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Pairing correlations and odd-even staggering in reaction cross sections of weakly bound nuclei
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We investigate the odd-even staggering (OES) in reaction cross sections of weakly bound nuclei with Glauber
theory, taking into account the pairing correlation with the Hartree-Fock-Bogoliubov (HFB) method. We first
discuss the pairing gap in extremely weakly bound nuclei and show that the pairing gap persists in the zero
separation energy limit even for single-particle orbits with the orbital angular momenta l = 0 and l = 1. We then
introduce the OES parameter, defined as the second derivative of reaction cross sections with respect to the mass
number, and clarify the relation between the magnitude of OES and the neutron separation energy. We find that
the OES parameter increases considerably in the zero separation energy limit for l = 0 and l = 1 single-particle
states, while no increase is found for higher angular momentum orbits with, for example, l = 3. We point out
that the increase of OES parameter is also seen in the experimental reaction cross sections for Ne isotopes, which
is well accounted for by our calculations.

DOI: 10.1103/PhysRevC.85.014303 PACS number(s): 21.10.Gv, 25.60.Dz, 21.60.Jz, 24.10.−i

I. INTRODUCTION

Reaction cross sections σR of unstable nuclei provide a
powerful tool to study the structure of unstable nuclei such
as density distribution and deformation [1–3]. For instance, a
largely extended structure, referred to as a “halo,” of unstable
nuclei such as 11Li [1], 11Be [4], and 17,19C [3] has been
found with such measurements. The halo structure is one of
the characteristic features of weakly bound nuclei and has
attracted lots of attention (see Refs. [5] and [6] for detailed
theoretical studies on the halo phenomena and Ref. [7] for a
recent discovery of the halo structure in 31Ne nucleus).

Experimentally large odd-even staggering (OES) phenom-
ena have been revealed in reaction cross sections of unstable
nuclei close to the neutron drip line, for example, in the
isotopes 14,15,16C [8], 18,19,20C [3], 28,29,30Ne [9], 30,31,32Ne [9],
and 36,37,38Mg [10]. In Ref. [11], we have argued that the
pairing correlations play an essential role in these OESs. That
is, the OES in reaction cross sections is intimately related to
the so-called pairing antihalo effect discussed in Refs. [5], [6],
and [12]. On the other hand, there have been contradictory
arguments about whether the pairing gap disappears [13]
or persists [6,14,15] when a nucleus reaches at the neutron
drip line, that is, when the single-particle energy of the last
occupied orbit approaches the zero energy. If the pairing
gap disappeared, the OES effect might either be quenched
or disappear completely, unless the deformation parameter is
significantly different among the neighboring nuclei [16].

In this paper, we first discuss the pairing correlations close
to the zero energy by the Hartree-Fock Bogoliubov (HFB)
method. We carry out HFB calculations for the neutron 3s1/2

orbit in 76Cr, changing the separation energy in a mean-field
potential, and examine different definitions for an effective
pairing-gap parameter. This problem is also related to the
superfluidity of neutron gases in the outer crust of neutron
stars [17]. The second motivation of this work, in addition to
giving the details of the analysis in Ref. [11], is to propose
a formula to measure the odd-even staggering in the reaction
cross sections. Notice that the OES of the isotope shift of stable

nuclei has been discussed mostly to clarify the deformation
changes in odd-mass and even-mass nuclei [18]. The present
issue of OES in the reaction cross sections has an aspect similar
to the previous study in Ref. [18] in one sense but different in
another aspect since it aims at studying the existence of the
pairing correlation in nuclei close to the neutron drip line.

The paper is organized as follows. In Sec. II, we discuss
the pairing correlation in neutron-rich nuclei using the HFB
method. In Sec. III, we apply a Glauber theory in order
to calculate reaction cross sections. We introduce the OES
parameter for reaction cross sections and discuss it in relation
with the pairing correlations in weakly bound nuclei. We then
summarize the paper in Sec. IV.

II. PAIRING GAP AT NEUTRON DRIP LINE

In the coordinate space representation, the HFB equations
read [19–21](

ĥ − λ �(r)
�(r) −ĥ + λ

)(
ui(r)
vi(r)

)
= Ei

(
ui(r)
vi(r)

)
, (1)

where

ĥ = − h̄2

2m
∇2 + V (r), (2)

is the mean-field Hamiltonian, m being the nucleon mass.
V (r) and �(r) are the mean-field and the pairing potentials,
respectively, and Ei is a quasiparticle energy. Here, we have
assumed that the nucleon-nucleon interaction is a zero-range
force so that these potentials are local. The upper component
of the pair wave function ui(r) is a nonlocalized wave function
if the quasiparticle energy Ei is larger than the Fermi energy
|λ|, while the lower component vi(r) is always localized. The
pair potential �(r) in general has a larger surface diffuseness
than the mean-field potential V (r) and goes beyond it because
of the nonlocalized property of the upper component of the
wave function ui(r), that is, because of the coupling to the
continuum spectra [20].
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In the mean-field approximation without the pairing cor-
relations [i.e., �(r) = 0], the halo structure originates from
an occupation of a weakly bound l = 0 or l = 1 orbit by the
valence nucleons near the threshold [22,23]. The asymptotic
behavior of a single-particle wave function for an s wave reads

ψi(r) ∼ exp(−αir), (3)

where αi is defined as αi =
√

2m|εi |/h̄2 with the Hartree-Fock
(HF) energy εi . The mean square radius of this wave function
is then evaluated as

〈r2〉HF =
∫

r2|ψi(r)|2d r∫ |ψi(r)|2d r
∝ 1

α2
i

= h̄2

2m|εi | , (4)

which will diverge in the limit of vanishing separation energy,
|εi | → 0. It has been shown that this divergence occurs not only
for s waves but also for p waves, although the dependence on
|εi | is now 〈r2〉HF ∝ 1/

√|εi | for l = 1 [22].
In contrast, in the presence of the pairing correlations (i.e.,

�(r) 	= 0), the lower component of the HFB wave function,
which is relevant to the density distribution, behaves as [20]

vi(r) ∝ exp(−βir), (5)

where βi is given by

βi =
√

2m

h̄2 (Ei − λ), (6)

using the quasiparticle energy Ei . It is convenient to introduce
here the canonical basis to analyze the pairing correlations of
many-body systems with the HFB method, since the results
of HFB can be expressed in an intuitive way as in the BCS
theory [20]. The canonical basis φ

(can)
i (r) is defined as the

eigenfunctions of the HFB density matrix,∫
d r ′ρ(r, r ′)φ(can)

i (r ′) = (
v

(can)
i

)2
φ

(can)
i (r), (7)

with which the quasiparticle energy may be approximately
expressed as

Ei =
√(

ε
(can)
i − λ

)2 + (
�

(can)
i

)2
, (8)

where ε
(can)
i ≡ 〈φ(can)

i |ĥ|φ(can)
i 〉 and �

(can)
i ≡

〈φ(can)
i |�(r)|φ(can)

i 〉. In the zero binding limit, ε
(can)
i ∼ 0

and λ ∼ 0, and the asymptotic behavior of the wave function
vi(r) is therefore determined by the gap parameter as

vi(r) ∝ exp

[(
−

√
2m

h̄2 �
(can)
i

)
r

]
. (9)

The radius of the HFB wave function will then be given in the
limit of small separation energy |ε(can)

i | → 0 as

〈r2〉HFB =
∫

r2|vi(r)|2d r∫ |vi(r)|2d r
∝ 1

β2
i

→ h̄2

2m�
(can)
i

. (10)

If the gap parameter �
(can)
i stays finite in the zero energy limit

of ε
(can)
i , the extremely large extension of a halo wave function

in the HF field will be reduced substantially by the pairing
correlations and the root-mean-square (rms) radius will not
diverge. This is referred to as the antihalo effect due to the

pairing correlations [5,6,12]. It was shown in Ref. [11] that
this is the main reason for the observed OES in the reactions
cross sections of several drip-line nuclei.

In order to study the behavior of the pairing gap in weakly
bound nuclei, we carry out HFB calculations for the neutrons
in 76Cr nucleus. To this end, we use a spherical Woods-Saxon
(WS) potential,

V (r) = V0f (r) − Vls

r

df (r)

dr
l · s, (11)

with

f (r) = 1

1 + exp[(r − R0)/a]
, (12)

for the mean-field potential V (r). Following Ref. [24], we
take V0 = −51 + 30(N − Z)/A MeV, R0 = 1.27A1/3 fm,
Vls = −0.71 V0 MeV fm2, and a = 0.67 fm. For the HFB
calculations, we use a density-dependent contact pairing
interaction of the surface type, with which the pairing potential
is given by

�(r) = Vpair

2

(
1 − ρ(r)

ρ0

)
ρ̃n(r). (13)

Here, ρ(r) and ρ̃n(r) are the total particle density and the
neutron pairing density, respectively, given by

ρ(r) =
∑
i=n,p

|vi(r)|2, (14)

ρ̃n(r) = −
∑
i=n

u∗
i (r)vi(r). (15)

We again follow Ref. [24] and take ρ0 = 0.16 fm−3 and
Vpair = −420 MeV fm3 with the energy cutoff of 50 MeV
above the Fermi energy. In order to construct the proton
density, we use the same mean-field potential as in Eq. (11),
but with V0 = −51 − 30(N − Z)/A MeV. We also add the
Coulomb potential for a uniform charge with a radius of R0.
We discretize the continuum spectra with the box boundary
condition. We take the box size of Rbox = 60 fm and include
the angular momentum up to l = 12. Notice that we determine
the pairing potential self-consistently in this model according
to Eq. (13), although the Woods-Saxon potential is fixed for
the mean-field part. The Fermi energy is also determined
self-consistently according to the condition for the average
particle number conservation,

A =
∫

ρ(r)d r =
∫ ∑

i

|vi(r)|2d r. (16)

These self-consistencies are particularly important to increase
the pairing gap for an extremely loosely bound orbit [15].

Figure 1(a) shows the mean square radius of the 3s1/2 state.
In order to study the dependence on the binding energy, we vary
the depth of the WS potential V0 for neutron s wave states while
we keep the original value for the other angular-momentum
states. We also arbitrarily change the single-particle energy for
the 2d5/2 state from −0.38 to −0.05 MeV so that the 3s1/2 state
lies below the 2d5/2 state. The dashed line is obtained with the
single-particle wave function for the mean-field Hamiltonian
ĥ, while the solid line is obtained with the wave function for
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the canonical basis in the HFB calculations. The radius of the
single-particle wave function for the s-wave state increases
rapidly as the single-particle energy ε approaches zero and
eventually diverges in the limit of εWS → 0. In contrast, the
HFB wave function shows only a moderate increase of the
radius even in the limit of εWS → 0. Figure 1(b) shows the rms
radius for the whole nucleus by taking into account the
contribution of the other orbits as well. For comparison, we
also show the rms radii for 74Cr and 75Cr obtained with the
same mean-field potential but without including the pairing
correlation. Notice that the rms radius of 76Cr is larger than
that of 75Cr in the range of εWS < −0.56 MeV. This is due
to the coupling of single-particle wave functions to a larger
model space, including continuum, induced by the pairing
correlations [6]. On the other hand, in the limit of εWS → 0,
the rms radius of 75Cr shows a divergent feature with the 3s1/2

state while that of 76Cr is almost constant. The solid line in
Fig. 1(c) shows the pairing gap evaluated with the canonical
basis, �

(can)
i for i = 3s1/2, while the dot-dashed line is the

lowest quasiparticle energy Ei . Notice that the right-hand
side of Eq. (8) is simply a diagonal component of the HFB
Hamiltonian in the canonical basis, while the left-hand side is
obtained by diagonalizing the HFB matrix [20]. Because of the
off-diagonal components, Eq. (8) holds only approximately,
and thus Ei may be smaller than �

(can)
i in actual calculations.

One can see in the figure that the effective pairing gaps persist
even in the limit of εWS → 0, leading to the reduction of the
radius of HFB wave function as is shown in Fig. 1(a).

In the simplified HFB model of Ref. [13], it was claimed
that the effective paring gap is diminished or quenched
substantially for low l orbits with l = 0 and l = 1. In this
model, the radial dependence of the pairing field �(r) is
fixed either as a Fermi-type function (volume type) or a
derivative of the Fermi function (surface type) with the same
surface diffuseness parameter as in the mean-field potential.
Furthermore, the Fermi energy is set equal to the single-particle
energy, ε, for the mean-field Hamiltonian ĥ, that is, λ = ε. The
effective pairing gap is defined in Ref. [13] to be identical to
the corresponding quasiparticle energy. If the energy in the
canonical basis were the same as the single-particle energy,
Eq. (8) indeed yields

Ei = �
(can)
i . (17)

Care must be needed, however, since in general ε
(can)
i deviates

from the single-particle energy εi in the HFB. Moreover, when
the effective gap is plotted as a function of ε as has been done in
Ref. [13], setting λ = ε leads to a violation of particle number
in this model, whose effect may be large in the limit of ε → 0.

In order to investigate the consistency of the simplified
model of Ref. [13], we repeat the same calculations shown in
Fig. 1 by assuming that the pair potential �(r) is proportional
to rdf/dr , where f (r) is given by Eq. (12). We use the
proportional constant of −1.107 MeV, which leads to the same
value for the average pairing gap,

�̄ =
∫ ∞

0 r2dr �(r)ρ(r)∫ ∞
0 r2dr ρ(r)

, (18)
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FIG. 1. (Color online) The mean square radii and the paring gap
for 76Cr nucleus as a function of the single-particle energy εWS for
the 3s1/2 orbit in a Woods-Saxon potential. Panel (a) shows the mean
square radius of the 3s1/2 wave function obtained with (the solid line)
and without (the dashed line) the pairing correlation. Panel (b) shows
the rms radii for 74Cr (the dotted line), 75Cr (the dashed line), and
76Cr (the solid line). These are obtained with the Hartree-Fock (74Cr
and 75Cr) and the Hartree-Fock-Bogoliubov (76Cr) methods. Panel (c)
shows the effective pairing gap for the 3s1/2 state. The solid line is the
pairing gap defined with the canonical basis, that is, the expectation
value of the pair potential with respect to the canonical-basis wave
function for the 3s1/2 state, while the dot-dashed line shows the lowest
quasiparticle energy for the s1/2 states.

as that in the self-consistent calculations shown in Fig. 1 for
εWS(3s1/2) = −0.257 MeV. We keep this value in varying the
depth of the Woods-Saxon potential, −V0.

We first keep the particle number to be a constant (N =
52) and determine the Fermi energy self-consistently within
this simplified model. Figure 2 shows the results of such
calculations. For comparison, Figs. 2(a) and 2(b) also show
by the dot-dashed lines the results of the self-consistent
calculations, which have already been shown in Fig. 1. It
is remarkable that this model yields a similar rms radius to
that of the self-consistent calculation. The effective pairing
gaps show somewhat different behavior from those in the
self-consistent calculation, especially for the pairing gap
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FIG. 2. (Color online) Same as Fig. 1, but with the simplified
HFB model, in which the pair potential is assumed to be proportional
to the derivative of the Fermi function. Only the Fermi energy λ is
determined self-consistently in this model. The dot-dashed lines in
(a) and (b) denote the results of the self-consistent calculations shown
in Fig. 1.

defined with the canonical basis [see Fig. 2(c)]. However, it
should be emphasized that the pairing gaps stay finite in this
calculation in the limit of vanishing single-particle energy, as
in the self-consistent calculation shown in Fig. 1. This implies
that the self-consistency for the pair potential is not important,
as far as the rms radius is concerned.

We next carry out the calculation by setting the Fermi
energy to be the same as the single-particle energy for the
3s1/2 state, λ = ε(3s1/2). In this calculation, the number of
particles changes as we vary the depth of the Woods-Saxon
potential. The Fermi energy λ and the neutron number are
shown in Figs. 3(a) and 3(b), respectively, by the dashed
lines. For comparison, the figures also show the results of the
previous calculation shown in Fig. 2, that is, those obtained
by adjusting the Fermi energy so that the neutron number is a
constant (see the solid lines). The variation of the particle
number is large, that is, from 47 to 54 in the range of
single-particle energy shown in Fig. 3. The radii and the
effective pairing gaps are shown in Fig. 4. As one can clearly
see, this non-self-consistent calculation yields considerably
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FIG. 3. (Color online) The Fermi energy λ (a) and the neutron
number (b) calculated with the simplified HFB model. These are
plotted as a function of the single-particle energy εWS for the 3s1/2

orbit in a Woods-Saxon potential. The solid lines are obtained by
adjusting the Fermi energy so that the neutron number is N = 52,
while the dashed lines are obtained by setting λ = εWS.

different results from the self-consistent calculations. First,
the reduction of the mean square radius of the single-particle
orbit is somewhat underestimated, although the effect is
still large [see Fig. 4(a)]. Second, the rms radius obtained
with this model is completely inconsistent with the result of
the self-consistent calculation as shown in Fig. 4(b). Third,
the effective pairing gaps drops off in the limit of ε → 0
(see the bottom panel). Particularly, the lowest quasiparticle
energy is substantially diminished, a behavior similar to that
shown in Ref. [13]. Evidently, the claim of Ref. [13] that
the pairing gap disappears in the zero energy limit is an
artifact of setting λ = ε. If the Fermi energy is determined self-
consistently for a given particle number, the effective pairing
gap persists even if the pairing potential is fixed, as shown in
Fig. 2.

III. ODD-EVEN STAGGERING OF REACTION
CROSS SECTIONS

Let us now investigate how the pairing correlation affects
the reaction cross sections of weakly bound nuclei. To this
end, we use the Glauber theory [25–30]. In the optical limit
approximation of the Glauber theory, the reaction cross section

014303-4



PAIRING CORRELATIONS AND ODD-EVEN STAGGERING . . . PHYSICAL REVIEW C 85, 014303 (2012)

σR can be calculated as [27–30]

σR =
∫

db (1 − |eiχ(b)|2), (19)

with

iχ (b) = −
∫

d rd r ′ρP (r)ρT (r ′)
NN (s − s′ + b). (20)

Here, ρP and ρT are the projectile and the target densities,
respectively; b is the impact parameter; and s and s′ are the
transverse components of r and r ′, respectively, that is, s =
(r · eb) eb and s′ = (r ′ · eb) eb, where eb = b/b is the unit

vector parallel to b. 
NN is the profile function for the NN

scattering, which we assume takes the form of [27–30]


NN (b) = 1 − iα

4πβ
σNN exp

(
− b2

2β

)
, (21)

with σNN being the total NN cross section.
It has been known that the optical limit approximation

overestimates reaction cross sections for weakly bound nuclei
[31–35]. In order to cure this problem, Abu-Ibrahim and
Suzuki have proposed modifying the phase-shift function χ (b)
in Eq. (20) to [35]

iχ (b) = −1

2

∫
d rρP (r)

[
1 − exp

(
−

∫
d r ′ρT (r ′)
NN (s − s′ + b)

)]

− 1

2

∫
d r ′ρT (r ′)

[
1 − exp

(
−

∫
d rρP (r)
NN (s′ − s + b)

)]
. (22)
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FIG. 4. (Color online) Same as Fig. 2, but by fixing the Fermi
energy to be the same as the single-particle energy for the 3s1/2 state,
λ = εWS(3s1/2).

With this prescription, the effects of multiple scattering
between a projectile nucleon and the target nucleus, and
that between a target nucleon and the projectile nucleus, are
included to some extent [35].

Figure 5(a) shows the reaction cross sections for 74,75,76Cr +
12C reactions at E = 240 MeV/nucleon, obtained with the
phase-shift function given by Eq. (22). For the density of the
Cr isotopes, we use the results of the HFB calculations shown
in Fig. 1. For the density of the target nucleus 12C, we use
the same density distribution as that given in Ref. [28]. In
the actual calculation, we treat the proton-neutron and the
proton-proton/neutron-neutron scattering separately and use
the parameters given in Table I in Ref. [36] for the profile
function 
NN . In order to evaluate the phase-shift function,
we use the two-dimensional Fourier transform technique [37].
We give its explicit form in the appendix. The reaction cross
sections shown in Fig. 5 show behavior similar to that of the
rms radii shown in Fig. 1(b), as is expected. That is, the reaction
cross sections for 76Cr and 75Cr are inverted at a small binding
energy, due to the pairing effect shown in Fig. 1. This leads
to a large odd-even staggering in reaction cross sections for
weakly bound nuclei [11].

In order to quantify the OES of reaction cross sections, we
introduce the staggering parameter defined by

γ3 = (−)A
σR(A + 1) − 2σR(A) + σR(A − 1)

2
, (23)

where σR(A) is the reaction cross section of a nucleus with
mass number A. We can define the same quantity also for rms
radii. Notice that this staggering parameter is similar to the one
often used for the OES of binding energy, that is, the pairing
gap [38–40]. Figure 5(b) shows the staggering parameter γ3

for the 74,75,76Cr nuclei as a function of the single-particle
energy, εWS. One can clearly see that the staggering parameter
γ3 increases rapidly for small separation energies and goes up
to a large value, reaching γ3 ∼ 80 mb.
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FIG. 5. (Color online) (a) Reaction cross sections for 74,75,76Cr +
12C reactions at E = 240 MeV/nucleon, obtained with the modified
optical limit approximation of the Glauber theory, Eq. (22). The
density distributions for 74,75,76Cr are constructed from the HFB
calculations shown in Fig. 1. (b) The staggering parameter defined
by Eq. (23).

The staggering parameter may increase spuriously at shell
closures as a result of the shell effects [6]. In the example
shown in Fig. 5, the 74Cr nucleus is at a shell closure, where we
have assumed that the N = 50 shell is completely filled. The
rms radii shown in Fig. 1(b) are 4.236, 4.443, and 4.327 fm for
74Cr, 75Cr, and 76Cr, respectively, at εWS(3s1/2) = −0.15 MeV.
The staggering parameter for the rms radii, defined similarly
to Eq. (23), is then found to be γ3(

√
〈r2〉) = 0.162 fm. In order

to estimate quantitatively the shell effects, we calculate the
staggering parameter using the rms radius for 74Cr of 4.288 fm,
which follows a simple A1/3 dependence with the rms radius of
76Cr, that is, 4.327 × (74/76)1/3 fm. This yields γ3(

√
〈r2〉) =

0.134 fm, and about 17% of γ3 is attributed to the shell effect.
We thus find that the pairing correlation is the main origin of
the large values of the staggering parameter even at the shell
closure.

In order to find a general trend for the staggering parameter,
Fig. 6 shows the value of γ3 for various orbits with 2s1/2,
3s1/2, 2p3/2 and 1f 7/2. The values for the 2s1/2 and 2p3/2

orbits correspond to the reaction cross sections for the 22,23,24O
and 30,31,32Ne nuclei, respectively, calculated in Ref. [11]. The
value for the 1f 7/2 orbits corresponds to the reaction cross
sections for 30,31,32Ne nuclei, obtained with the diffuseness
parameter of the mean-field Woods-Saxon potential of a =
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30-32
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7/2
)

FIG. 6. (Color online) The staggering parameter γ3 defined by
Eq. (23) as a function of the neutron separation energy Sn for the
odd-mass nuclei. The solid and the dotted lines correspond to the
reaction cross sections for 22,23,24O + 12C and 74,75,76Cr + 12C at
E = 240 MeV/nucleon, respectively. The dashed and the dot-dashed
lines show the results for 30,31,32Ne + 12C at E = 240 MeV/nucleon,
in which the valence neutron in 31Ne occupies the 2p3/2 or 1f 7/2

orbits, respectively.

0.65 fm. One can clearly see that γ3 for the low l orbits with
l = 0 and l = 1 shows a rapid increase at small separation
energies, with the l = 0 orbit increasing more rapidly than the
l = 1 orbit. In contrast, the high l orbit with l = 3 does not
show any anomaly in the limit of ε → 0. These features are
quite similar to the growth of a halo structure only in the low
l orbits due to a zero or small centrifugal barrier.

The experimental staggering parameters γ3 are plotted in
Fig. 7 for Ne isotopes as a function of the neutron separation
energy for the odd-mass nuclei. We use the experimental
reaction cross sections given in Ref. [9] while we evaluate

0 1 2 3 4 5 6 7
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-20

0

20

40

60

80

100

γ 3 
  (m

b)

20,21,22
Ne

22,23,24
Ne

24,25,26
Ne

26,27,28
Ne

28,29,30
Ne

30,31,32
Ne

FIG. 7. (Color online) The experimental staggering parameter γ3

of reaction cross sections defined by Eq. (23) for the Ne isotopes
with the 12C target at E = 240 MeV/nucleon. This is plotted as a
function of the neutron separation energy Sn of the odd-A nuclei.
The experimental data for the reaction cross sections are taken from
Ref. [9], while the empirical separation energies are taken from
Refs. [41] and [42]. The dashed line is the calculated staggering
parameter for the 30,31,32Ne isotopes, assuming that the valence
neutron in of 31Ne occupies the 2p3/2 orbit.
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the separation energies with the empirical binding energies
listed in Ref. [41]. For the neutron separation energy for the
31Ne nucleus, we use the value in Ref. [42]. The experi-
mental uncertainties of the staggering parameter are obtained
as

δγ3 =
√

[δσR(A + 1)]2 + 4[δσR(A)]2 + [δσR(A − 1)]2

2
,

(24)

where δσR(A) is the experimental uncertainty for the reaction
cross section of a nucleus with mass number A. The figure also
shows by the dashed line the calculated staggering parameter
for the 30,31,32Ne nuclei with the 2p3/2 orbit, shown also in
Fig. 6. One sees that the experimental staggering parameter
agrees with the calculated value for 30,31,32Ne nuclei when
one assumes that the valence neutron in 31Ne occupies the
2p3/2 orbit. Furthermore, although the structure of lighter
odd-A Ne isotopes is not well known, it is interesting to
see that the empirical staggering parameters closely follow
the calculated values for the 2p3/2 orbit. This may indi-
cate that the low l single-particle orbits are appreciably
mixed in these Ne isotopes as a result of the deformation
effects [43,44].

IV. SUMMARY

We have studied the OES of the reaction cross sections using
the Hartree-Fock-Bogoliubov model. To this end, we have
introduced the staggering parameter γ3 defined with a three-
point difference formula in order to clarify the relation between
the magnitude of OES and the neutron separation energy. We
have shown that the OES parameter increases largely for low
l orbits with l = 0 and l = 1 at small separation energies. The
experimental staggering parameter for the Ne isotopes show
a similar increase. On the other hand, we have found that the
staggering parameter stays at almost a constant value, γ3 ∼
2 mb for higher l orbits with, for example, l = 3. The increase
of γ3 is induced by the finite pairing correlations in the zero
separation energy limit. In this respect, we have shown that
the effective pairing gap for the 3s1/2 orbit in the 76Cr nucleus
persists even in the limit of vanishing separation energy. This
remains the same even if the pair potential is prefixed, as
long as the chemical potential is adjusted to keep the particle
number the same. We have shown that such simplified HFB
model reproduces well the results of the self-consistent HFB
model for the rms radius.

The staggering parameter proposed in this paper provides a
good measure for the OES of reaction cross sections. Further
systematic experimental studies would be helpful in order to
clarify the pairing correlations in weakly bound nuclei and in
the limit of zero neutron separation energy.
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APEENDIX: EVALUATION OF PHASE-SHIFT FUNCTION
WITH THE FOURIER TRANSFORM METHOD

In this paper, we evaluate the phase-shift functions given by
Eqs. (20) and (22) using the Fourier transform technique [37].
First, we notice that Eq. (20) can be expressed as

iχ (b) = −
∫

dsds′ρ(z)
P (s)ρ(z)

T (s′)
NN (s − s′ + b), (A1)

with

ρ
(z)
P (s) ≡

∫
dz ρP (s, z), ρ(z)

T (s′) ≡
∫

dz ρT (s′, z). (A2)

The two-dimensional Fourier transform of iχ (b) in Eq. (20)
then reads

iχ̃ (q) =
∫

db iχ (b) eiq·b (A3)

= −
∫

db eiq·(b+s−s′) 
NN (b+s−s′)
∫

ds e−iq·s ρ
(z)
P (s)

×
∫

ds′ eiq·s′
ρ

(z)
T (s′) (A4)

= −
̃NN (q)
(
ρ̃

(z)
P (q)

)∗
ρ̃

(z)
T (q), (A5)

where 
̃NN, ρ̃
(z)
P , and ρ̃

(z)
T are the two-dimensional Fourier

transforms of 
NN, ρ
(z)
P , and ρ

(z)
T , respectively. For the profile

function given by Eq. (21), its Fourier transform reads


̃NN (q) = 1 − iα

4πβ
σNN2β2π exp

(
− β2q2

2

)
. (A6)

The Fourier transform of the density distribution is evaluated
as

ρ̃(z)(q) =
∫

dzds eiq·s ρ(s, z) = ρ̃( Q), (A7)

where ρ̃( Q) is the three-dimensional Fourier transform of the
density at Q = (q,Qz = 0). For a spherical density, ρ(r),
ρ̃( Q) depends only on | Q| = q, that is,

ρ̃(z)(q) = ρ̃(q) = 4π

∫ ∞

0
r2dr ρ(r)j0(qr), (A8)

where j0(qr) is the spherical Bessel function of zeroth order.
Taking the inverse Fourier transform of Eq. (A5), the phase-
shift function is calculated as

iχ (b) = −
∫

dq
(2π )2


̃NN (q)ρ̃P (q)ρ̃T (q)e−iq·b (A9)

= −
∫ ∞

0

qdq

2π

̃NN (q)ρ̃P (q)ρ̃T (q)J0(qb), (A10)

where J0(qb) is the Bessel function of zeroth order. A similar
technique has been used to evaluate a double folding potential
in heavy-ion reactions [45–47].
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One can apply the same method to evaluate the phase-shift
function given by Eq. (22). First notice that


NT (b) ≡ 1 − exp

(
−

∫
d r ′ρT (r ′)
NN (b − s′)

)
(A11)

= 1 − exp

(
−

∫ ∞

0

qdq

2π

̃NN (q)ρ̃T (q)J0(qb)

)

(A12)

depends only on b = |b|. This leads to

iχ (b) = − 1

4π

∫ ∞

0
qdq 
̃NT (q)ρ̃P (q)J0(qb)

− 1

4π

∫ ∞

0
qdq 
̃NP (q)ρ̃T (q)J0(qb), (A13)

where 
̃NT (q) is calculated as


̃NT (q) = 2π

∫ ∞

0
bdb 
NT (b)J0(qb). (A14)
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