric multipole operator Qλμ. In the long
wavelength limit that is appropriate in our case, this latter
operator takes the form

Qλμ = e

2

A∑
i=1

{[(
1 − 1

A

)λ

+ (−)λ
2Z − 1

Aλ

]

−
[(

1 − 1

A

)λ

+ (−)λ+1

Aλ

]
τz(i)

}
rλ
i iλYλμ(r̂ i)

≡ 1

2

A∑
i=1

eeff
i rλ

i iλYλμ(r̂ i). (1)

In this equation, the expression for the effective charge due to
the recoil of the center of mass of the nucleus is introduced
(see, e.g., Ref. [11]).

The γ -decay width, summed over the magnetic substates
of the photon and of the final nuclear state, is then given by

�γ (Eλ; i → f ) = 8π (λ + 1)

λ[(2λ + 1)!!]2

(
E

h̄c

)2λ+1

B(Eλ; i → f ),

(2)

where E is the energy of the transition and the reduced
transition probability B associated with the above operator
Qλμ is

B(Eλ; i → f ) = 1

2Ji + 1
|〈Jf ‖Qλ‖Ji〉|2. (3)

A. γ decay to the ground state

We consider in this section the decay of an excited RPA
state (which can be, e.g., a GR) to the ground state. We
limit ourselves to spherical systems and the RPA states
have quantum numbers JM (we consider natural parity, or
nonspin-flip, states for which the orbital angular momentum L

is the same as the total angular momentum J ); in addition,
they are labeled by an index n. Consequently, we can
write

|nJM〉 = O†
n(JM)|RPA〉,

O†
n(JM) =

∑
ph

[
XnJ

phA
†
ph(JM) − YnJ

ph Aph(J̃M)
]
,

where O
†
n(JM) is the creation operator for the state at hand,

|RPA〉 is the RPA ground state, A and A† are the usual

p h

Qλμ

nJ

p h

Qλμ nJ

FIG. 1. Diagrams representing the decay of the vibrational state
|nJ 〉 state to the ground state.

creation and annihilation operator of a particle-hole (p-h)
pair coupled to JM , X and Y are the forward and backward
RPA amplitudes, and the symbol ˜ denotes the time-reversal
operation (see, e.g., Ref. [12]).

At the RPA level, in the case of the decay of the state |nJ 〉
to the ground state, we obtain for the reduced matrix of Eq. (3)
with λ equal to J

〈0‖QJ ‖nJ 〉 =
∑
ph

(
XnJ

ph + YnJ
ph

)
eeff
ph〈jp‖iλrλYλ‖jh〉, (4)

where the effective charge is defined in Eq. (1). It is possible to
give a diagrammatic representation of the ground-state decay
(see Fig. 1).

B. γ decay to low-lying states

While RPA can be considered an appropriate theory to
calculate the ground-state decay of a vibrational state, the
same statement does not hold in the case of a decay between
two vibrational states. The reason is that, by construction, RPA
is an appropriate theory to describe the transition amplitudes
between states that differ only by one vibrational (phonon)
state. For other processes, like the one at hand, the extension
to a treatment beyond RPA is mandatory. A consistent
framework that is available is the one provided by the nuclear
field theory (NFT) [13,14] since this framework takes into
account the interweaving between phonons and single-particle
degrees of freedom (or particle-vibration coupling, PVC),
considered as the relevant independent building blocks of
the low-lying spectrum of finite nuclei. In this work, we
consider all the lowest-order contributions to the γ decay
between two different phonons. This amounts to writing and
evaluating all lowest-order perturbative diagrams involving
single-particle states and phonon states, which can lead from
the initial state to the final state by the action of the external
electromagnetic field. The different degrees of freedom are
coupled by particle-vibration vertices. The NFT, as mentioned
in the Introduction, was already applied to the study of γ

decay in Ref. [6]. However, the main novelty of the present
work lies in the consistent use of the microscopic Skyrme
interaction.

The perturbative diagrams associated with the λ-pole
decay of the initial RPA state |nJ 〉 (at energy EJ ) to the final
state |n′J ′〉 (at energy EJ ′ ) are shown in Fig. 2 and the way
to evaluate them is sketched in the Appendix. The resulting
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FIG. 2. NFT diagrams contributing to the decay of the |nJ 〉 state to the |n′J ′〉 state.

analytic expressions read

〈n′J ′‖Qλ‖nJ 〉(A) =
∑
pp′h

(−)J+λ+J ′+1

{
J λ J ′
jp′ jh jp

} 〈p‖V ‖h, nJ 〉〈h, n′J ′‖V ‖p′〉Qλpol
p′p

(EJ − εph + iη)(EJ ′ − εp′h)
, (5a)

〈n′J ′‖Qλ‖nJ 〉(B) =
∑
pp′h

(−)

{
J λ J ′
jp′ jh jp

} 〈h‖V ‖p, nJ 〉〈p′, n′J ′‖V ‖h〉Qλpol
pp′

(EJ + εph + iη)(EJ ′ + εp′h)
, (5b)

〈n′J ′‖Qλ‖nJ 〉(C) =
∑
hh′p

{
J λ J ′
jh′ jp jh

} 〈p‖V ‖h, nJ 〉〈h′, n′J ′‖V ‖p〉Qλpol
hh′

(EJ − εph + iη)(EJ ′ − εph′)
, (5c)

〈n′J ′‖Qλ‖nJ 〉(D) =
∑
hh′p

(−)J+λ+J ′
{

J λ J ′
jh′ jp jh

} 〈h‖V ‖p, nJ 〉〈p, n′J ′‖V ‖h′〉Qλpol
h′h

(EJ + εph + iη)(EJ ′ + εph′)
, (5d)

〈n′J ′‖Qλ‖nJ 〉(E) =
∑
pp′h

(−)

{
J λ J ′
jp′ jp jh

} 〈p‖V ‖h, nJ 〉〈p′, n′J ′‖V ‖p〉Qλpol
hp′

(EJ − εph + iη)(EJ − EJ ′ − εp′h + iη′)
, (5e)

〈n′J ′‖Qλ‖nJ 〉(F) =
∑
pp′h

(−)J+λ+J ′+1

{
J λ J ′
jp′ jp jh

} 〈h‖V ‖p, nJ 〉〈p, n′J ′‖V ‖p′〉Qλpol
p′h

(EJ + εph − iη)(EJ − EJ ′ + εp′h − iη′)
, (5f)

〈n′J ′‖Qλ‖nJ 〉(G) =
∑
hh′p

(−)J+λ+J ′
{

J λ J ′
jh′ jh jp

} 〈p‖V ‖h, nJ 〉〈h, n′J ′‖V ‖h′〉Qλpol
h′p

(EJ − εph + iη)(EJ − εph′ − EJ ′ + iη′)
, (5g)
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〈n′J ′‖Qλ‖nJ 〉(H) =
∑
hh′p

{
J λ J ′
jh′ jh jp

} 〈h‖V ‖p, nJ 〉〈h′, n′J ′‖V ‖h〉Qλpol
ph′

(EJ + εph − iη)(EJ + εph′ − EJ ′ − iη′)
, (5h)

〈n′J ′‖Qλ‖nJ 〉(I) =
∑
pp′h

{
J λ J ′
jh jp′ jp

} 〈p′‖V ‖p, nJ 〉〈h, n′J ′‖V ‖p′〉Qλpol
ph

(EJ ′ − εp′h)(EJ + εph − EJ ′ + iη)
, (5i)

〈n′J ′‖Qλ‖nJ 〉(J) =
∑
pp′h

(−)J+λ+J ′
{

J λ J ′
jh jp′ jp

} 〈p‖V ‖p′, nJ 〉〈p′, n′J ′‖V ‖h〉Qλpol
hp

(EJ − εph − EJ ′ + iη)(EJ ′ + εp′h)
, (5j)

〈n′J ′‖Qλ‖nJ 〉(K) =
∑
hh′p

(−)J+λ+J ′+1

{
J λ J ′
jp jh′ jh

} 〈h‖V ‖h′, nJ 〉〈h′, n′J ′‖V ‖p〉Qλpol
ph

(EJ + εph − EJ ′ + iη)(EJ ′ − εph′)
, (5k)

〈n′J ′‖Qλ‖nJ 〉(L) =
∑
hh′p

(−)

{
J λ J ′
jp jh′ jh

} 〈h′‖V ‖h, nJ 〉〈p, n′J ′‖V ‖h′〉Qλpol
hp

(EJ − εph − EJ ′ + iη′)(EJ ′ + εph′)
. (5l)

In these equations εph is equal to the difference of the
Hartree-Fock (HF) single-particle energies εp − εh and V

is the residual particle-hole interaction: this interaction is
discussed below, together with the expression of its reduced
matrix elements. In all the energy denominators we include
finite imaginary parts η to take into account the coupling to
more complicated configurations not included in the model
space.

In all the above equations the matrix elements of the oper-
ator Qλ include the contribution from the nuclear polarization
(consequently they carry the label pol). They read

Q
λpol
ij = 〈i‖Qλ‖j 〉

+
∑
n′

1√
2λ + 1

[
〈0‖Qλ‖n′λ〉〈i, n′λ‖V ‖j 〉
(EJ − EJ ′ ) − En′ + iη

+
∑
n′

−〈i‖V ‖j, n′λ〉〈n′λ‖Qλ‖0〉
(EJ − EJ ′ ) + En′ + iη

]
, (6)

where |n′λ〉 are the RPA states having multipolarity λ (and
lying at energy En′), while the bare operator Qλ was defined
in Eq. (1). The polarization contribution, that is, the second and
third terms in the latter equation, has the effect of screening
partially the external field. In a diagrammatic way, the bare and
the polarization contributions to Eq. (6) are drawn in Fig. 3.

It should be noted that the diagrams of Fig. 2 are related
two by two by particle-hole conjugation, so that Fig. 2(a) is
the opposite of Fig. 2(d) after the substitutions h′ → p′ and
h ↔ p, and the same holds for the pairs in Figs. 2(b) through
2(c), 2(e) through 2(h), 2(f) through 2(g), 2(i) through 2(l),
and 2(j) through 2(k).

= + +

FIG. 3. Polarization contribution to the operator Qλμ.

As mentioned above, in the present implementation of the
formalism we use consistently different zero-range Skyrme in-
teractions. The single-particle energies εi , and the correspond-
ing wave functions, come from the solution of the HF equa-
tions. The energies (and X and Y amplitudes) of the vibrational
states are obtained through fully self-consistent RPA [15].
These quantities enter the reduced matrix elements associated
with the PVC vertices. The basic one, which couples the
single-particle state i to the particle-vibration pair j plus nJ , is

〈i‖V ‖j, nJ 〉 = √
2J + 1

∑
ph

XnJ
phVJ (ihjp)

+ (−)jh−jp+J Y nJ
ph VJ (ipjh). (7)

VJ is the particle-hole coupled matrix element

VJ (ihjp) =
∑
{m}

(−)jj −mj +jh−mh〈jimijj − mj |JM〉

× 〈jpmpjh − mh|JM〉vihjp, (8)

while vihjp stands for 〈jimijhmh|V |jjmjjpmp〉. For the
detailed derivation of the the reduced matrix element of
Eq. (7) we refer to the Appendix of Ref. [16]. In the
Appendix of the present paper we discuss the relationships
between the reduced matrix element of Eq. (7) and the other
matrix elements that enter the previous formulas. In our
implementation, V used at the PVC vertex includes the t0, t1,
t2, and t3 terms of the Skyrme force.

III. RESULTS

In this section, the results obtained from our numerical
calculations in 208Pb and 90Zr are discussed. In particular, we
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FIG. 4. NFT diagrams contributing to the strength function of the GR.

focus on the γ -decay width �γ associated with the decay of
the isoscalar giant quadrupole resonance (ISGQR) either to the
ground state or to the 3− low-lying state in the two systems.
We have employed four different Skyrme forces: SLy5 [17],
SGII [18], SkP [19], and LNS [20].

In all cases, we start by solving the HF equations in a radial
mesh that extends up to 20 fm (for 208Pb) or 18 fm (for 90Zr),
with a radial step of 0.1 fm. Once the HF solution is found,
the RPA equations are solved in the usual matrix formulation.
Vibrations (or phonons) with multipolarity L ranging from 1 to
3, and with natural parity, are calculated. The RPA model space
consists of all the occupied states and all the unoccupied states
lying below a cutoff energy EC equal to 50 and 40 MeV for
208Pb and 90Zr, respectively. The states at positive energy are
obtained by setting the system in a box, that is, the continuum
is discretized. These states have increasing values of the radial
quantum number n, and are calculated for those values of l

and j that are allowed by selection rules. With this choice
of the model space the energy-weighted sum rules (EWSRs)
satisfy the double commutator values at the level of about
99%; moreover, the energy and the fraction of EWSR of the
states that are relevant for the following discussion are well
converged.

A. Ground-state decay

We group in Table I the results obtained for the decay of
the ISGQR to the ground state. In general, our calculations

reproduce the experiment quite well, without any parameter
adjustment. They tend at the same time to overestimate the
decay width, and this is true in particular for SLy5; however,
even in this worst case, our result lies within 2.5σ from the
experimental value.

TABLE I. Energy E of the ISGQR and γ -decay width associated
with its transition to the ground state. The first four rows correspond
to the present RPA calculations performed with different Skyrme
parameter sets, for the two nuclei at hand. In this case, for 208Pb
we show both the bare �γ from Eq. (2) as well as the renormalized
value, which is discussed in the main text. The next three rows report
the results of previous theoretical calculations [5–7] for 208Pb. In the
last row the experimental value for 208Pb from Ref. [3] is displayed,
corresponding to the direct decay.

208Pb 90Zr

E (MeV) �γ [eV] �ren
γ [eV] E [MeV] �γ [eV]

SLy5 12.28 231.54 127.58 15.33 211.77
SGII 11.72 163.22 113.57 14.90 182.03
SkP 10.28 119.18 159.72 13.09 107.27
LNS 12.10 176.57 104.74 15.48 182.71
Ref. [5] 11.20 175 –
Ref. [6] 11.20 142 –
Ref. [7] 10.60 112 –
Ref. [3] 10.60 130 ± 40 –
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TABLE II. Detailed properties of the ISGQR and of the low-lying
3− state in 208Pb. The label Exp. indicates the corresponding exper-
imental values (the italic number after the value is the experimental
error on the last significant figure), these values are from Ref. [3] for
the ISGQR and from Ref. [21] for the 3− state.

2+ 3−

E [MeV] EWSR [%] E [MeV] B(E3 ↑) [105e2fm6]

Exp. 10.6 90 20 2.6145 3 6.11 9
SLy5 12.28 69.27 3.62 6.54
SGII 11.72 72.31 3.14 6.58
SkP 10.28 81.79 3.29 5.11
LNS 12.10 66.98 3.19 5.67

More importantly, this discrepancy is entirely due to the fact
that the properties of the GR (energy and fraction of EWSR) do
not fit accurately the experimental findings. In particular, the
critical quantity turns out to be the resonance energy since in
Eq. (2) the energy of the transition is raised to the fifth power:
consequently, an increase of the energy by 1 MeV produces
an increase of the γ -decay width by about 50% (at 10 MeV).
To substantiate this point, in the last column of Table I we
report the values obtained for the decay width after having
rescaled the ISGQR energy to the experimental value (shown
in Table II). In particular, in Table II, the fraction of EWSR
exhausted by the ISGQR is shown. The experimental value
reported here is from Ref. [3] and is obtained from the measure-
ment of the γ decay to the ground state. However, to give an
idea of the experimental uncertainty on this observable, we can
say that in Ref. [3], from direct measurements, a value ranging
from 78 to 98% was found, depending on the background
subtraction, and moreover in the literature several results in the
range 70–170% can be found (see, e.g., Refs. [2] or [21]). This
is an indication of systematic uncertainties that include those
on the optical potentials used in the experimental analysis.

We can conclude that, since for all the interactions the
experimental value of the ground-state decay width can be
obtained simply by scaling the energy to the experimental
value, it means that this kind of measurement is not particularly
able to discriminate between models more than the usual
integral properties.

For completeness, in Table I the previous theoretical values
found in the literature [5–7] are listed as well. In Ref. [6], the

surface coupling model (cf. Ref. [22]) was used to evaluate
the reduced transition probability and the decay width. In
Ref. [7], the theory of finite Fermi systems (cf. Ref. [23]) is
implemented with a separable interaction to obtain the decay
width. In Ref. [5], finally, the value was estimated from the
empirical energies and fraction of EWSR.

B. Quadrupole strength function

Before we apply our beyond-RPA model to a detailed
and exclusive observable such as the decay from the ISGQR
to the 3− state, it is important to test that, at the same
level of approximation, one can reproduce more general
quantities like the strength function of the ISGQR. It has
been known for several decades that coupling with low-lying
vibrations is the main source of the GR width [24]. In
Ref. [22], calculations of the GR strength function that take
into account this coupling were performed, based on the
use of a phenomenological separable force in the surface
coupling model. We perform a similar calculation here by
using consistently the Skyrme force SLy5, as discussed
above.

The probability of finding the ISGQR state per unit energy
can be written as

P (E) = 1

2π

�GQR + η

(E − EGQR − 
EGQR)2 + (�GQR+η

2

)2 , (9)

where 
EGQR is the real part of the sum of the eight
contributions in Eq. (10), while �GQR is the imaginary part
of the same sum. The parameter η corresponds to the energy
interval over which averages are taken and represents, in an
approximate way, the coupling of the intermediate states to
more complicated configurations. In our calculation we set
this parameter at 1 MeV. Figures 4(a) through 4(d) correspond
to the self-energy of the particle (or the hole), that is, the
processes in which the particle or the hole reabsorbs the
intermediate excitation λ, while Figs. 4(e)–4(h) are vertex
corrections that describe the process in which the phonon is
exchanged between the particle and hole. If J or λ is a density
oscillation, the latter contributions have opposite sign with
respect to the former one, regardless of the spin and isospin
characters of λ or J , respectively [24].

The eight Figs. 4(a) through 4(h) are evaluated by the
following expressions:

�
p

s−e;X(GR,EJ ) =
∑

pp′hn′

1

(2J + 1)(2λ + 1)

|〈p‖V ‖h, nJ 〉|2|〈p‖V ‖p′, n′λ〉|2
(Ej − εph + iη)2(EJ − En′ − εp′h + iη′)

, (10a)

�
p

s−e;Y (GR,EJ ) =
∑

pp′hn′

−1

(2J + 1)(2λ + 1)

|〈h‖V ‖p, nJ 〉|2|〈p‖V ‖p′, n′λ〉|2
(Ej + εph + iη)2(EJ + En′ + εp′h + iη′)

, (10b)

�h
s−e;X(GR,EJ ) =

∑
phh′n′

1

(2J + 1)(2λ + 1)

|〈p‖V ‖h, nJ 〉|2|〈h′‖V ‖h, n′λ〉|2
(Ej − εph + iη)2(EJ − En′ − εph′ + iη′)

, (10c)

�h
s−e;Y (GR,EJ ) =

∑
phh′n′

−1

(2J + 1)(2λ + 1)

|〈h‖V ‖p, nJ 〉|2|〈h′‖V ‖h, n′λ〉|2
(Ej + εph + iη)2(EJ + En′ + εph′ + iη′)

, (10d)
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�1
v;X(GR,EJ ) =

∑
pp′hh′n′

(−)jp+jh+jp′+jh′

2J + 1

{
jh jp J

jp′ jh′ λ

} 〈p‖V ‖h, nJ 〉〈h′, nJ‖V ‖p′〉〈h‖V ‖h′, n′λ〉〈p′, n′λ‖V ‖p〉
(EJ − εph + iη)(EJ − εp′h′ + iη)(EJ − En′ − εp′h + iη′)

, (10e)

�1
v;Y (GR,EJ ) =

∑
pp′hh′n′

(−)jp+jh+jp′−jh′

2J + 1

{
jh jp J

jp′ jh′ λ

} 〈h‖V ‖p, nJ 〉〈p′, nJ‖V ‖h′〉〈h‖V ‖h′, n′λ〉〈p′, n′λ‖V ‖p〉
(EJ + εph + iη)(EJ + εp′h′ + iη)(EJ + En′ + εp′h + iη′)

(10f)

�2
v;X(GR,EJ ) =

∑
pp′hh′n′

(−)jp+jh+jp′+jh′

2J + 1

{
jh jp J

jp′ jh′ λ

} 〈p‖V ‖h, nJ 〉〈h′, nJ‖V ‖p′〉〈p′‖V ‖p, n′λ〉〈h, n′λ‖V ‖h′〉
(EJ − εph + iη)(EJ − εp′h′ + iη)(EJ − En′ − εph′ + iη′)

, (10g)

�2
v;Y (GR,EJ ) =

∑
pp′hh′n′

(−)jp+jh+jp′−jh′

2J + 1

{
jh jp J

jp′ jh′ λ

} 〈h‖V ‖p, nJ 〉〈p′, nJ‖V ‖h′〉〈p′‖V ‖p, n′λ〉〈h, n′λ‖V ‖h′〉
(EJ + εph + iη)(EJ + εp′h′ + iη)(EJ + En′ + εph′ + iη′)

. (10h)

The result for the probability of finding the ISGQR,
calculated by including in the diagrams an increasing number
of intermediate phonons, is displayed in Fig. 5. The RPA
model space is the same used for the computation of the
decay width. Phonons with multipolarity ranging from 0 to
4 and with natural parity (−1)λ were considered. Only those
having an energy smaller than 30 MeV and fraction of the total
isoscalar and isovector EWSR larger than 5% were selected
as intermediate states. The most important contribution to the
spreading width �↓ of the resonance is given by the low-lying
3− state, while the other phonons do contribute basically only
to the energy shift. We obtain eventually a spreading width �↓
of the order of 2 MeV and the energy centroid of the resonance
is shifted down, as compared to the RPA value, to 10.9 MeV.
These results are in good agreement with the experimental
findings that give a spreading width of 2.4 ± 0.4 [25].
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FIG. 5. (Color online) Probability P per unit energy to find
the ISGQR at an energy E in 208Pb. Each line corresponds to the
probability obtained when the phonons listed in the legend are used
as intermediate states (for the selection criteria of the phonons we
refer to the main text). The red solid line is the probability we get
when only the low-lying 3− phonon at 3.61 MeV is considered as
intermediate state. The label RPA (black dashed line) refers to the
RPA result, in which none of the diagrams in Fig. 4 are taken into
account, but a Lorentzian averaging with functions having 1 MeV
width is introduced.

C. ISGQR decay to the low-lying 3− state

In Table III the results obtained for the decay of the ISGQR
to the low-lying octupole state in 208Pb and 90Zr are shown.
These correspond to a choice of the lower cutoff of 5% on
the dipole EWSR of the states considered to calculate the
polarization and a parameter η = 2 MeV (for 208Pb) and
η = 3.5 MeV for 90Zr; these inputs will be clarified and
discussed later in the text. For completeness, the values found
in the literature [6,7] for 208Pb are listed as well. These are all
theoretical results obtained using different models: in Ref. [7],
the theory of finite Fermi systems (cf. Ref. [23]) with a
phenomenological interaction is used to calculate the decay
width, while in Ref. [6] the decay width is obtained by means of
the NFT, with a separable interaction at the particle-vibration
vertex. We discuss here in detail the results we obtain for the
decay of the ISGQR in 208Pb. It can be noticed that only two
interactions, namely SLy5 and SkP, can reasonably reproduce
the experimental value for the decay width. Nevertheless, all
these forces are able to produce a total �γ (ISGQR → 3−)
which is only a few percent of �γ (ISGQR → g.s.), as the
experiment indicates.

To understand which of the factors that appear in the
several contributions to the decay width has a major effect
on the resulting values, we analyzed the sensitivity to the
physical inputs in great detail. Table IV displays, for the four

TABLE III. Decay width to the low-lying 3− for the interactions
used, calculated including beyond-RPA contributions for the two
nuclei 208Pb and 90Zr. In particular, for 208Pb the results from Refs. [7]
and [6] are also listed and, in the last row, the experimental value from
Ref. [3] is provided as well.

Interaction 208Pb 90Zr

Etrans [MeV] �γ [eV] Etrans [MeV] �γ [eV]

SLy5 8.66 3.39 12.51 5.81
SGII 8.58 29.18 12.16 50.58
SkP 6.99 8.34 10.42 5.14
LNS 8.90 39.87 12.72 16.95
Ref. [6] 8.59 3.5 –
Ref. [7] 7.99 4 –
Ref. [3] 7.99 5 ± 5 –

014305-7
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TABLE IV. The various quenching factors that combine to
produce the decay width �γ from a typical particle-hole dipole
transition, for 208Pb. The decay width reported here refers to a cutoff
of 5% on the percentage of isovector EWSR for the dipole states. The
same quantities from Ref. [6] are displayed.

SLy5 SGII SkP LNS Ref. [6]

Ph transition [eV] 103 103 103 103 103

Recoupling coefficient 3 3 3 3 3
π -ν cancellation 5 4 3–4 4 4
p-h cancellation 3–4 2–3 2–3 3–4 2–3
Polarization 6 3 7–8 4 15
�γ [eV] 3.39 29.18 8.34 39.87 3.50

forces used, the contribution of the several factors included in
Eq. (5). Similar factors from Ref. [6] are provided as well. The
decay width that is obtained considering a typical particle-hole
transition is of the order of ≈ keV and can be qualitatively
accounted by means of the Weisskopf estimation for the
reduced transition probability of a single particle excitation
[27]. The label recoupling coefficient indicates the quenching
deriving from the mismatch of the angular momenta of the
particles involved in the process. Then, because of the isovector
nature of the operator (1), the diagrams involving protons and
neutrons have opposite sign and partially cancel each other.
Moreover, the diagrams in which the operator acts on a particle
line must have an opposite sign to the ones in which it acts on
a hole line, reflecting the correlations between particles and
holes in vibrations [24], resulting in a compensation of the
two contributions. Eventually, the polarization contribution
(6), derived from the screening of the external field by the
mediation of the giant dipole resonance, represents a further
and more important quenching of the original decay width,
giving then a final width of the order of electronvolts.

We studied, in particular, which assumptions and choices
affect the quenching associated with the polarization contri-
bution. First of all, in Table V, the variation of the γ -decay
width �γ with the parameter η = �D

2 that appears in Eq. (6)
as an imaginary part of the energy denominator, is discussed.
If only a single dipole intermediate state is considered, as in
Ref. [6], this parameter should be set equal to the IVGDR
width (∼4 MeV); since in our model the dipole strength is
fragmented, we should take a smaller value and we give here
the trend of the decay width as a function of this parameter.
As indicated by the plot in Fig. 6, the polarization factor
(and consequently the decay width) should be monotonically
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FIG. 6. (Color online) Polarization contribution in the separable
framework as a function of the parameter �D (solid line). The arrow
indicates the value used in Ref. [6]. The points are the analogous
factors obtained within our model in which all the dipole states having
a fraction of EWSR larger than 5% are considered and each one is
given a width �D = 2 MeV.

nondecreasing when �D increases and reaches a roughly
constant value as �D goes to zero. In the same plot, the points
represent the polarization factors that we obtain using the value
2 MeV for the parameter �D , but including all the dipole
states having a fraction of EWSR larger than 5%. This value
was chosen to give a width of the RPA dipole states, each
convoluted with a Lorentzian of width equal to �D , similar to
the experimental IVGDR width. The polarization that we get is
then consistent with the one of the Bohr-Mottelson model [26],
indicated with the arrow in Fig. 6.

We need a lower cutoff on the collectivity of the interme-
diate states for at least two reasons: first, RPA is known to be
not reliable for noncollective states, and second, introducing
them will oblige us to take into account the issue of the Pauli
principle correction. We then choose 5% as the lower bound
of the isovector and isoscalar EWSR, in keeping with several
previous works (e.g., Ref. [16]).

A similar analysis carried out on the γ decay of the ISGQR
in 90Zr into the lowest 3− state will bring us to analogous
conclusions: the most important effect is the polarization of
the nuclear medium through the excitation of dipole states.
Even in this case the general result is that the decay width to
the octupole state is a few percent of the one to the ground state.
Results from the previously mentioned recent experiment [10]
are not yet available.

TABLE V. The effect on the γ -decay width �γ of the width �D of the intermediate dipole states. All the states exhausting the EWSR
for more than 5% are considered. The decay width is an almost monotonically nondecreasing function of this parameter, as expected from
the Bohr-Mottelson model [26].

�D [MeV] 0.01 0.1 0.5 1.0 2.0 3.0 4.0 5.0

�γ [eV] SLy5 2.34 2.35 2.46 2.69 3.39 4.32 5.34 6.36
SGII 27.28 27.19 27.00 27.25 29.18 32.68 37.21 42.25
SkP 7.35 7.35 7.40 7.59 8.34 9.54 11.08 12.86
LNS 37.93 37.82 37.55 37.76 39.87 43.84 49.03 54.86
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IV. CONCLUSION

Our work is motivated by the fact that we deem it is
timely to dispose of a fully microscopic description of some
exclusive properties of giant resonances, like the γ decay. In
particular, the γ decay was studied in the past decades using
only phenomenological models. Therefore, we implemented a
scheme in which the single particle states are obtained within
HF, the vibrations are calculated using fully self-consistent
RPA and the whole Skyrme force is employed at the particle-
vibration vertices. We treat the ground-state decay within the
fully self-consistent RPA and the decay to low-lying collective
vibrations at the lowest contributing order of perturbation
theory beyond RPA.

We applied our model to the γ decay of the isoscalar giant
quadrupole resonance in 208Pb and 90Zr into the ground state
and the first low-lying octupole vibration. In particular, in
208Pb, in the case of the ground-state decay, we find that our
outcomes are consistent with previous theoretical calculations,
based on phenomenological models, and with the experimental
data. In particular, all the Skyrme parametrizations give a
γ -decay width to the ground state of the order of hundreds
of electronvolts, though, at the same time, they tend to
overestimate it: these discrepancies are due to the fact that
the energy of the resonance does not completely agree with
the experimental data. For this reason, we conclude that the
γ decay to the ground state is not so able to discriminate
between different models, at least not more than any other
inclusive observable (as energy and strength).

However, the γ decay to low-lying collective states is
more sensitive to the interaction used. As a matter of fact,
only two interactions (namely SLy5 and SkP) manage to
achieve a decay width of few electronvolts, consistently with
the experimental finding. In the case of SLy5, this fact is
consistent with the good features that this parameter set has, as
far as spin-independent processes are concerned (the correct
value of the nuclear incompressibility, reasonable fit of the
neutron matter equation of state, good isovector properties).
Nonetheless, the other interactions give a width �γ that is of
the order of tens of electronvolts and it is very much quenched
with respect to the decay width associated with a single particle
transition. It is quite remarkable that our calculation, being
parameter-free, reproduces numbers that are several orders
of magnitude smaller than the nuclear scale of ≈ MeV. In
particular, the description of the dipole spectrum is a crucial
point because small differences in the strength of the dipole
states, introduced as intermediate states, change significantly
the polarization of the nuclear medium. For 90Zr, the general
conclusion is similar: the γ decay to low-lying collective states

seems to be a good observable to test the quality of different
Skyrme models, being very sensitive to the description of the
polarization of the nuclear medium.

APPENDIX: CALCULATION OF THE DIAGRAMS
ASSOCIATED WITH THE DECAY BETWEEN

VIBRATIONAL STATES

In this Appendix, we provide some details about the
calculation of the diagrams shown in Fig. 2.

Within the PVC theory, four particle-phonon vertices are
possible (cf. Fig. 7), depending on whether the fermionic states
involved are particles or holes. They are related by the particle-
hole conjugation operator (cf. Ref. [26]), so that all the vertices
can be brought back to J

p′p. From the Appendix of Ref. [16],
we get for the first vertex J

p′p

J
p′p = 〈jp′mp′ |V |jpmp, nJM〉

= (−)jp′−mp′
(

jp′ jp J

mp′ −mp −M

)
〈p′‖V ‖p, nJ 〉.

(A1)

For example, let us now consider the vertex J
hh′ . We can

move the hole states from the initial state to the final state (and
vice versa) by adding an appropriate phase factor

J
hh′ = 〈(jh′mh′)−1|V |(jhmh)−1, nJM〉

= (−)jh′ +mh′ +jh−mh〈jh − mh|V |jh′ − mh′ , nJM〉
= (−)jh′ −mh′

(
jh jh′ J

−mh mh′ −M

)
〈h‖V ‖h′, nJ 〉,

(A2)

which is equal to J
p′p after the identification h′ ↔ p and

h ↔ p′, except for the phase factor. Similar relations can
be established between J

p′p and J
ph or J

hp. Moreover, the
vertices in which the phonon is created instead of annihilated
can be derived from these latter relations by adding a phase
factor (−)J+M , changing the sign of the projection M of
the angular momentum J of the phonon, and using the
following expression for the reduced matrix element of the
interaction:

〈i, nJ‖V ‖j 〉 = √
2J + 1(−)J+jj −ji

∑
ph

XnJ
phVJ (jhip)

+ (−)jh−jp+J Y nJ
ph VJ (jpih).

These PVC vertices are then used to evaluate the diagrams
in Fig. 2. In the following, one of them [namely Fig. 2(e)] is

jpmp JM

jp mp

ΛJ
p p

jh − mh JM

jh − mh

ΛJ
hh

jpmp jh − mh

JM
ΛJ

ph

jpmp jh − mh

JM
ΛJ

hp

FIG. 7. Particle-vibration coupling vertices.
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calculated in detail. For each particle-phonon vertex, we have
a reduced matrix element of the interaction multiplied by a 3-j
symbol that takes care of the coupling of angular momenta.
Moreover, the single-particle operator Qλ brings another 3-j
symbol and a matrix element. Eventually, the last 3-j symbol,

matching the angular momentum of the initial state, of the
final one and of the operator comes from the Wigner-Eckart
theorem since we need a reduced matrix element. The energy
denominators are obtained by using the rules of second-order
perturbation theory

〈n′J ′‖Qλ‖nJ 〉2(E) =
∑

Mμmh

mpmp′

(−)J−λ+M ′
(2J ′ + 1)

(
J λ J ′
M μ −M ′

) ∑
Mμmh

(−)J+M

(
jh jp J

mh mp −M

)
〈p‖V ‖h, nJ 〉

(−)J
′+jp′ −mp

(
jp′ jp J ′
mp′ −mp M ′

)
〈p′, n′J ′‖V ‖p〉

(
jh jp′ λ

mh mp′ μ

)
× (−)jp′−jh+λQ

λpol
hp′

(EJ − εph + iη)(EJ − h̄ωJ ′ − εp′h + iη′)
.

(A3)

The four 3-j symbols can be summed in one 6-j symbol by the usual relations (see, e.g., Ref. [28])∑
Mμmh

mpmp′

(−)jp+mp+jp′ +mp′+jh−mh

(
jp′ jp J ′

−mp′ mp −M ′

)(
jp jh J

−mp −mh M

)(
jh jp′ λ

mh mp′ μ

)(
J λ J ′
M μ −M ′

)

= − 1

2J ′ + 1

{
J λ J ′
jp′ jp jh

}
(A4)

We then finally get Eq. (5e).
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