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The formation of intruder states in the low-lying states of 12Be = α + α + 4N is studied by applying the
generalized two-center cluster model, which can optimize the excess neutrons’ orbits depending on the α-α
distance. The correlation energy for the intruder states is analyzed from the viewpoint of two different pictures
based on the cluster structure: the covalent picture around two α clusters and the binary He-cluster picture.
In the covalent picture, the binding energy of (π−

3/2)2(σ+
1/2)2, corresponding to ν(0p)4(1s0d)2 in a naive shell

model, gains largely owing to the spin-triplet pairing of the 0d-wave neutrons, which is induced by the two-body
spin-orbit interaction. The spin-triplet pairing gives rise to the reduction of the kinetic energy and the increase
of the attractive spin-orbit interaction for the excess neutrons. As a result of these correlation energies, the
ν(0p)4(1s0d)2 configuration becomes dominant in the ground state. In the binary cluster picture, the correlation
energy is investigated from the coupled channels among α + 8He, 6He + 6He, and 5He + 7He. The coupling to
5He + 7He, which is neglected in usual binary-cluster models, plays an important role for a large reduction of
kinetic energy and the formation of a pair of the low-lying 0+ states with a close energy spacing recently observed
in experiment. The rotational bands are also discussed from the viewpoint of these two cluster pictures.
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I. INTRODUCTION

The molecular structures in nuclei are one of the char-
acteristic structures established in a wide range of N = Z

nuclei [1]. Typical examples are the binary molecular structure
of a ground band in 8Be = α + α and a three-α structure in
0+

2 of 12C at 7.65 MeV called the Hoyle state. An α particle is
a quite stable and inert nucleus owing to the strong binding of
two protons and two neutrons forming a spin-isospin saturated
state. Therefore, α particles can be considered as possible
building blocks of light N = Z systems. We can see some
examples on multi-α states in recent studies of the molecular
resonances in high-spin regions [2] and gaslike states [3,4].

However, in the last two decades, developments of experi-
ments with a secondary radioactive ion beam have extensively
helped the studies on light neutron-rich (N > Z) nuclei. The
cluster degrees of freedom are important not only in the
N = Z systems, but also in the N > Z ones. In isotope
chains of the elements, Be, B, C, and Ne, for instance,
structures of low-lying states were systematically studied,
and the appearance of various cluster structures were pointed
out [5]. In particular, much effort has been devoted to the
molecular structure in Be isotopes. In recent experiments,
exotic structures of these isotopes have been studied and
many new phenomena have been observed. Among them, 12Be
has attracted much attention, because there is experimental
evidence of the quenching of N = 8 shell closure [6–10].

The Be isotopes can be considered as typical examples of
two-center superdeformed systems which build on an α + α

rotor of 8Be. Therefore, introducing microscopic α-cluster
models is quite natural for investigating the characteristic
properties observed in the low-lying state of Be isotopes.
Theoretical approaches based on the binary cluster picture,

which assume the substructures of α and 6,8He [11–13],
exist. In 12Be, for instance, Descouvemont and Baye have
solved the coupled-channel problem between α + 8Heg.s. and
its two-neutron-transfer channel, 6Heg.s. + 6Heg.s. [13].

In the binary cluster model, stable ground nuclei as an
isolated system, such as α and 6,8Heg.s., are basically taken to
be subunits in a total system. This treatment can be justified
if subunits keep a large distance. If the subunits strongly
overlap and interact with each other, excess neutrons cannot be
localized inside one of clusters, and their orbitals spread over
two core nuclei. In the case of 12Be = α + 8He, for instance,
four neutrons inside 8He perform the single-particle motion
over two α cores when the distance of α−8He gets shorter.

The neutrons’ orbits spreading over two α cores associate
with the electrons’ covalent bondings in molecular physics.
Such covalent configurations can be described by the so-called
molecular orbit (MO) method [14–16], where orbits around all
the cores are constructed from the atomic orbit localized at the
individual cores. In contrast to the MO method, the binary
cluster state [11–13], such as 6Heg.s. + 6Heg.s. and α + 8Heg.s.

correspond to the atomic (ionic) configurations, where the
electrons are trapped at one of the cores. The ionic and atomic
configurations are usually handled by the valence bonding
method (or Heitler-London method), where the exchanges
of electrons belonging to the different cores are taken into
account. Therefore, the MO states and the atomic (or ionic)
ones are very different in the distributions of the neutrons’
orbits; the former orbit spreads over two α cores, while the
orbit is localized at one of two α cores in the latter state.

In MO configurations, a wave function of covalent neu-
trons is a direct product of single-particle orbitals φ such
as φ(1)φ(2) · · · φ(N ) for N neutrons. Usually, a neutron’s
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covalent orbital φ is constructed by a linear combination of
atomic orbital (LCAO), φ = ϕL + ϕR , where ϕL (ϕR) is an
atomic orbital (AO) localized at the left (right) side cores.
According to LCAO treatments, whole products of MO can
be expanded in terms of all the possible partitions, which
are combinations of the number of the left-side AOs and
right-side AOs. For example, the LCAO decomposition of
the MO configuration in 12Be gives the linear combination
of the partitions, (8He + α) + (7He + 5He) + (6He + 6He) +
(5He + 7He) + (α + 8He). In general, 5−8He are not ground
states but polarized states, which contain excited states as
well as a ground state. This combination can be reduced
to (6He + 6He) + (5He + 7He) + (α + 8He) if a projection
operator on a spatial reflection is taken into account. Therefore,
not only stable even-even partitions (α + 8He and 6He + 6He)
but also an odd-odd partition (5He + 7He), which is unstable
in a limit of a complete separation of subunits, are essential in
the formation of the MO configuration.

The traditional binary-cluster model, in which stable even-
nuclei are set to be subunits, should be generalized so as to
include the odd-odd partition to handle the MO formations
and their separation into binary clusters consistently. This is
the basic idea of the generalized two-center cluster model
(GTCM) [17,18]. Specifically, a wave function of a total
system is constructed by a superposition of all the possible
AOs in two centers, and their mixing amplitudes are optimized
according to variational principle. Owing to the variational
optimization, the total wave function automatically generates
MOs or binary states, which depend on conditions such as
excitation energy, spins, and so on.

In recent studies, we have applied the GTCM to 12Be and
clarified the global features of the structural changes as a
variation of the excitation energy [19–23]. In these studies,
the low-lying states realized as bound states and the highly
excited ones embedded in continuum are described in a unified
manner. In the present paper, we mainly concentrate on the
formation mechanism of the 0+

1 and 0+
2 states appearing at the

bound region of 12Be, although our global subject covers both
the low-lying and the highly excited states. The excitation
energy of the 0+

2 state is small, about 2.24 MeV [10], and
this result suggests the breaking of N = 8 magic number.
We investigate the N = 8 shell quenching in 12Be from the
viewpoint of both the binary-cluster picture and the MO
picture.

In the binary-cluster picture, we analyze an effect of 5He +
7He on the traditional binary-cluster treatment, such as the
coupled channel of even-even clusters, (α + 8He) + (6He +
6He). The importance of 5He + 7He can be speculated from
the pairing interactions. When two clusters are completely
separated, the energy of 5He + 7He is higher than that of the
even-even clusters, because a pair of two valence neutrons
is broken in the former. However, the pairing interactions
of neutrons inside 5He and 7He activate when two clusters
overlap. Owing to this recovered pairing, the energy of
5He + 7He becomes comparable to that of even-even clusters,
and the coupling of even-even clusters and 5He + 7He becomes
effective. The coupling of 5He + 7He to the even-even clusters
is expected to reduce the neutron’s kinetic energy significantly,
according to the pioneering work on 10Be [15].

Furthermore, GTCM makes it possible to investigate the
breaking of N = 8 magic number in connection to the MO
picture. There are two important effects on the breaking
of the magic number: a formation of the σ+

1/2 orbit for
excess neutrons, leading to the reduction of the neutrons’
kinetic energies, and the correlation energies on the σ+

1/2 orbit
from the triplet-odd (s = 1) pairing, which is induced by the
two-body spin-orbit interaction [15,18]. As a result of these
two correlations, the energy of (π−

3/2)2(σ+
1/2)2, corresponding

to ν(0p)4(sd)2, is almost degenerate with the neutrons’ closed-
shell configuration. In the present study, these correlations are
reanalyzed by employing the large model space beyond the
previous MO model.

As shown in Refs. [19–22], the microscopic cluster model is
a powerful tool for understanding the whole spectra in a nuclear
system qualitatively, in which a drastic structure change from
the mean-field configurations to the cluster ones appears. Thus,
it should be stressed that cluster models are useful in clarifying
the global features of nuclear systems. In calculations of cluster
models, parameters in nucleon-nucleon (NN ) interactions
should be controlled so as to reproduce thresholds of cluster
fragments as much as possible. Recently, the so-called “ab
initio calculations” based on realistic NN interactions became
feasible for light nuclei, and they are quite successful in
reproducing the yrast states, which mainly correspond to
mean-field configurations [24,25]. The treatments of cluster
degrees of freedom based on current ab initio fashions are still
in progress and are important subjects that should be handled
in future studies.

In Sec. II, we give a detailed explanation of the framework
of GTCM and explicit relations between the covalent MO
configurations and the ionic He-cluster ones, which are useful
in understanding our analysis in subsequent sections. In
Secs. III A and III B, a characteristic coupling scheme in the
covalent and ionic pictures are discussed by analyzing the
structure of the energy surfaces, respectively. In Sec. III C, the
rotational-band structures and the breaking of N = 8 magic
number are investigated. Section IV is devoted to the summary,
discussion, and future perspectives.

II. FRAMEWORK

A. Wave functions

Brief explanations on the formulation of GTCM have
already been shown in Refs. [17–20]. In the present paper,
we show some details of the framework of GTCM. In this
method, the basis function {�Jπ K

m (S)} is given by

�Jπ K
m (S) = P̂ J π

K �m(S), (1)

�m(S) = A

⎧⎨
⎩ψL(α)ψR(α)

4∏
q=1

ϕq(mq)

⎫⎬
⎭

S

. (2)

The α cluster ψn(α) (n = L,R) is expressed by the (0s)4

configuration of the harmonic oscillator (HO) centered at the
left (L) or right (R) side with the relative distance parameter
S [26], which is explained later. The single-particle wave
function for the four valence neutrons localized around one
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of the α clusters is given by an AO ϕ(j, pk, τ ) with Cartesian
0p orbitals pk (k = x, y, z) around the center j (=L or R) and
the nucleons’ spin τ (= ↑ or ↓). In Eq. (2), {mq} are indices
of AO (j, pk, τ ) and m represents a set of AOs for the four
neutrons, m = (m1,m2,m3,m4). The constructed basis with
full antisymmetrization A is projected to the eigenstate of the
total spin J , its intrinsic angular projection K , and the total
parity π by the projection operator P̂ J π

K .
The AO basis ϕ is constructed by a direct product of the

0p version of the Brink wave function φjd (r) [27], which
represents a single-particle motion in the shifted HO potential
with a radius ν = 1/2b2 and the nucleon’s spin function χτ (σ ).
The explicit expression of ϕ is

ϕ(j, pd, τ ) ≡ φjd (r)χτ (σ ),
(3)

φjd (r) = 2
√

ν

(
2ν

π

)3/4

ud · (r − Sj )e−ν(r−Sj )2
.

In Eq. (3), Sj = (0, 0, Sj ) with j = L,R represents a shift
vector of the HO’s center and satisfies SR − SL = S. A unit
vector of ud (d = x, y, z) determines the direction of the 0p

wave function. In the shell-model limit of S → 0 for Eq. (2),
the neutrons in the AO state with φjd (r) naturally occupy the
higher shell except for (0s)4(0pz)4, which are occupied by two
α cores, owing to the effect of the antisymmetrizer A [26,27].

The total wave function is finally given by taking the
superposition over S, m, and K like

�̂Jπ

ν =
∫

dS
∑
mK

Cν
mK (S)�Jπ K

m (S), (4)

and the coefficients for the νth eigenstate, Cν
mK (S), are

determined by solving the coupled channel GCM (generator
coordinate method) equation [26]. It should be stressed that
S is not a dynamical coordinate but a variational parameter
called the generator coordinate. By introducing the coordinate
vectors for the relative motion (R) and the center-of-mass
motion (Rc.m.), the basis function in Eq. (2) can be finally
reduced to the following form [26]:

�m(S) ∼ A
{
ψin(ξ1)ψin(ξ2)e−μν(R−S)2

e−AνR2
c.m.

}
. (5)

Here ψin(ξi) is an internal wave function for ith He nuclei,
while the first exponential part with the reduced mass μ

and the second one with the total mass A correspond to the
wave functions for the relative and center-of-mass motions,
respectively. The basis function �m(S) has a peak at R = S
and, hence, S (=|S|) is often called the distance parameter. The
basis function of �Jπ

m (S) depends only on S after the operation
of the projection operator of P Jπ

K [26].

B. Example of LCAO treatments

In the AO basis function of Eqs. (1) and (2), excess neutrons
are localized at one of the α cores. Therefore, the basis function
is classified according to the partition, which is a combination
of the number of the left- and right-side neutrons, and they
belong to specific He-cluster states, xHe + yHe. However,
the total wave function in Eq. (4) can describe not only
the He-cluster states but also the MO structures, in which

valence neutrons perform single particle motion around two
α cores, because the total wave function is finally given by
the superposition of the AO basis function. To see the relation
between the MO and the AO more clearly, we illustrate a few
examples of some MO configurations, which are important for
the low-lying states in 12Be.

MO configurations can be constructed by employing the
so-called linear combinations of the atomic orbitals (LCAOs),
ϕ(L) ± ϕ(R), where ϕ(L) [ϕ(R)] means the left- [right-] side
AO. There are three “binding orbits” which play important
roles for the formation of the low-lying states. According to
the LCAO treatment, the explicit expressions of these three
orbits are given by

π−
K=+3/2 = ϕ̃(L,p+1,↑) + ϕ̃(R,p+1,↑), (6)

σ+
K=+1/2 = ϕ(L,pz,↑) − ϕ(R,pz,↑), (7)

π−
K=+1/2 = ϕ̃(L,p+1,↓) + ϕ̃(R,p+1,↓), (8)

with the definition of a polar atomic orbit

ϕ̃(j, p±1, τ ) = ∓ϕ(j, px, τ ) − i · ϕ(j, py, τ ). (9)

Here the relative coordinate between α cores is taken to be
the z axis, which is the principal axis needed to define the
K-quantum number. By taking a linear combination of the
AOs defined in the Cartesian coordinate, the angular part of
Eq. (9) becomes the spherical harmonics Ylm(r̂j ) with l = 1,
m = ±1 around each α cluster (j = L or R). The π−

K orbits in
Eqs. (6) and (8) have one node in the direction perpendicular
to the α-α axis, while the σ+

1/2 orbit has two nodes along that
axis. All the AOs are labeled by good K-quantum numbers,
but the π−

K and σ+
1/2 orbits become the 0p and 1s0d orbits of a

naive shell model under the limit of zero α-α distance.
In a similar manner, we can construct the “antibinding

orbits” by changing the signs in the linear combinations of
Eqs. (6)–(8). Their expressions are given by

π+
K=+3/2 = ϕ̃(L,p+1,↑) − ϕ̃(R,p+1,↑), (10)

σ−
K=+1/2 = ϕ(L,pz,↑) + ϕ(R,pz,↑), (11)

π+
K=+1/2 = ϕ̃(L,p+1,↓) − ϕ̃(R,p+1,↓). (12)

These three orbits have opposite parities to the respective
binding orbits and have an additional node along the z axis.
Thus, they correspond to the shell-model orbits with 1h̄ω

excitation from the binding orbits; Eqs. (10) and (12) belong
to 1s0d shell-model orbits, while Eq. (11) corresponds to a
1p0f orbit. These antibinding orbits are not main components
in the low-lying 0+ state, but the neutrons’ excitations to the
antibinding orbits give important correlation energies.

From the binding orbits, we can construct the MO con-
figurations of the valence four neutrons, which are dominant
in the low-lying 0+ states in 12Be. First, we show the ex-
pression of (π−

3/2)2(σ+
1/2)2, corresponding to the ν(0p)4(1s0d)2

configuration at the zero limit of the α-α distance. This
configuration is the most important for the ground state,
and its explicit form of the wave function is written as
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follows:

�̂+K=0(S) = A{π−
+3/2π

−
−3/2σ

+
+1/2σ

+
−1/2}

= Q̂(+)A{ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↓)ϕ(L,pz,↑)ϕ(L,pz,↓)

+ ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↓) · ϕ(R,pz,↑)ϕ(R,pz,↓) + ϕ̃(L,p+1,↑)ϕ(L,pz,↑) · ϕ̃(R,p−1,↓)ϕ(R,pz,↓)

− ϕ̃(L,p+1,↑)ϕ(L,pz,↓) · ϕ̃(R,p−1,↓)ϕ(R,pz,↑) − 2ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↓)ϕ(L,pz,↑) · ϕ(R,pz,↓)

− 2ϕ̃(L,p+1,↑)ϕ(L,pz,↑)ϕ(L,pz,↓) · ϕ̃(R,p−1,↓)}. (13)

In this expression, the wave function of two α particles
ψL(α)ψR(α) is omitted for simplicity, and Q̂(+) is an operator
which has the form of

Q̂(+) = (1 + e−iJyπ )P (+), (14)

where Jy and P (+) are the rotation operator with respect to the
Y axis [28] and the projection operator to the positive parity
state, respectively. In a naive expansion of Eq. (13), another
AO basis, which are constructed by an exchange of L ↔ R,
such as LLLL → RRRR for instance, appears in addition to
the terms in Eq. (13), but we need to consider only one of the
combinations by introducing the Q̂(+) operator. Thus, in the
present study, we consider only one combination of (L,R), as

shown in Eq. (13). The operation of Q̂(+) can be completely
achieved when the angular momentum projection is performed
exactly.

Equation (13) shows that the wave function with the
(π−

3/2)2(σ+
1/2)2 configuration can be decomposed into the

AO basis such as 8He + α(LLLL), 6He + 6He(LL · RR),
and 7He + 5He(LLL · R). Therefore, the coherent mixing of
possible partitions occurs in the MO states.

Next, we show another example of the MO configuration
of (π−

3/2)2(π−
1/2)2. This configuration smoothly changes into

the neutron’s closed-shell configuration of ν(0p)6 in the shell-
model limit of zero α-α distance (S = 0). The expression of
this MO configuration in terms of the AO basis is given by

�̂+K=0(S)

= A{π−
+3/2π

−
−3/2π

−
+1/2π

−
−1/2}

= Q̂(+)A{ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↓)ϕ̃(L,p+1,↑)ϕ̃(L,p+1,↓) + ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↓) · ϕ̃(R,p+1,↓)ϕ̃(R,p−1,↑)

− ϕ̃(L,p+1,↑)ϕ̃(L,p+1,↓) · ϕ̃(R,p−1,↓)ϕ̃(R,p−1,↑) − ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↑) · ϕ̃(R,p−1,↓)ϕ̃(R,p+1,↓)

+ ϕ̃(L,p+1,↑)ϕ̃(L,p−1,↓)ϕ̃(L,p+1,↓) · ϕ̃(R,p−1,↑) + ϕ̃(L,p+1,↑)ϕ̃(L,p+1,↓)ϕ̃(L,p−1,↑) · ϕ̃(R,p−1,↓)}. (15)

The S = 0 limit of the simple binary clusters, 8Heg.s. + α,
6Heg.s. + 6Heg.s., and 7Heg.s. + 5Heg.s., has a large overlap with
the shell-model state of ν(0p)6, but all the partitions must be
coherently mixed to form the (π−

3/2)2(π−
1/2)2 configuration at

finite S.
In Eqs. (13) and (15), the mixing amplitudes of the AO basis

are uniquely determined according to LCAO approximation.
However, they can be optimized by diagonalizing the total
Hamiltonian with the AO basis. In the present analysis,
therefore, we optimized the mixing amplitudes of the AO basis
by calculating the energy of a given MO configuration. As a
result of this optimization, the amplitudes deviate from those
in ideal MOs shown in Eqs. (13) and (15), but this deviation is
not so large for low-lying states with MO structure.

We also illustrate that the basis functions of Eq. (2) can
describe the cluster-model states in which neutrons’ orbits
have definite spin around one of the α cores. For example, the
8He + α configuration, in which the valence neutron forms 0+
with (0p3/2)4 around one of the α clusters can be constructed

as follows:

�K=0(S) = A
{
ψL(α)ψR(α)φ+3/2

L φ
−3/2
L φ

+1/2
L φ

−1/2
L

}
.

(16)

Here the 0p3/2 orbit in the jj -coupling scheme, φjz with jz

component is given by

φ
+3/2
L = ϕ̃(L,p+1,↑), (17)

φ
−3/2
L = ϕ̃(L,p−1,↓), (18)

φ
+1/2
L = 1√

3
ϕ̃(L,p+1,↓) +

√
2

3
ϕ(L,pz,↑), (19)

φ
−1/2
L = 1√

3
ϕ̃(L,p−1,↑) +

√
2

3
ϕ(L,pz,↓), (20)
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where the mixing amplitudes are determined by the Clebsh-
Gordon coefficients. Therefore, the basis function of Eq. (2)
can describe the combinations of the asymptotic cluster
structures as well as the MO ones.

Because the ground and low-lying bands are mainly
investigated in the present study, the present basis is restricted
to the axially symmetric (K = 0) configurations. However,
we include all the possible AO configurations for the four
valence neutrons within this approximation. Therefore, the
model space of MO, where each valence neutron rotates
around two centers simultaneously, and that of binary clusters,
where neutrons are localized around one of an α core, are
covered [17]. The number of the employed AO basis �Jπ K=0

m
is 38, and all these bases can transform to the MO states or
the cluster-model ones using expressions similar to Eqs. (13),
(15), and (16).

C. Hamiltonian and adiabatic treatments

The total Hamiltonian Ĥ employed in the present calcula-
tion is

Ĥ =
12∑
i

t̂i − T̂c.m. +
12∑

i<j

v̂
(C)
ij +

12∑
i<j

v̂
(LS)
ij , (21)

where i and j denote a number of nucleons. t̂ represents a
single nucleon’s kinetic energy, while v̂

(C)
ij and v̂

(LS)
ij are the

two-body nucleon-nucleon (NN ) interactions for the central
and spin-orbit parts, respectively. The kinetic energy of the
center-of-mass (c.m.) motion, shown by T̂c.m., is subtracted
from the summation of the nucleon’s kinetic energy. In the
present treatment, the c.m. motion of the total system can be
exactly eliminated.

As for the NN interaction, we use the Volkov No. 2 [29] and
the G3RS [30] for the central v̂

(C)
ij and spin-orbit v̂

(LS)
ij parts,

respectively. The functional form of the NN interactions are

v̂
(C)
ij = v(C)(rij )(W − MPσPτ + BPσ − HPτ ), (22)

v̂
(LS)
ij = v(LS)(rij )P (3O)Lij · Sij . (23)

In the central interaction, W , MPσPτ , BPσ , and HPτ denote
the Wigner, Majorana, Bartlett, and Heisenberg exchanges,
while, in the spin-orbit interaction, P (3O) represents the
projection operator on the triplet-odd state. L = r̂ij × p̂ij

and S = si + sj are the relative and total nucleons’ spins for
interacting ith and j th nucleons, respectively.

The parameters in the interactions and the b parameter
of HO are the same as those applied in Refs. [18,19],
which successfully reproduced the properties of 10Be. The
adopted parameters are shown in the caption of Table I. In
Table I, the calculated thresholds for the lowest four open
channels are shown. The energy difference of α + 8Heg.s. and
6Heg.s. + 6Heg.s. in the calculation is a little larger than that
in the experimental observation, but the relative differences
among the thresholds are reasonably reproduced by the present
NN interaction.

Because the threshold energy corresponds to the order
of magnitude of the interaction strength to dissociate a
compound system into a pair of clusters, the reproduction of the

TABLE I. Comparisons of the threshold energies in the calcu-
lation with those in the experiment. All the energies are measured
from the energy of the calculated ground state (units of MeV). The
parameters of Volkov No. 2 are M = 0.643 and B = H = 0.125,
while the strength of G3RS is taken to be +3000 and −2000 MeV for
the repulsive and attractive parts, respectively. The radius parameter
of HO b is fixed to 1.46 fm.

Channel Experiment Calculation

α + 8Heg.s. 9.0 9.3
6Heg.s. + 6Heg.s. 10.1 11.8
6Heg.s. + 6He(2+

1 ) 11.9 13.7
5Heg.s. + 7Heg.s. 13.2 14.6

threshold energy is crucial in discussing the appearance and
disappearance of the cluster degrees of freedom. Therefore,
optimizing the NN force adopted to give correct threshold
energies of possible cluster configurations as much as possible
is important.

If we fix the distance parameter S for the α-α core and
diagonalize the Hamiltonian shown in Eq. (21), we obtain the
energy eigenvalues for a given S. Namely, we solve[

Ĥ − EJπ

μ (S)
]
�

Jπ μ

AS (S) = 0, (24)

�
Jπ μ

AS (S) =
∑
mK

D
Jπ μ

mK (S)�Jπ μ

mK (S). (25)

The μth eigenvalue EJπ

μ (S) is a function of the relative
distance-parameter S, and a sequence of EJπ

μ (S) forms the
energy surfaces. The energies EJπ

μ (S) and wave functions

�
Jπ μ

AS (S) correspond to the so-called “adiabatic energy surfaces
(AESs)” and “adiabatic states (ASs),” respectively, in atomic
physics. In this report, we call the calculation including all the
possible AO bases labeled by m in Eq. (4) the complete (full)
GTCM calculation in the adiabatic treatment.

III. RESULTS

A. Analysis based on the MO picture

We obtained two 0+ states (0+
1 , 0+

2 ) in a bound region by
solving the eigenvalue problem with the total wave function
in Eq. (4). The excitation energy of 0+

2 is about 2.12 MeV,
which nicely reproduces the recent observation (2.24 MeV)
[10], and we mainly analyze the formation mechanism of
these two states with a close energy spacing. In this section,
we investigate the structures of energy surfaces of the MO
states, (π−

3/2)2(σ+
1/2)2 and (π−

3/2)2(π−
1/2)2, which are dominant

configurations for the 0+
1 and 0+

2 states, respectively, to clarify
the mechanism of the breaking of the N = 8 magic number
in 12Be. In Sec. III A1, we analyze an energy competition
between (π−

3/2)2(σ+
1/2)2 and (π−

3/2)2(π−
1/2)2. There is a large

correlation energy for the former MO induced by the neutrons’
triplet odd pairing. The solutions of the coupled-channel
calculation of (π−

3/2)2(σ+
1/2)2 with correlation and (π−

3/2)2(π−
1/2)2

are shown in Sec. III A2. In Sec. III A3, the comparison of
the MO calculation with the complete GTCM calculation is
discussed.
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1. Correlation energies for the MO states

We calculate energy surfaces of (π−
3/2)2(σ+

1/2)2 and
(π−

3/2)2(π−
1/2)2 by solving the eigenvalue problem with the AO

basis included in Eqs. (13) and (15), respectively, and hence,
the mixing amplitudes of the AOs in each MO configuration
are optimized. The former and latter configurations corre-
spond to the ν(0p)4(1s0d)2 and closed-shell configurations,
respectively, at the limit of S = 0. In Fig. 1, the (1) shows the
result of the pure (π−

3/2)2(π−
1/2)2, while the energy of the pure

(π−
3/2)2(σ+

1/2)2 is shown by curve (A).
On the surface of (π−

3/2)2(σ+
1/2)2 (A), a broad minimum

around S ∼ 4 fm appears, which is more clusterized than that
of (π−

3/2)2(π−
1/2)2 [S ∼ 3 fm in curve (1)]. Therefore, the prolate

deformation is much enhanced in the former configuration
[14,15,17,18]. This is because the σ+

1/2 orbit with an enlarged
distribution along the α-α axis enhances the α clustering so as
to reduce the neutrons’ kinetic energy. However, in this naive
MO model, the energy minimum of (π−

3/2)2(σ+
1/2)2 is much

higher than that of (π−
3/2)2(π−

1/2)2 (1) and, hence, N = 8 is
considered a good magic number.

We consider a correlation on (π−
3/2)2(σ+

1/2)2 based on
naive particle-hole excitation. In the Kπ = 0+ state, the
1p-1h excitation of (σ+

1/2)2 → (σ+
1/2π

+
1/2) gives an important

correlation energy because both σ+
1/2 and π+

1/2 shown in Eqs. (7)
and (12) belong to the 1s0d shells in a naive shell-model
limit with S = 0. There is a similar 1p-1h excitation of
(σ+

1/2)2 → (σ+
1/2π

+
3/2), but this coupling has no effects in the

Jπ = Kπ = 0+ calculation because (σ+
1/2π

+
3/2) has a nonzero

K number, |K| � 1. (σ+
1/2π

+
1/2) has the spin-triplet (s = 1)

configuration, while two neutrons form the spin-singlet (s = 0)

2 3 4 5 6 7
−8

−4

0

S ( fm )

E
ne

rg
y 

( 
M

eV
 )

α + 8He

(A) 

(B) :  (A) + (TO)

(1)

FIG. 1. (Color online) Energy shift for the σ+ orbital (J π = 0+).
Curve (A) represents the energy of the pure (π−

3/2)2(σ+
1/2)2 without any

correlations, while the (B) shows the energy curve of (π−
3/2)2(σ+

1/2)2

with a correlation of the s = 1 configuration, (π−
3/2)2(σ+

1/2π
+
1/2). Curve

(1) shows the surface of the pure (π−
3/2)2(π−

1/2)2. See text for details.

configuration in (σ+
1/2)2. This means that the coupling of these

two MO configurations is mainly induced by the two-body
spin-orbit interaction. The coupling scheme in a shell-model
picture is explained in the following.

In a naive LS-coupling scheme, the s = 0 and s = 1 states
are mainly constructed by the 1s0d-shell orbits such as

|s = 0, (σ+
1/2)2〉 ∼ C(S)|[S ⊗ S]0 ⊗ [1/2 ⊗ 1/2]0〉J=0

+ C(D)|[D ⊗ D]0 ⊗ [1/2 ⊗ 1/2]0〉J=0

(26)

and

|s = 1, (π+
1/2σ

+
1/2)〉 ∼ |[D ⊗ D]1 ⊗ [1/2 ⊗ 1/2]1〉J=0. (27)

Here the ket states denote the two nucleons’ single-particle
state with the LS-coupling scheme, |[l1 ⊗ l2]l ⊗ [s1 ⊗ s2]�〉,
in which li and si represent the orbital and nucleon spin for
the ith neutron (i = 1,2). The symbols of l and � denote the
total spatial and intrinsic spins, and they are totally coupled to
J = 0 in both the s = 0 and the s = 1 states.

The s = 0 state in Eq. (26) includes both a component
of [S ⊗ S]0 and [D ⊗ D]0 with the amplitude of C(S) and
C(D), respectively. This is because the σ+ orbital contains
mainly components of the S-wave and D-wave orbitals.
However, the s = 1 state is mainly constructed by the D-wave
component, [D ⊗ D], because of the angular momentum
coupling. Although the s = 0 state in Eq. (26) contains the two
components of [S ⊗ S] and [D ⊗ D], the latter component
mainly contributes to the matrix element of the two-body
spin-orbit force, 〈s = 1|v̂(LS)|s = 0〉, owing to the similarity
of the radial shape of the wave functions in the bra and ket
states. Therefore, the coupling of the two neutrons in (σ+

1/2)2

(s = 0) to (σ+
1/2π

+
1/2) (s = 1) just corresponds to a kind of

pairing correlation in the D-wave state.
In this paper, we call the coupling to s = 1 the “spin-triplet

pairing.” The spin-triplet state corresponds to the triplet-odd
(TO) state, in which two neutrons move with odd relative spin.
The spin-triplet pairing is a characteristic coupling scheme,
appearing in the σ+ orbital configuration. The effect is quite
large, because the σ+ orbital contains the D-wave component.

The binding energy gain generated by the spin-triplet
pairing can be confirmed in Fig. 1. Curve (B) includes the spin-
triplet (TO) pairing correlation [(A) + TO]. Here, we include
all of the AO configurations needed to form (π−

3/2)2(σ+
1/2π

+
1/2)

and take into account the spin-triplet pairing correlation as
much as possible. By comparing (A) with (B), we can see
the large energy gain (∼4 MeV) owing to the coupling to
the s = 1 configuration. As a result of this energy gain, the
local minimum of (B) comes close to that of (π−

3/2)2(π−
1/2)2 as

shown by curve (1). This is consistent with the result shown
in Refs. [15,18]. Thus, (π−

3/2)2(σ+
1/2)2 can be considered as the

intruder state.
The importance of the TO pairing effect can also be

confirmed in the decomposition of the total energy into kinetic
energy 〈T 〉, central potential 〈Vc〉, and spin-orbit one 〈VLS〉.
Table II shows the decomposition of the energy surface (A) and
(B) in Fig. 1 around the local minimum point of S = 3.6 fm,
which is common distance for both (A) and (B). 〈VLS〉 is
enhanced in (B) with the TO pairing in comparison to (A)
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TABLE II. The expectation values of kinetic energy 〈T 〉, central
interaction 〈Vc〉, and LS interaction 〈VLS〉 around the minimum point
of S = 3.6 fm. The contribution from the Coulomb interaction is
included in 〈Vc〉. (A) and (B) in this table represent the energy
decomposition of the surface (A) and (B) at S = 3.6 fm (Fig. 1),
respectively. All the values are shown in units of MeV.

Surface 〈T 〉 〈Vc〉 〈VLS〉
(A) 200.49 −227.90 −8.02
(B) 200.72 −226.53 −13.47

without the TO pairing, while the other two parts, 〈T 〉 and
〈Vc〉, are almost constants in the results with and without the
TO pairing.

On the contrary, a candidate of a correlation on
(π−

3/2)2(π−
1/2)2 is the coupling of (π−

1/2)2 → (π+
3/2)2 in the Kπ =

0+ state. The former and latter configurations correspond to
(0p)2 and (1s0d)2, respectively, in a spherical shell model.
Therefore, this coupling corresponds to the pairing excitation
from the 0p shell to the 1s0d shell. We included the pairing
excitation for (π−

3/2)2(π−
1/2)2 and found that energy gain (�E)

owing to the pairing excitation of (π−
1/2)2 → (π+

3/2)2 is quite
small, �E < 100 keV, around the local minimum point.
Therefore, the correlation energy for (π−

3/2)2(π−
1/2)2 can be

negligible. This is because the pairing excitation requires the
2h̄ω jump across the major shell. Around the local minimum
point (S ∼ 3.2 fm), the shell gap between the 0p shell and
the 1s0d shell is large, and this large gap leads to the minor
contribution of the second-order perturbation from the pairing
excitation.

We call the MO solutions [curve (B) in Fig. 1] including
the TO correlations “the correlated MO,” which is denoted
by the double quotation mark (“MO”). As a result of the
correlations, the minimum energy of (π−

3/2)2(π−
1/2)2 [ν(0p)6

in the S = 0 limit] becomes comparable to “(π−
3/2)2(σ+

1/2)2”
[ν(0p)4(1s0d)2].

2. Solutions of “(π−
3/2)2(σ+

1/2)2” + (π−
3/2)2(π−

1/2)2

We investigate the coupling of the correlated
“(π−

3/2)2(σ+
1/2)2” and (π−

3/2)2(π−
1/2)2 in Fig. 2. In this

figure, the energy of the correlated “(π−
3/2)2(σ+

1/2)2” [curve
(B)] and the pure (π−

3/2)2(π−
1/2)2 [curve (1)] are shown.

As shown in Fig. 2, a crossing point around S = 3.6 fm
appears in the surfaces of (B) and (1) owing to the energy
gain of the former configuration. In this figure, the black
curves represent the solutions of the coupled channel cal-
culations of (1) + (B), which is equivalent to the calcula-
tion of (π−

3/2)2(π−
1/2)2 + (π−

3/2)2(σ+
1/2)2 + (π−

3/2)2(π+
1/2σ

+
1/2)s=1.

Here we include all the AO bases, which are needed to
construct these three configurations. We can see the large
energy splitting around the crossing point. Owing to the close
energy of (B) and (1), the “(π−

3/2)2(σ+
1/2)2” and (π−

3/2)2(π−
1/2)2

configurations are strongly mixed with each other
around the crossing point. In a naive shell-model picture,
therefore, the ν(0p)6 and ν(0p)4(1s0d)2 configurations coexist
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FIG. 2. (Color online) Energy surfaces of the correlated MO
configurations (J π = 0+). Curve (B) represents the correlated
“(π−

3/2)2(σ+
1/2)2” configuration with s = 1, while curve (1) shows

the pure (π−
3/2)2(π−

1/2)2 configuration. The solid curves show the result
of the coupled channels of (1) and (B).

around the crossing point of S ∼ 3.6 fm. The former config-
uration is dominant in the region of S � 3.6 fm, while the
dominant configuration is replaced by the latter state outside
of the crossing point, S � 3.6 fm.

3. Comparison of the MO picture with GTCM

The coupled-channel calculation of the correlated “MOs”
almost reproduces AESs as shown in Fig. 3. Here the complete
GTCM result is obtained by the coupled-channel calculation of
the 38 AO bases, while, in the the calculation of the correlated
MOs, the 23 AO bases are included. The energies of the
correlated MOs (solid curves) are almost the same as those
of the AESs with the complete basis (dotted curves). The
energy difference between the former and the latter is only
about 0.44 and 0.95 MeV at the local minimum points for the
lowest and second surfaces, respectively. This result means
that the behaviors of the AESs in the full calculation can
be well understood by the coupling between the correlated
“(π−

3/2)2(σ+
1/2)2” and (π−

3/2)2(π−
1/2)2, and the MO bases nicely

work to describe the low-lying 0+ states. GTCM covers the
model space beyond that of the MO picture, but the low-lying
states are almost converged in the MO space.

The individual contributions of the kinetic and potential
energies to the lowest minimum are shown in Table III. In
the naive MO picture without any correlation, the energy of
(π−

3/2)2(π−
3/2)2 denoted by (1) is the lowest around S ∼ 3.2 fm.

In this configuration, the contribution from the spin-orbit
interaction 〈VLS〉 is quite small owing to the cancellation of the
spin-orbit parallel [(π−

3/2)2] and antiparallel [(π−
1/2)2] contribu-

tions. In the full GTCM calculation at the same S, the s = 1 TO
paired configuration is strongly mixed through the coupling
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FIG. 3. The comparison of the AESs obtained by the full model
space with those obtained by the correlated MO configurations (J π =
0+). The dotted and solid curves represent the solutions of the full
calculations and those of the correlated MO, respectively.

of (π−
3/2)2(π−

1/2)2 + (π−
3/2)2(σ+

1/2)2 + (π−
3/2)2(π+

1/2σ
+
1/2)s=1. This

mixture leads to the enhancement of the contribution of 〈VLS〉.
Because the correlated “(π−

3/2)2(σ+
1/2)2” becomes dominant at

the outer region of the crossing point (S � 3.6 fm), which is
shown in Fig. 2, the magnitude of 〈VLS〉 increases further in
the outer region of S � 3.6 fm.

Energy levels are calculated by solving the eigenvalue
equation with the total wave function in Eq. (4), where the
distance parameter S is superposed. In this method, we set a
range of S to be 1.2–6.8 fm with a mesh of �S = 0.4 fm. To
investigate the intrinsic structure of the 0+

1,2 states, we calculate
the squared overlap of the energy levels and the lowest two
adiabatic states, which have dominant components of the pure
(π−

3/2)2(σ+
1/2)2 and (π−

3/2)2(π−
1/2)2 configurations. The squared

overlap of the μth AS, �
μ

AS(S), and the νth energy level, �ν ,

TABLE III. The expectation values of kinetic energy 〈T 〉, central
interaction 〈Vc〉, and LS interaction 〈VLS〉 around the minimum point.
(1) represents the pure MO configuration of (π−

3/2)2(π−
1/2)2 shown

in Fig. 1, while GTCM represents the result of the lowest energy
surface in the complete GTCM calculation. The S means the distance
parameter, at which the energy is calculated. All the values are shown
in units of MeV.

Surface S 〈T 〉 〈Vc〉 〈VLS〉
(1) 3.2 191.59 −232.13 −5.06 × 10−3

GTCM 3.2 193.98 −232.55 −3.62
GTCM 3.6 191.89 −226.13 −7.60
GTCM 4.0 191.92 −221.04 −12.00
GTCM 4.8 185.12 −211.65 −11.97
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FIG. 4. Squared overlap of the ASs [�μ

AS(S), μ = 1, 2] and the
full solutions (�ν , ν = 1, 2). The bottom and top panels show the
result for ν = 1 (0+

1 ) and ν = 2 (0+
2 ), respectively. The distribution

of the ASs are shown by the solid curve (μ = 1) and the dashed
one (μ = 2). The dotted lines represent the crossing point of the
correlated MO state, (1) and (B), shown in Fig. 2. The ©0 and ©2
denote the dominance of 0h̄ω and 2h̄ω, respectively. See text for
details.

are

hμν(S) = ∣∣〈�μ

AS(S)
∣∣�ν

〉∣∣2
, μ = 1, 2, ν = 1, 2. (28)

Here μ = 1 and μ = 2 represent the lowest and second ASs,
respectively, while ν = 1 and ν = 2 correspond to the energy
level of 0+

1 and 0+
2 , respectively. In Fig. 4, the distribution of

the ASs of μ = 1 (solid curves) and μ = 2 (dashed curves) are
shown in both the 0+

1 (ν = 1) and 0+
2 (ν = 2) states. The μ =

1, 2 ASs are dominantly contained in these two energy levels.
From this figure, we understand that the distributions of

the squared overlap spread over a wide region of S. There are
deep minima in the AESs shown in Fig. 3 (Smin = 3.2 fm for
the μ = 1 AES and Smin = 3.6 fm for the μ = 2 AES) but the
amplitudes of the ASs are not localized at the minimum point
and have long-range tails. This means that, in superposing
the distance parameter S, the zero point oscillation appears
in the α-α relative motion, and it is possible to mix other
configurations beyond the optimal distance S. Thus, a single
AS at a local minimum point cannot necessarily describe a
total system.

The 0+
1 state has a large amplitude of the μ = 1 ASs

in the whole distance region; hence, the μ = 1 AS mainly
generates the 0+

1 state. In these distributions, the amplitude
of the outside region is important to characterize the intrinsic
structure because, at the inner region, a strong mixing of ASs
occurs owing to the antisymmetrization effect, which makes
it difficult to interpret the intrinsic structure. Owing to this
difficulty, we focus on the amplitude outside the crossing point
(S = 3.6 fm) of AES (1) and (B). As can be confirmed in Fig. 2,
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in the outside region beyond the crossing point, the μ = 1
AS has the main component of (π−

3/2)2(σ+
1/2)2. In the limit of

S = 0, this MO configuration corresponds to ν(0p)4(1s0d)2

with the 2h̄ω jump from the closed-shell configuration, ν(0p)6.
Thus, we call (π−

3/2)2(σ+
1/2)2 the 2h̄ω state, while (π−

3/2)2(π−
1/2)2,

which has a large amplitude of ν(0p)6, is expressed by the 0h̄ω

state. In Fig. 4, the crossing point is shown by the dotted lines,
and the dominance of 2h̄ω (0h̄ω) is denoted by the symbol of
©2 (©0 ) on the solid (dashed) curve. We can clearly understand
the dominance of the 2h̄ω configuration in the 0+

1 state.
The dominance of the (π−

3/2)2(σ+
1/2)2 in the 0+

1 energy level
can be attributed to the two-body spin-orbit interaction v̂(LS).
Because the energy minimum of the 0h̄ω MO, (π−

3/2)2(π−
1/2)2,

is slightly deeper than that of 2h̄ω MO, (π−
3/2)2(σ+

1/2)2, the
0+

1 state produced from the local minimum region of the
surface (1) + (B) in Fig. 2 should have about 50% (or a
little larger) component of the 0h̄ω MO and 50% (or a
little smaller) component of the 2h̄ω MO. Such an equal
mixture actually happens at the crossing point of (1) and (B),
S = 3.6 fm. However, the large matrix element of the spin-
triplet pairing, 〈(σ+

1/2)2|v̂(LS)|(σ+
1/2π

+
1/2)〉, induces the strong

coupling among the different S, such as (π−
3/2)2(σ+

1/2)2S ↔
(π−

3/2)2(σ+
1/2π

+
1/2)S ′↔ (π−

3/2)2(σ+
1/2)2S ′′ in the perturbation the-

ory. This coupling becomes prominent in the large S region.
Owing to this additional contribution of the spin-triplet pairing,
the mixture of the 2h̄ω states strongly occurs at a large distance
region outside the crossing point, S � 3.6 fm. As a result of
this coupling effect, in the 0+

1 state, a total amount of the
amplitude of the 2h̄ω configuration exceeds that of the 0h̄ω

one, as can be confirmed in Fig. 4.
In contrast to 0+

1 , a large amplitude of the μ = 2 AS exists
in the 0+

2 state. When we notice the outer component, the
μ = 2 AS has the 0h̄ω configuration of (π−

3/2)2(π−
1/2)2, as can

be seen in Fig. 2. Thus, the 0+
2 state can be considered to have

the character of the 0h̄ω state. However, a considerable mixing
of 2h̄ω appears beyond S = 4.2 fm, and the component of 2h̄ω

exceeds that of 0h̄ω at S = 4.6 fm. This means that, in the 0+
2

state, the 0h̄ω and 2h̄ω configurations coexist especially in the
outer region of S � 4.2 fm.

A common feature, which can be seen in both the 0+
1

and 0+
2 states, is that the squared amplitude of the 2h̄ω state

is longer range than that of the 0h̄ω state. This long-range
feature is originated from the extended shape of the σ+

1/2 orbit
along the α-α axis. As shown in Fig. 2, the optimal S for
(π−

3/2)2(σ+
1/2)2 is shifted to the outer region in comparison with

that of (π−
3/2)2(π−

1/2)2, and the former configuration gains the
total energy in the outside region beyond the crossing point.
Because the energy of (π−

3/2)2(σ+
1/2)2 gradually increases as

the distance gets larger, the mixing of 2h̄ω occurs with a
long-range tail in superposing S. Furthermore, at the external
region of S � 5.2 fm, the strong coupling with asymptotic
channel of α + 8Heg.s. occurs because, in GTCM calculation,
the MO configuration smoothly connects to the asymp-
totic channels. This means that the α + 8Heg.s. correlation
cannot be negligible in the energy levels of 0+

1 and 0+
2 . A

detailed investigation on the smooth connection of MO and
the α + 8Heg.s. channel is shown in Ref. [31].

B. Analysis based on the xHe + yHe cluster pictures

In this section, we try to understand the 0+
1 and 0+

2
states based on a simple model similar to a binary clus-
ter model, in which basis functions are restricted to He
clusters with a ground configuration, such as α + 8Heg.s.,
6Heg.s. + 6Heg.s., and 5Heg.s. + 7Heg.s.. In addition to the
ground He clusters, we include the neutrons’ excitations
in the composite He clusters: ν(0p3/2)4 ↔ ν(0p3/2)2(0p1/2)2

for 8He, ν(0p3/2)2 ↔ ν(0p1/2)2 for 6He, and ν(0p3/2)3 ↔
ν(0p3/2)2(0p1/2) ↔ ν(0p3/2)(0p1/2)2 for 7He. The former two
excitations are the pairing excitations, which are considered
the main higher-order correlations in even nuclei.

In Sec. III B1, we show the results of the coupled channel
calculations of the even-even clusters, (α + 8He) + (6He +
6He), and the comparison with the work in Ref. [13] is
discussed. The energy surfaces of 5He + 7He are investigated
in Sec. III B2, and the importance of the odd-odd clusters
is pointed out. The results of the 3 partitions with the pairing
excitations are compared with the complete GTCM calculation
in Sec. III B3.

1. Solutions of (α + 8He) + (6He + 6He)

The energy surfaces calculated with the α + 8He and
6He + 6He configurations including the pairing excitations are
shown in Fig. 5. The energy of 6He + 6He (dotted curve) has
a similar shape to that of α + 8He (dashed curve), although
there is an energy shift by the thresholds. We can see the local
minima around S = 3.5 fm in both cluster configurations. The
clustering is more enhanced than that obtained in Ref. [13],
where the energy minima are obtained at the shell-model limit
of S = 0.
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FIG. 5. (Color online) Energy surfaces of the even-even cluster
configurations (J π = 0+). The dashed and dotted curves show the
energy curves for α + 8He and 6He + 6He, respectively. The solid
curves represent the solutions of the coupled channels between them.
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In our calculation, the parameter of the NN interaction
is optimized for the model space including the α + 8He,
6He + 6He, and 5He + 7He configurations and their intrinsic
excitations (totally 38 channels). In contrast to the present
model, the NN interaction is optimized only within two chan-
nels, such as α + 8Heg.s. and 6Heg.s. + 6Heg.s., in the previous
calculation [13]. In the setting of the present calculation, our
interaction is obtained to be weaker for individual channels,
and the cluster distance is much enhanced.

Strong energy shift occurs when the coupling between these
cluster configurations is switched on. In the solid curves of
Fig. 5, which is the solution of the coupled-channel calculation,
the lowest minimum becomes much deeper than that of
α + 8He, while the second minimum of 6He + 6He disappears
owing to the coupling effect. This means that the excited 0+
state cannot exist close to the ground state in the model space
of (α + 8He) + (6He + 6He) with the pairing excitations.

2. Solutions for (α + 8He) + (6He + 6He) + (5He + 7He)

We consider the effect of the odd-odd cluster, 5He + 7He,
because the calculation of the even-even clusters is insufficient
to reproduce a pair of minima in the energy surface. In Fig. 6,
we show the energy surfaces of 5He + 7He as a function of
an α-α distance parameter. Because the intrinsic spins of 5He
(3/2−) and 7He (3/2−) can couple to the channel spin I =
0 and 2 in an asymptotic region, there are two surfaces for
5He + 7He (the dot-dashed curve for I = 0 and the solid one
for I = 2). In the calculation of the energy, we include the
excitation of valence neutrons in the 0p shell of 7He, such
as ν(0p3/2)3 → (0p3/2)2(0p1/2) → (0p3/2)(0p1/2)2. The total
of these neutrons’ configurations couple to an intrinsic spin
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Dash :       +8Heα
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FIG. 6. (Color online) Comparisons of the energy surfaces for
the cluster configurations of xHe + yHe (J π = 0+). The dashed
and dotted curves represent the energy of α + 8He and 6He + 6He,
respectively, while the solid and dot-dashed ones represent the result
of 5He + 7He with I = 2 and I = 0, respectively.

of 3/2. For a comparison with 5He + 7He, the energies for
α + 8He (dashed curve) and 6He + 6He (dotted curves), which
are the same as those shown in Fig. 5, are plotted in Fig. 6.

In the asymptotic region (large S), the two 5He + 7He
configurations with I = 0, 2 degenerate, and their energies
are higher than those of the even-even cluster configurations.
This is because a pair of neutrons are broken in 5He + 7He,
and 5He + 7He loses the neutrons’ pairing energy. In the small
α-α distance, the valence neutrons in 5,7He overlap and they
interact with each other. Thus, the pairing energy among four
neutrons is recovered, and the energy minima of 5He + 7He
are comparable to those of α + 8He and 6He + 6He. Therefore,
the coupling with the odd-odd cluster configuration becomes
important in the interaction region.

To see the coupling effect between the even-even partitions
and the odd-odd ones more clearly, in Fig. 7 we compare
the energy curves calculated with the different model spaces:
two partitions of (α + 8He) + (6He + 6He) (dotted curves)
and 3 partitions of (α + 8He) + (6He + 6He) + (5He + 7He)
(solid ones). In this calculation, the internal excitations of
6−8He are mainly restricted to the neutrons’ pairing excitations
[ν(0p3/2)2 → (0p1/2)2] as we have seen in the previous
sections.

In the lowest surface, the energy minimum becomes lower
as the model spaces are increased in the calculation. Moreover,
we can see the distinctive difference in the comparison of the
dotted curves with the solid ones. In the solid curve calculated
by the restricted 3 partitions, local minimum is generated in the
excited curve, while there is no minimum in the excited curve
of the 2 partitions (dotted curve). This result means that the
coupling with 5He + 7He is important in the formation of a pair

2 3 4 5 6 7
−8

−4

0

4

8

S ( fm )

E
ne

rg
y 

( 
M

eV
 )

α + 8He

Dotted : 2 partitions
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FIG. 7. Comparisons of the energy surfaces calculated by the
various cluster configurations (J π = 0+). The dotted and solid curves
represent the results of the coupled channel calculation of (α +
8He) + (6He + 6He) and (α + 8He) + (6He + 6He) + (5He + 7He),
respectively. The solid circles show the minimum points. The dotted
curves are the same as those shown in Fig. 5.
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of two minima for the low-lying 0+ states qualitatively. This is
consistent with the results in the previous sections, showing the
superiority of the MO picture, in which (α + 8He) + (6He +
6He) + (5He + 7He) are coherently mixed with each other, to
describe the low-lying 0+ states.

3. Comparison of the cluster picture with GTCM

The coupled channels of the 3 partitions plus the neutrons’
excitation reproduce the results of the complete GTCM quali-
tatively. The comparison of the 3 partitions with the complete
GTCM calculation is shown in Fig. 8. Here the complete
GTCM calculation (dotted curves) includes 38 AO bases, while
the calculation of the 3 partitions (solid curves) corresponds to
the coupled channel with 11 channels: two channels in α +
8He with 8He[(0p3/2)4 → (0p3/2)2(0p1/2)2], three channels
in 6He + 6He with 6He[(0p3/2)2 → (0p1/2)2], and six chan-
nels in 5He + 7He with 7He[(0p3/2)3 → (0p3/2)2(0p1/2) →
(0p3/2)(0p1/2)2].

The calculation with 11 channels can generate the double
minima appearing in the complete GTCM calculation. To in-
vestigate the effect of 5He + 7He more clearly, we decompose
the total energy of the lowest energy surface into kinetic 〈T 〉
and potential 〈V 〉 energies, which are shown in Table IV. Here
the total energy Etot is defined by Etot = 〈T 〉 + 〈V 〉 − Ein,
where Ein denotes the summation of the internal binding
energy of α and 8Heg.s.. Individual contributions are calculated
for three kinds of partitions: 1 partition with α + 8He, 2
partitions with (α + 8He) + (6He + 6He), and 3 partitions with
(α + 8He) + (6He + 6He) + (5He + 7He).

The absolute value of 〈V 〉 decreases by about 2–3 MeV as
the partitions increase (1 → 2 → 3), because the neutrons’
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FIG. 8. Comparisons of the energy surfaces of the restricted
cluster configurations with those of the full AESs (J π = 0+). The
solid curves represent the results obtained by the coupled channels
of the restricted clusters, while the dotted ones represent those of the
full GTCM calculation.

TABLE IV. The expectation values of kinetic 〈T 〉 and potential
energies 〈V 〉 with respect to the clusters’ internal energy Ein at
the minimum points Smin in the lowest energy surface. The result
of “1 partition” represents the calculation with the single partition
of α + 8He, while “2 partitions” and “3 partitions” represent the
result of (α + 8He) + (6He + 6He) and (α + 8He) + (6He + 6He) +
(5He + 7He), respectively. The latter two results correspond to the
solid circles shown in Fig. 7. The “Correlated MO” represents the
result obtained by the correlated MO basis, which is shown in Fig. 3,
while “GTCM” represents the complete calculation. Etot denotes the
total binding energy of 〈T 〉 + 〈V 〉 − Ein. All the values are shown in
units of MeV. The optimal S values are also shown.

Surfaces Smin 〈T 〉 〈V 〉 − Ein Etot

1 Partition 3.2 212.13 −213.69 −1.56
2 Partitions 3.4 207.33 −211.38 −4.05
3 Partitions 3.6 202.01 −208.67 −6.66
GTCM 3.2 193.98 −202.24 −8.26
Correlated MO 3.2 194.91 −202.73 −7.82

(0p)4 configuration inside 8He is broken by the neutron’s
exchange to the other α particle. However, the kinetic energy
is largely reduced by this neutron’s rearrangement effect, and
the optimal distances (Smin) between two α particles are also
enhanced, which is also confirmed in Fig. 7 (solid circles).
This is because the moving space for the valence neutrons is
extended by including the neutrons’ rearrangement channels.
The reduction is about 5 MeV at intervals of 1 partition
increase. In the result of the 3 partitions, the reduction of 〈T 〉
overcomes the loss of potential energy. This result is consistent
to that obtained in 10Be [14], but the magnitude of the energy
gain is much larger in 12Be than that in 10Be.

The system gains total binding energy by the neutrons’
rearrangements, but the energy surfaces obtained by the 3
partitions (11 channels) considerably deviate from the AESs
of the complete GTCM in the whole region, as can be
confirmed in Fig. 8. The deviations at the optimal distances
amount to about 2 and 5 MeV for the lowest and second
surfaces, respectively. In the energy decomposition for the
lowest surface of GTCM, shown in Table IV (the second row
from the bottom), the further reduction of 〈T 〉 and loss of
〈V 〉 appears at the minimum point by comparison with the
restricted 3 partitions. The reduction of 〈T 〉 reaches about
8 MeV, while the loss of 〈V 〉 is about 6.4 MeV. This result
means that, in the calculation of the restricted 3 partitions,
sufficient reduction of the kinetic energy cannot be obtained
although such a reduction is partially included in the neutrons’
rearrangements.

In the restricted calculation, the neutrons’ configurations
are limited mainly to the pairing excitation, which keeps the
neutrons’ distributions spherical around one of the α cores.
Such spherical distributions around one side cannot necessarily
give a sufficient reduction of the neutrons’ kinetic energy in the
two-center system of α + α, which has a strongly deformed
prolate shape. This is because, in a total of the neutrons’
distribution, a nonsmoothing neck is always formed by the
contact of two spherical nuclei.

014302-11



M. ITO, N. ITAGAKI, AND K. IKEDA PHYSICAL REVIEW C 85, 014302 (2012)

On the contrary, in Fig. 3, we have found that the calculation
with the correlated MO basis can nicely reproduce the energies
of the full GTCM calculation for the whole distance. The
largest energy difference is only about 0.4 MeV at the optimal
distance of S = 3.2 fm. The decomposition of the total energy
obtained by the correlated MO calculation is shown in the
lowest row of Table IV. Both 〈T 〉 and 〈V 〉 nicely reproduce
the individual contributions of GTCM. In the MO picture,
therefore, the kinetic energy is sufficiently reduced. In the
ground state, a dominant MO is σ+

1/2. Because this orbit
is strongly elongated along two α cores, it has a smooth
distribution conforming to the α + α shape. Such a smooth
distribution leads to an extra reduction of kinetic energies for
a neutron’s orbit by comparison with a neck distribution with
two spherical nuclei, corresponding to the 3 partitions plus the
pairing excitations.

C. Rotational band structures

In this section, we extend the calculation of GTCM, which is
similar to the calculation in Sec. III A3, to the finite spin J , and
the rotational band structure is mainly investigated. Here the
intrinsic K quantum number in Eq. (4) is restricted to zero, and
the range of S is taken to be 1.2–8.8 fm with a mesh of �S =
0.4 fm. The maximum spin of the bands gives an important
information on the breaking of N = 8 magic number. In the
naive shell model, the spins at the band termination are Jπ =
2+ and Jπ = 8+ for ν(0p)6 and ν(0p)4(1s0d)2, respectively.

First, the band structures are calculated by the restricted
basis of He clusters. In Fig. 9, the solid lines show the rotational
bands obtained by solving the restricted coupled-channels of
the 3 partitions plus the neutrons’ excitations in 6−8He. In
the Jπ = 8+ state, the local minimum of the energy surface
becomes quite shallow, and the resultant energy level strongly

−10

−5

0

5

10

15

20

J ( J+1 )

E
ne

rg
y 

( 
M

eV
 )

 4He + 8He

 6He + 6He

0 6 20 42 72

(    )

FIG. 9. Comparison of the restricted coupled-channels among the
α + 8He, 6He + 6He, and 5He + 7He clusters with the experimental
spectra. The diamonds and the double triangles are taken from
Refs. [9,10], respectively, while the solid triangles and the cross are
from the data in Refs. [7,32]. The parentheses represent the tentative
spin assignment.

TABLE V. Energies of the yrast bands and the 0+
2 state. The

energy of 0+
1 is measured from the α + 8Heg.s. threshold, while the

other values represent the excitation energies from the 0+
1 state. “He

cluster” and GTCM mean the calculation of the restricted 3 partitions
and the complete GTCM, respectively. The deviation of the threshold
energy of 6Heg.s. + 6Heg.s. from the experiment (∼1.3 MeV shown in
Table I) is added to the energy with the asterisk (20.9 + 1.3). All the
energies are written in units of MeV.

0+
1 0+

2 2+ 4+ 6+ 8+

He-cluster −8.1 5.2 2.8 8.3 15.9 –
GTCM −9.3 2.1 3.0 7.7 13.9 21.8
Experiment −9.0 2.2 2.1 5.7 – 22.2∗

couples to the continuum state. Owing to the coupling with the
continuum, it is difficult to identify the level as a physical state.
Thus, we do not show this state in the figure. In this figure,
the experimental data are also shown by the diamonds [9], the
double triangle [10], the solid triangle [7], and the cross [32].
The experimental data in parentheses represent the tentative
spin assignment, and the data shown by the cross is plotted
with respect to the 6Heg.s. + 6Heg.s threshold.

A pair of bands are obtained, and the spin of the ground
band is beyond Jπ = 2+, which is expected from the nor-
mal configuration of ν(0p)6. This result suggests that the
ground band includes the large component of ν(0p)4(1s0d)2,
corresponding to the intruder MO state, (π−

3/2)2(σ+
1/2)2 in the

S = 0 limit. However, the energy positions of the obtained
bands are systematically higher than those of the experimental
observations.

In the second row of Table V, the calculated energy values
of the yrast bands and 0+

2 are shown. Here the level of Jπ = 8+
is not shown owing to the coupling with the continuum. The 0+

1
state is a little underbinding (about 1 MeV) by comparison with
the experiment (lowest row) but the difference is prominent
in the 0+

2 and the high spin region of the ground band; the
energy deviation for 0+

2 amounts to about 3 MeV, while
that for the Jπ = 4+ state is about 2.6 MeV. Therefore,
the energy gain for the low-lying states is not sufficient in the
calculation of the restricted 3 partitions, as we have pointed out
in Sec. III B3, where the reduction effect of the kinetic energy is
investigated.

Second, we show the rotational bands obtained by the
complete GTCM calculation in Fig. 10. Because the GTCM
calculation can be perfectly simulated by the correlated MO
basis, as we have proven in Fig. 3 and Table IV, the bands
calculated by the correlated MO bases are almost identical
to the bands calculated by the complete GTCM in Fig. 10.
The intruder MO, (π−

3/2)2(σ+
1/2)2 with the maximum spin of

Jπ = 8+, becomes dominant in the ground band (circles) when
the spin-triplet correlation discussed in Sec. III A1 is taken into
account. Furthermore, the difference of the energies between
the calculated bands and the observed spectra is improved, and
the observed energy-spin systematics is nicely reproduced. In
particular, the Jπ = 8+ state, which is not clearly identified
in the binary He cluster treatment, is obtained just at the
observed energy position by the full GTCM calculation. In
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FIG. 10. Bands of the full GTCM calculation. The white symbols
show the dominant component in individual bands. The diamonds,
triangles, and cross represent the experimental data taken from
Refs. [7,9,10,32].

the calculation with the correlated MO basis, a definite local
minimum appears in Jπ = 8+ in contrast to the calculation
with the restricted He-cluster basis. Therefore, the Jπ = 8+
state can be clearly identified as a physical state.

The binding energy of 0+
1 and the excitation energies of

the yrast band are shown in the third row of Table V. The
deviation between the calculated energies and the experimental
ones is smaller than about 2 MeV. These results mean that
the correlated “MO” structures can explain the dominance
of the intruder MO state of (π−

3/2)2(σ+
1/2)2 configuration in

the ground state, which leads to the breaking N = 8 magic
number. Unfortunately, experimental information in the high
spin region (Jπ � 4+) is still lacking. Thus, to discuss the
breaking of the magic number more deeply, identifying the
energy levels and their spins in the region of Jπ � 4+ is
strongly desired.

IV. SUMMARY AND DISCUSSION

In summary, we have studied the lowest two MO con-
figurations, which are important for the low-lying 0+ states,
and explored mechanism for quenching N = 8 closure in the
12Be nucleus from the viewpoint of two different pictures
based on the cluster model: the covalent MO picture and the
ionic He-cluster one. For this purpose, we have introduced a
microscopic model, the GTCM [17,18]. In this model, it is
possible to describe both the covalent and the ionic features of
systems with two inert cores plus valence nucleons, because
all partitions of valence nucleons are explicitly taken into
account.

We explored the structure of the energy surfaces for the
Jπ = 0+ states and showed channel coupling schemes. In the
covalent MO picture, a competition between (π−

3/2)2(π−
1/2)2

and (π−
3/2)2(σ+

1/2)2, which correspond to the normal ν(0p)6

and ν(0p4)(1s0d)2 configurations, respectively, occurs in the

energy surface. The correlation of the spin-triplet pairing
mainly gives rise to the binding-energy gain for the latter con-
figuration, while the correlations for the former configuration
can be negligible. As a result of the spin-triplet correlation, the
energy difference between these two configurations is reduced,
and a pair of two 0+ states are naturally obtained.

On the contrary, a pair of the 0+ states is not obtained in the
coupled channel between α + 8He and 6He + 6He. This result
means that the full solutions with the pair 0+ state cannot be
simulated by a simple coupled channel of the cluster basis with
the even-even partitions. The energies of 5He + 7He are higher
than those of the even-even clusters in the asymptotic region
owing to breaking the neutrons’ pair but, in the interaction
region, the pairing interaction between one neutron in 5He and
three neutrons in 7He recovers. As a result of this recovery
of the pairing interaction, the energies of 5He + 7He become
almost the same as in the even-even clusters, and coherent
coupling among 5He + 7He and the even-even states occurs.
This coherent coupling plays an important role in the formation
of the pair of 0+ levels in the low-lying region.

In the formation of the low-lying states in 12Be, the MO
model gives a nice picture as expected in the studies of
the MO model for 10,12Be [14,15]. The superiority of the
MO basis is consistent with the coherent mixing among the
odd-odd clusters and the even-even ones because the MO
configurations are always constructed by linear combinations
of possible neutrons’ partitions. This means that not only
even-even clusters, which have already been considered in
previous binary cluster models, but also odd-odd ones must
be taken into account in handling MO structures of neutron
excess systems. In both the MO and the He-cluster pictures, a
common mechanism for a binding energy gain is reduction of
the neutrons’ kinetic energy. In the MO picture, σ+

1/2 enhances
the α-α clustering, and the kinetic energy is reduced by a
formation of smooth neutrons’ distribution conforming to a
well-developed two-α distribution. In the binary He-cluster
picture, different partitions strongly couple to each other
because the MO configuration is optimal for the total system.
This coupling increases the moving space of neurons and leads
to the reduction of kinetic energy.

The competition between (π−
3/2)2(σ+

1/2)2 and (π−
3/2)2(π−

1/2)2

is also confirmed in the formation of the rotational band
structures. Owing to the spin-triplet pairing correlation, the
former state becomes the yrast band. In the He-cluster
picture, the inclusion of the 5He + 7He states plays an
important role for the inversion of the lowest two rotational
bands.

It is instructive to compare the present calculation of the
cluster basis with that in Ref. [13]. The ground band in
Ref. [13] corresponds to the simple ν(0p)6 shell-model limit
(zero α-α distance) of α + 8Heg.s. and 6Heg.s. + 6Heg.s. and the
ground band terminates at Jπ = 2+. However, the clustering
is enhanced in the present model, and a maximum spin of
the present ground band goes beyond Jπ = 2+. This result
means that the ν(0p)6 configuration is broken in the present
cluster model. In the present calculation, the NN interaction
is optimized in larger model space than that in Ref. [13]. The
difference on the ground band property could be attributed
to a setting of the model space in the calculations and the
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effective NN interaction optimized in the employed model
space.

Our global subject is a unified study from bounds to
continuum but, in the present study, we focused on the
properties of the yrast and first excited bands. By employing
GTCM, which can handle both MO structures and their
separation to binary cluster structures, we have confirmed that
the MO picture works nicely for the low-lying yrast bands. In
our recent studies, however, we have pointed out a possibility
that the other structures, such as the binary cluster structures,
are favored in a continuum energy region [19–21,33]. Above
the α decay threshold, prominent resonances, strongly de-
caying into 6Heg.s. + 6Heg.s. and α + 8Heg.s., were observed
[32,34,35]. Therefore, extending the present studies to the
highly excited region, where the coupling to the scattering

continuum plays important roles, is interesting. A detailed
analysis on the continuum states of 12Be is now under
way.
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Lett. 87, 192501 (2001); Y. Funaki, A. Thosaki, H. Horiuchi,
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[25] P. Navrátil, C. A. Bertulani, and E. Caurier, Phys. Rev. C 73,
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