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Bound-state-like wave functions are used to determine the scattering matrix corresponding to low-energy n-d
and p-3He collisions. To this end, the coupled-channel form of the integral relations derived from the Kohn
variational principle is used. The construction of degenerate bound-state-like wave functions belonging to the
continuum spectrum of the Hamiltonian is discussed. Examples are shown using realistic nucleon-nucleon forces.
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I. INTRODUCTION

Well-established methods to treat both bound and scattering
states in A = 3, 4 systems are the solution of the Faddeev (A =
3) or Faddeev-Yakubovsky (A = 4) equations in configuration
or momentum space and the hyperspherical harmonic (HH)
expansion in conjunction with the Kohn variational principle
(KVP). These methods have proven to be of great accuracy,
and they have been tested through different benchmarks [1,2].
On the other hand, other methods are presently used to describe
bound states: for example, the Green’s function Monte Carlo
(GFMC) and no-core shell model (NCSM) methods have been
used in nuclei up to A = 10 and A = 12, respectively [3,4].
Attempts to use these methods in the description of scattering
states recently appeared [5,6].

The possibility of employing bound-state techniques to
describe scattering states has always attracted particular
attention [7]. Recently, continuum-discretized states obtained
from the stochastic variational method have been used to
study single-channel α + n scattering [8]. The extension to
treat coupled-channel scattering is given in Ref. [9]. In those
approaches, the tangent of the phase-shift results in a quotient
of two numbers. In the former the numerator and denominator
are obtained from two integral relations after projecting the
Schrödinger equation, whereas in the latter the numerator
results from an integral relation derived by means of the
Green’s function formalism and the denominator results from
the normalization of the continuum-discretized state.

Recently, two integral relations have been derived from
the KVP [10]. It has been shown that starting from the KVP,
the tangent of the phase-shift can be expressed as a quotient
where both the numerator and the denominator are given as
two integral relations. This is similar to what was proposed in
Ref. [7]; however, the variational character of the quotient
and its strict relation with the KVP were not recognized.
In fact, it is this characteristic that makes possible many
different and interesting applications of the integral relations.
For example, in Ref. [11], the integral relations have been
used to compute phase shifts from bound-state-like functions
in the A = 2, 3 systems using semirealistic interactions. Both
n-d and p-d scattering were considered. The latter process
is of particular interest since p-d scattering at low energies
has been the subject of intense investigations. Initially, the

Faddeev method was applied mainly to the neutral n-d
reaction. Applications to p-d zero-energy scattering were
studied in configuration space by the Los Alamos–Iowa group
using s-wave potentials [12] and realistic forces [13]. In
those calculations the KVP was used to correct the first-order
estimate of the scattering length after solving the Faddeev
equations in which the partial-wave expansion of the Coulomb
potential was truncated. Low-energy p-d elastic scattering has
been studied using the pair-correlated hyperspherical harmonic
(PHH) expansion [14,15] as well. A benchmark between these
two techniques was given in Ref. [16]. A different way to
treat the Coulomb potential in few-nucleon scattering was
proposed in Ref. [17] based on the works of Ref. [18], in
which the Alt-Grassberger-Sandhas equations were solved
using a screened Coulomb potential and then the scattering
amplitude was obtained after a renormalization procedure. A
benchmark for elastic p-d scattering up to 65 MeV between
this technique and the PHH expansion using the KVP has been
performed [19].

Summarizing, the description of scattering states using
very accurate methods are at present circumscribed to A � 4
systems. On the other hand, accurate methods to describe
bound states beyond the A = 4 mass system exist. Therefore
the discussion of new methods to extend these approaches
to treat scattering states is of interest. In this discussion the
treatment of the Coulomb interaction cannot be neglected. In
the present work we would like to show a detailed application
of the integral relations derived from the KVP in which
A = 3, 4 bound-state-like wave functions are used to compute
the scattering matrix using realistic nucleon-nucleon NN

potentials. In particular, we face the problem of constructing
degenerate bound-state wave functions at a given energy E

belonging to the continuum spectrum of the Hamiltonian. In
fact, in the A = 3 system, the elastic-scattering matrix is a
2 × 2 matrix for Jπ = 1/2± and a 3 × 3 matrix for all the
other states. This means that, at energies below the deuteron
breakup threshold, there are two (for Jπ = 1/2±) or three
(for J > 1/2) scattering states at the same energy differing
in their asymptotic structure. For example, in the Jπ = 1/2+
state, two different asymptotic structures exist, corresponding
to (L, S) = (0, 1/2) or (2, 3/2), where L is the relative angular
momentum between the deuteron and the incoming nucleon
and S is the total spin S. Therefore, at a given energy, the
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two scattering states have a particular combination of the two
different asymptotic structures determined by the scattering
matrix. In this paper we discuss how to construct degenerate
bound-state wave functions at a particular energy belonging
to the continuum spectrum of the Hamiltonian. Moreover,
these states will be used in the integral relations to compute
the scattering matrix. Examples using realistic forces in the
A = 3, 4 systems will be shown. We expect that this study
will serve as a guide for calculating scattering states in systems
with A > 4.

This paper is organized as follow. In the next section general
A = 3, 4 bound-state wave functions are constructed using the
HH expansion. In Sec. III, a brief derivation of the KVP given
in terms of the integral relations is discussed. Applications to
the A = 3, 4 systems are shown in Sec. IV, and the conclusions
are given in the last section.

II. A = 3, 4 BOUND-LIKE STATES WITH
ARBITRARY Jπ VALUES

Following Refs. [14,20–22], we give a brief description of
a general three- and four- nucleon bound state in terms of
the hyperspherical harmonic basis. In the case of A = 3, a
bound-state wave function can be written as a sum of three
amplitudes:

� = ψ(xi , yi) + ψ(xj , yj ) + ψ(xk, yk), (1)

where xi , yi are the internal Jacobi coordinates, which are
defined in terms of the particle coordinates as

xi = rj − rk , yi = 1√
3

(rj + rk − 2ri). (2)

Each i amplitude has total angular momentum and parity Jπ

and the third component of the total isospin Tz. Using LS

coupling, it can be decomposed into channels:

ψ(xi , yi) =
Nc∑
α

φα(xi, yi)Yα(jk, i) (3)

Yα(jk, i) = {[
Y�α

(x̂i)YLα
(ŷi)

]
�α

[
sjk
α si

α

]
Sα

}
JJz

[
t jk
α t iα

]
TαTz

,

(4)

where xi, yi are the moduli of the Jacobi coordinates. Each
α channel is labeled by the angular momenta �α, Lα , coupled
to �α , and by the spin (isospin) s

jk
α (t jk

α ) of the pair j, k,
coupled to the spin (isospin) of the third particle si

α (t iα) to give
Sα (Tα). Nc is the number of channels taken into account in
the construction of the wave function and should be increased
until convergence is reached. The antisymmetrization of the
state requires that �α + s

jk
α + t

jk
α be odd, while the parity of

the state is given by �α + Lα .
Defining the hyperradius and hyperangle in terms of the

moduli of the Jacobi coordinates,

xi = ρ cos φi, yi = ρ sin φi, (5)

the two–dimensional spatial amplitudes can be expanded in
terms of the PHH basis as

φα(xi, yi) = ρ�α+Lαfα(xi)

[∑
K

uα
K (ρ)(2)P

�α,Lα

K (φi)

]
, (6)

where the hyperspherical polynomials are

(2)P
�α,Lα

K (φi) = N�α,Lα

n (sin φi)
Lα (cos φi)

�α

×P Lα+1/2,�α+1/2
n (cos 2φi). (7)

N�α,Lα
n is a normalization factor, P

α,β
n is a Jacobi polynomial,

and K = �α + Lα + 2n is the grand orbital quantum number,
which runs from its minimum value K0 = �α + Lα to its
maximum selected value Kα . Therefore, the number of
hyperradial functions per channel is Mα = (Kα − K0)/2 + 1.
The inclusion of the pair-correlation function fα(xi) in the
expansion of Eq. (6) accelerates the convergence, taking into
account the correlations introduced by the strong repulsion of
the NN potential (see, for example, Ref. [20]).

In the case of the four-nucleon system we use the HH
expansion as described in Ref. [23]. The wave function having
total angular momentum J and parity π can be cast in the form

� =
∑
[K]

∑
α

uα
[K](ρ)�[K]

α , (8)

where [K] ≡ K,�, S, T and �[K]
α are the channel HH-spin-

isospin functions having grand angular momentum K and
orbital angular momentum �, coupled to total spin S, to give a
total angular momentum JJz and total isospin T . The channel
index α labels the possible choices of hyperangular, spin, and
isospin quantum numbers, namely,

α ≡ {�1, �2, �3, L2, n2, n3, Sa, Sb, Ta, Tb}, (9)

which are compatible with the given values of K , �, S, T , J ,
and π . The channel function �[K]

α is constructed as a linear
combination of the following basis elements:

�[K]
α = {

YK,�,M
�1,�2,�3,L2,n2,n3

(�)[[[s1s2]Sa
s3]Sb

s4]SSz

}
JJz

× [[
[t1t2]Ta

t3
]
Tb

t4
]
T Tz

. (10)

Here YK,�,M
�1,�2,�3,L2,n2,n3

(�) is the four-nucleon HH state, si (ti)
denotes the spin (isospin) function of particle i, and � indicates
the set of the four-nucleon hyperangular variables. The total
parity of the state is given by π = (−1)�1+�2+�3 .

In the present work the A = 3, 4 hyperradial functions
uα

[K](ρ) are taken as linear combinations of Laguerre poly-
nomials multiplied by an exponential function:

uα
[K](ρ) =

∑
m

Aα,[K],mL(γ )
m (z) exp(−z/2) , (11)

where Aα,[K],m are coefficients to be determined and the indices
α, [K] label either a three-nucleon or a four-nucleon channel.
The polynomials depend on the variable z = βρ, where β is
a nonlinear variational parameter. Let us define |α, [K],m〉 as
a totally antisymmetric element of the expansion basis for the
A = 3, 4 systems. In terms of the basis elements, the bound-
state wave functions given in Eqs. (1) and (8) can be written
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as

�n =
∑

α,[K],m

An
α,[K],m|α, [K],m〉. (12)

The index n indicates the level of the state with energy En. The
linear coefficients An

α,[K],m of the wave function and the energy
of the state are obtained by solving the following generalized
eigenvalue problem:∑

α′,[K ′],m′
An

α′,[K ′],m′ 〈α, [K],m|H − En|α′, [K ′],m′〉 = 0.

(13)

In Eq. (13) the dimension of the involved matrices is related
to three indices: the number of α channels Nc, the number
of hyperspherical polynomials for each channel Mα , and
NL, which is the number of Laguerre polynomials included
in the expansion of the hyperradial functions of Eq. (11).
The convergence properties of the expansion are analyzed by
increasing the indices K,m and studying the stability obtained
for different values of the nonlinear parameter β. The ground
state of the three-nucleon system has total angular momentum
and parity Jπ = 1/2+, and with Nc = 18 an accuracy of
1 keV is reached [21,24]. The corresponding dimension of
the PHH basis is D ≈ 2200, considering Mα = 8 for the first
eight channels, Mα = 6 for the successive six channels, and
Mα = 4 in the last ones and including NL ≈ 20 Laguerre
polynomials in the description of the hyperradial functions.
After the diagonalization of the whole matrix, D eigenvalues
are obtained. The lowest one corresponds to the three-nucleon
ground state, and with the very extended basis used, it shows
a noticeable stability with β. A certain number of negative
eigenvalues verifying En > Ed (with Ed the deuteron energy)
also appear. Defining the positive energy E0

n = En − Ed ,
the corresponding eigenvectors �n approximately describe a
scattering process at the center-of-mass energy E0

n, though
asymptotically they go to zero. The eigenvalues En present a

monotonic behavior with β, as shown in Fig. 1(a), where the
AV14 NN potential [25] has been used.

In Fig. 1(b) the lowest eigenvalues obtained from a diag-
onalization of the Jπ = 1/2− state are shown. As expected,
this state is not bound, though several negative states appear
with energies in the interval Ed < En < 0, characterized
with a monotonic behavior with β. As before, these states
approximately describe a scattering process at the center-of-
mass energy E0

n. In Fig. 1 the deuteron energy is indicated
by the dotted line, whereas the three dashed lines indicate
the laboratory energies Elab = 1, 2, 3 MeV. Interestingly, the
energies of the Jπ = 1/2− state appear in pairs. This can be
understood by noticing that the Jπ = 1/2− scattering states
are twofold degenerate at a given energy, as the scattering
matrix has a dimension of 2. This degeneration arises from the
two possible asymptotic configurations in which the relative
angular momentum of the deuteron and the third nucleon is
L = 1 and the total spin can take the values S = 1/2 and 3/2.
Also the Jπ = 1/2+ state is twofold degenerate, having two
possible asymptotic configurations with the values L = 0, S =
1/2 and L = 2, S = 3/2. However, in this case, the different
L values produce different contributions to the kinetic energy,
with the consequence that the two degenerate states appear
with a larger separation compared to the Jπ = 1/2− case.
However, this difference reduces as the basis is enlarged.

To analyze further the hypothesis that the states organize
in pairs corresponding to the two different asymptotic con-
figurations in both Jπ = 1/2± states, in Table I the different
occupation probabilities are given. For the Jπ = 1/2+ state the
occupation probabilities of the S, P , and D waves, PS, PP ,
and PD , have been computed. The E0 level corresponds
to the ground state, and the successive levels organize in
mostly S-wave (E1 and E3) and mostly D-wave (E2 and
E4) states, alternatively. In the case of the Jπ = 1/2− state,
the occupation probabilities of the P wave with total spin
values S = 1/2 and 3/2, P

1/2
P , and P

3/2
P , and PD have been
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FIG. 1. (Color online) The lowest A = 3 eigenvalues, using the AV14 potential, for (a) the J π = 1/2+ and (b) J π = 1/2− states as a
function of the nonlinear parameter β. The solid black line in (a) represents the triton energy, whereas the colored (gray) lines indicate the
eigenvalues embedded in the continuum as explained in the text. The dot-dashed line represents the deuteron energy, and the dashed lines
indicate the laboratory energies Elab = 1, 2, 3 MeV.
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TABLE I. Occupation probabilities of the different states shown
in Fig. 1 at β = 2.5 fm−1 (J π = 1/2+) and β = 2.0 fm−1 (J π =
1/2−).

J = 1/2+ PS(%) PP (%) PD(%)

E0 90.96 0.08 8.97
E1 90.04 0.00 5.96
E2 1.22 2.72 96.06
E3 94.20 0.00 5.80
E4 1.21 2.70 96.09

J = 1/2− P
1/2
P (%) P

3/2
P (%) PD(%)

E1 3.36 94.87 1.77
E2 93.80 3.42 2.78
E3 3.47 94.71 1.82
E4 93.42 3.86 2.72
E5 4.32 93.87 2.01
E6 92.72 4.77 2.51

computed. From Table I we can observe that the levels organize
in pairs, with one of the states being mostly a P -wave state
with S = 1/2 and the other being mostly a P -wave state with
S = 3/2. This organization is indicated in Fig. 1 with colored
(gray) lines. For the Jπ = 1/2+ the E0 level, shown as a
black solid line, is practically constant with β. The levels
with high L = 0 (L = 2) occupation probability are given
in solid red line (dot-dashed blue line). In the case of the
Jπ = 1/2−, the levels with high P

3/2
P (P 1/2

P ) probabilities are
given in red (blue). For small values of β the spectrum tends
to be denser since, in this case, the polynomials can contain
more oscillations before the action of the exponential tail
becomes significant. As β increases, the number of negative
eigenvalues decreases. In the case in which a bound state
exists, as in the case of the Jπ = 1/2+ state, the basis is
sufficiently large to guarantee a correct description of it as
the control parameter β is varied. As we will see, the wave
functions �n corresponding to energy levels Ed < En < 0
can be used to determine the scattering matrix at specific
energies.

In the case of the A = 4 system we analyze the single-
channel Jπ = 0+ state with T = Tz = 1, corresponding to
the p-3He system. Using the N3LO-Idaho potential [26],
the Hamiltonian matrix has a total dimension D ≈ 84 000,
obtained expanding the wave function on the HH basis, as
as previously described, with Kmax = 44, corresponding to
about 3500 HH states, and NL = 24. For this values of D, the
matrix can be diagonalized using standard iterative methods. In
Fig. 2 the first eigenvalue is shown as a function of the control
parameter β. Clearly, the lowest eigenvalue is above the 3He
threshold, fixed for the N3LO-Idaho potential at −7.128 MeV
since four nucleons in the isospin channel T = 1 does not
present a bound state. The three dashed lines correspond
to three laboratory energies (3.13, 4.05, and 5.54 MeV) at
which experimental data exist. Similar to the previous cases in
A = 3, we will use these four-body bound-state wave functions
to determine the p-3He scattering matrix at the indicated
energies.
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FIG. 2. (Color online) The lowest A = 4 eigenvalue, using the
N3LO potential, for the J π = 0+ state with T = Tz = 1 as a function
of the nonlinear parameter β. The blue solid line indicates the
eigenvalues embedded in the continuum as explained in the text.
The dot-dashed line represents the triton energy, and the dashed lines
indicate the laboratory energies Elab = 3.13, 4.05, 5.54 MeV.

III. THE KVP IN TERMS OF INTEGRAL RELATIONS

Following Refs. [15,22] a general scattering state with A =
3, 4 can be written as a sum of two terms:

� = �C + �A. (14)

The first term, �C , describes the system when the A nucleons
are close to each other. For large interparticle separations and
energies below the breakup threshold in more than two pieces
it goes to zero, whereas for higher energies it must reproduce
a three- or four-outgoing-particle state. It can be written as a
sum of amplitudes corresponding to the cyclic permutations
of the Jacobi coordinates. Each amplitude �C({xi}) has total
angular momentum and parity Jπ and the third component
of the total isospin Tz (here {xi} represents the set of Jacobi
coordinates with ordering of the particles i for the A = 3 or
A = 4 systems). For energies below the breakup threshold
in three pieces, it can be expanded in terms of the totally
antisymmetric states:

�C =
∑

α,[K],m

Aα,[K],m|α, [K],m〉. (15)

The second term, �A, in the scattering wave function of
Eq. (14) describes the relative motion of the two clusters
in the asymptotic region. For A = 3, �A describes the
relative motion between the deuteron and the incident nucleon,
whereas for A = 4 we will limit the description to an incident
nucleon on 3He or 3H. It can be written as a sum of amplitudes
whose generic form for A = 3 is given by

�λ
LSJ (xi , yi) =

∑
lα=0,2

wlα (xi)Rλ
L(yi)

× {[[
Ylα (x̂i)s

jk
α

]
1s

i
]
S
YL(ŷi)

}
JJz

[
t jk
α t i

]
T Tz

,

(16)
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where wlα (xi) is the lα = 0, 2 deuteron wave function, s
jk
α =

1, t
jk
α = 0, and L is the relative angular momentum of the

deuteron and the incident nucleon. The superscript λ indicates
the regular (λ ≡ R) or the irregular (λ ≡ I ) solution of the
Schrödinger equation in the asymptotic region. In the p-d (n-d)
case, the functions Rλ are related to the regular or irregular
Coulomb (spherical Bessel) functions. The functions �λ can
be combined to form a general asymptotic state,

�+
LSJ =

∑
i=1,3

[
�0

LSJ (xi , yi) +
∑
L′S ′

JLSS ′
LL′�

1
L′S ′J (xi , yi)

]
,

(17)

where

�0
LSJ (xi , yi) = u00�

R
LSJ (xi , yi) + u01�

I
LSJ (xi , yi), (18)

�1
LSJ (xi , yi) = u10�

R
LSJ (xi , yi) + u11�

I
LSJ (xi , yi). (19)

The matrix elements uij form a matrix u that can be selected
according to the four different choices of the matrix L = K
matrix, K−1 matrix, S matrix, or T matrix. It should be noticed
that the irregular solution has been opportunely regularized at
the origin:

RI
L(y) = (1 − e−γ rNd )L+1GL(y), (20)

where rNd = (
√

3/2)y is the nucleon-deuteron separation
and the parameter γ is fixed, requiring that RI

L(y) ≡ GL(y)
asymptotically. Moreover, GL(y) is the irregular Bessel func-
tion and the irregular Coulomb function in the cases of n-d and
p-d scattering, respectively. The description for A = 4 can be
found in Ref. [27]

A general three- or four-nucleon scattering wave function
for an incident state with relative orbital angular momentum
L, spin S, total angular momentum J , and energy below the
three-particle breakup threshold is

|�+
LSJ 〉 =

∑
α,[K],m

ALSJ
α,[K],m|α, [K],m〉 + |�+

LSJ 〉 , (21)

and its complex conjugate is �−
LSJ . A variational estimate of

the trial parameters in the wave function �+
LSJ can be obtained

by requiring, in accordance with the generalized KVP, that the
functional

[
JLSS ′

LL′
] = JLSS ′

LL′ − 2

det(u)
〈�−

LSJ |H − E|�+
L′S ′J 〉 (22)

be stationary. Applications of the complex KVP for n-d
scattering can be found, for example, in Refs. [15,21,28]. In
the case in which the variational principle is formulated in
terms of the K matrix, we get

[
JKSS ′

LL′
] = JKSS ′

LL′ − 〈�−
LSJ |H − E|�+

L′S ′J 〉. (23)

Calling the set of indices μ ≡ {α, [K],m} and i = {L, S, J },
the variation of the functional [JKSS

LL] ≡ [Kii] with respect to

the linear parameters Ai
μ leads to the following two sets of

linear equations:∑
μ′

〈μ|H − E|μ′〉A0,i
μ′ = −〈μ|H − E

∣∣�0
i

〉
, (24)

∑
μ′

〈μ|H − E|μ′〉A1,i
μ′ = −〈μ|H − E

∣∣�1
i

〉
, (25)

in accordance with the two possible asymptotic scattering
states �0

i and �1
i . From the above equations two sets of

coefficients, A0,i
μ and A1,i

μ , can be obtained. Furthermore,
multiplying the sets by these coefficients and summing on
μ, it is possible to reconstruct the scattering state, and the
above equations can be formally cast as

〈�C |H − E|�+
i 〉 = 0 . (26)

The variation of the functional with respect to the linear
parameters Kij results in

δij − 〈
�1

j

∣∣H − E|�+
i 〉 − 〈�−

i |H − E
∣∣�1

j

〉 = 0. (27)

Using the normalization condition〈
�0

i

∣∣H − E
∣∣�1

j

〉 − 〈
�1

j

∣∣H − E
∣∣�0

i

〉 = δij , (28)

the scattering wave function verifies

〈�−
i |H − E

∣∣�1
j

〉 − 〈
�1

j

∣∣H − E|�+
i 〉 = δij , (29)〈

�0
i

∣∣H − E|�+
j 〉 − 〈�−

j |H − E
∣∣�0

i

〉 = Kij , (30)

allowing us to reduce Eq. (27) to〈
�1

j

∣∣H − E|�+
i 〉 = 0. (31)

The second-order estimates of the K-matrix elements
[JKSS ′

LL′] ≡ [Kii ′ ] are obtained by replacing in the functional
of Eq. (23) the first-order solutions given by Eqs. (26) and
(31). This results in

[Kii ′] = Kii ′ − 〈
�0

i

∣∣H − E|�+
i ′ 〉, (32)

which can be further reduced using Eq. (30) to

[Kii ′ ] = −〈�−
i |H − E

∣∣�0
i ′
〉
. (33)

This final form of the KVP is a direct consequence of the
particular form selected for the asymptotic scattering state
given in Eq. (17) in which the flux of the regular wave �0

i has
been set to 1. As we will see in the following, it is useful to
define an asymptotic scattering state with general coefficients
in both the regular and irregular waves. Accordingly, the
asymptotic scattering state now reads

�+
LSJ =

∑
i=1,3

[∑
L′S ′

JASS ′
LL′ �

0
L′S ′J (xi , yi)

+
∑
L′S ′

JBSS ′
LL′ �

1
L′S ′J (xi , yi)

]
. (34)

The coefficients JASS ′
LL′ and JBSS ′

LL′ form the matrices A and B,
respectively, and the scattering matrix results in K = A−1B.
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Starting with a scattering state that has this asymptotic
behavior, the relations of Eqs. (29) and (30) result in

〈�−
i |H − E

∣∣�1
j

〉 − 〈
�1

j

∣∣H − E|�+
i 〉 = Aij ,

(35)〈
�0

i

∣∣H − E|�+
j 〉 − 〈�−

j |H − E
∣∣�0

i

〉 = Bij ,

and using Eqs. (31)–(33), the KVP takes the particular form

Aij = 〈�−
i |H − E

∣∣�1
j

〉
, [Bij ] = −〈�−

i |H − E
∣∣�0

j

〉
,

[K] = A−1[B], (36)

where [B] and [K] are second-order estimates.
Equations (36) formulate the KVP in terms of integral

relations depending on the internal structure of the scattering
wave function �−

i . In fact, (H − E)�0
j and (H − E)�1

j go to
zero as each of the three Jacobi coordinates yk goes to ∞ (k =
1, 2, 3) since �

0,1
j are the solutions of (H − E) in that limit.

Therefore, in Eqs. (36), it would be possible to use trial wave
functions �−

i that are solutions of (H − E) in the interaction
region but do not have the physical asymptotic behavior
indicated in Eq. (34). In particular, it would be possible to use
the bound-state wave functions �n described in the previous
section to calculate the scattering matrix corresponding to a
center-of-mass energy E0

n. It should be noticed that the integral
relations in the form given in Eqs. (36) are useful in the case of
a finite number of open channels. When the breakup channel
is open, the available energy can be distributed continuously
among the fragments. In this case an infinite number (or at least
a large number) of bound-state-like wave functions have to be
determined at the reaction energy, limiting the applicability of
the method. Examples for elastic scattering below the breakup
channel in three- and four-nucleon systems are discussed in
the next section.

IV. SCATTERING MATRIX FROM BOUND-STATE-LIKE
WAVE FUNCTIONS

In Sec. II the construction of A = 3, 4 bound states having
general quantum numbers Jπ corresponding to different levels
with negative eigenvalues En was discussed. In the case of the
A = 3 state where J = 1/2+ the E0 level and the correspond-
ing wave function �0 describe the energy and structure of the
triton or 3He for the two possible values of Tz = 1/2 or −1/2,
respectively. Using the nonlinear parameter β as a control
parameter, it was possible to construct states with eigenvalues
En in the region Ed < En < 0. In a similar way, it is possible
to construct these kind of states for arbitrary values of Jπ .
As an example, in Sec. II, the case J = 1/2− was explicitly
discussed. Furthermore, it was shown that these states organize
sequentially, having occupation probabilities that can be
connected with the different components of a scattering state,
corresponding to the different values of the quantum numbers
L, S, J . The number of these components fixes the dimension
of the scattering matrix and, correspondingly, the degeneration
of the state. Therefore, in order to construct a scattering state
using bound-state-like functions, those components can be
taken into account considering sequential solutions having the
same energy. To this end the control parameter β can be used
to select sequential solutions at the same eigenvalue En. This is
shown in Fig. 3 for three different cases. The three dashed lines
in both panels of Fig. 3 indicate the energies corresponding to
incident energies in the laboratory system Elab = 1, 2, 3 MeV.
As explained in Sec. II, the solid red and dot-dashed blue lines
show the variation of sequential eigenvalues as a function of
β having the different structures given in Table I. The circles
in Fig. 3 indicate the points in which the eigenvalues cross
the dashed lines, and accordingly, at those specific values of β

two different solutions, �1
n and �2

n , can be constructed having
the same energy En and presenting a very different internal
structure. These two states are solutions of (H − En)�1,2

n = 0
in the internal region, and since they are square integrable
states, they go to zero asymptotically. However, the integral
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0

E
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E
0
=-7.684 MeV

E
d
=-2.226MeV E

d
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(a) (b)

FIG. 3. (Color online) The same as Fig. 1 in which two sequential solutions having the same eigenvalue are selected (indicated by the
circles) in the three cases corresponding to incident energies Elab = 1, 2, 3 MeV.
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FIG. 4. (Color online) The same as Fig. 2 in which the lowest
eigenvalue is selected (indicated by the circles) in the three cases cor-
responding to the laboratory energies Ecm = 3.13, 4.05, 5.54 MeV.

relations of Eq. (36) depend on the internal part of the wave
function, and therefore, it would be possible to use �1

n and �2
n

as trial wave functions. In this case the second-order estimate
of the scattering matrix is

Aij = 〈�i
n|H − En

∣∣�1
j

〉
,

[Bij ] = −〈�i
n|H − En

∣∣�0
j

〉
, (37)

[K] = A−1[B],

where i, j indicate the two solutions �1,2
n and the two possible

values of the set of quantum numbers (L, S, J ) in J = 1/2±.

For the A = 4 case we have analyzed the single-channel
Jπ = 0+ state with T = Tz = 1. In Fig. 4 we show the
three cases (indicated with circles) at which, for specific
values of the control parameter β, the eigenvalue matches
the selected energies. Accordingly, the second-order estimate
of the scattering matrix can be obtained in each case as

A = 〈�n|H − En|�1〉,
[B] = −〈�n|H − En|�0〉, (38)

[K] = A−1[B].

In this case we are considering a single-channel state, and
therefore the scattering matrix results in a scalar.

In the following, results of phase shifts and mixing
parameters for the n-d system, calculated using the AV14
NN potential, are presented for the Jπ = 1/2+ state in Fig. 5
and for the Jπ = 1/2− state in Fig. 6 at the three selected
energies Elab = 1, 2, 3 MeV. The stability of the results with γ ,
the regularization parameter introduced in Eq. (20), is chosen
as a convergence criterion. This criterion has been discussed
in Refs. [10,11], and essentially, it establishes the quality of
�i

n as solution of (H − En)�i
n = 0. In fact, if �i

n is a good
solution, the integrals of Eq. (37) are largely independent
of γ . The results are compared to the results of the PHH
method at Elab = 1, 2 MeV and to the benchmark of Ref. [1]
at Elab = 3 MeV. They are given in Figs. 5 and 6 as a red
line. The results of the application of Eq. (37) are shown as
solid circles, corresponding to values of γ varying from 0.25
to 1.25 fm−1. We can observe a good stability in this interval,
and furthermore, the results are in very good agreement with
those of the PHH method and Ref. [1].
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FIG. 5. (Color online) The n-d J π = 1/2+ phase shifts and mixing parameters for the AV14 potential as a function of the regularization
parameter γ at Elab = (a) 1, (b) 2, (c) 3 MeV. The red line corresponds to the results of the PHH method in (a) and (b) and Ref. [1] in (c).
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FIG. 6. (Color online) The n-d J = 1/2− phase shifts and mixing parameters for the AV14 potential as a function of the regularization
parameter γ at Elab = (a) 1, (b) 2, (c) 3 MeV. The red line corresponds to the results of the PHH method in (a) and (b) and Ref. [1] in (c).

In Fig. 7 results are given for the n-d J π = 3/2+ state.
In this case the K matrix is a 3 × 3 matrix, corresponding
to asymptotic configurations having L = 0, S = 3/2, L =
2, S = 1/2, and L = 2, S = 3/2. The diagonalization of the

Hamiltonian matrix in the Jπ = 3/2+ case produces sequen-
tial eigenvalues with occupation probabilities in accordance
with these three configurations. Using the control parameter β,
three sequential eigenvalues can be chosen to have a particular
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FIG. 7. (Color online) The n-d J = 3/2+ phase shifts and mixing parameters for the AV14 potential as a function of the regularization
parameter γ at Elab = (a) 1, (b) 2, (c) 3 MeV. The red line corresponds to the results of the PHH method in (a) and (b) and Ref. [1] in (c).
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FIG. 8. (Color online) The p-d J = 1/2+ phase shifts and mixing parameters for the AV14 potential as a function of the regularization
parameter γ at Elab = (a) 1, (b) 2, (c)3 MeV. The red line corresponds to the results of Ref. [16].

En value, as has been done before for the Jπ = 1/2± states.
In Fig. 7 we observe a good stability with the regularization
parameter γ and a close agreement with the results of the
PHH method and Ref. [1]. In Fig. 8 results for the p-d
J π = 1/2+ state are given. The description of the p-d process
at low energies presents some problems using the Faddeev
equations. In Ref. [16] a benchmark for p-d scattering has been
produced using the PHH method and the Faddeev method in
configuration space. The results of the benchmark are shown
as a red line in Fig. 8. From Fig. 8 we can observe that the
results using the integral relations reproduce extremely well
the benchmark results. This is an important point since in
bound-state-type calculations the treatment of the Coulomb
potential does not present any troubles.

The p-3He results for the 1S0 phase shift calculated
using the N3LO potential are given in Fig. 9 at Elab =

3.13, 4.05, 5.54 MeV. The phase shift for the 0+ state is shown
as a function of the regularization parameter γ (solid circles).
As a comparison, the results of the HH method [Fig. 9(a)] and
those of the recent benchmark of Ref. [29] [Figs. 9(b) and 9(c)]
are shown as a red line. We can observe a good stability with γ ,
indicating that the four-nucleon bound-state eigenfunction �

is a good solution of (H − E)� = 0 at the specified energies.
Moreover the results obtained using the integral relations
are in close agreement with those of HH method and the
benchmark.

A more detailed comparison of the results given above
is shown in Table II. The Jπ = 1/2± phases and mixing
parameters for n-d and p-d scattering and the 1S0 phase
for p-3He scattering obtained using the integral relations at
γ = 0.75 and 1.7 fm−1, respectively, are compared to the
results of the PHH and HH methods and Refs. [1,16,29]. From
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FIG. 9. (Color online) The p-3He J = 0+ phase shift for the N3LO potential as a function of the regularization parameter γ at Elab = (a)
3.13, (b) 4.05, (c) 5.54 MeV. The red line corresponds to the HH method in (a) and Ref. [29] in (b) and (c).
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TABLE II. Comparison of the J π = 1/2+ n-d and p-d phase shifts and mixing parameters and the p-3He 1S0 phase (in degrees) determined
by the integral relations using bound-state-like wave functions (column labeled by [K]) with the PHH and HH methods and the benchmarks of
Refs. [1,16,29] at the indicated energies.

n-d Elab = 1 MeV Elab = 2 MeV Elab = 3 MeV

J π 2S+1LJ [K] PHH [K] PHH [K] Ref. [1]

4D1/2 −0.999 −0.999 −2.574 −2.573 −3.890 −3.905
1
2

+ 2S1/2 −17.72 −17.70 −27.85 −27.86 −34.79 −34.81
η1/2+ 1.040 1.043 1.201 1.205 1.256 1.253

p-d Elab = 1 MeV Elab = 2 MeV Elab = 3 MeV

J π 2S+1LJ [K] Ref. [16] [K] Ref. [16] [K] Ref. [16]

4D1/2 −0.787 −0.787 −2.276 −2.281 −3.617 −3.615
1
2

+ 2S1/2 12.63 12.61 23.54 23.54 31.41 31.40
η1/2+ 1.187 1.189 1.255 1.257 1.256 1.259

p-3He Elab = 3.13 MeV Elab = 4.05 MeV Elab = 5.54 MeV

J π 2S+1LJ [K] Ref. [29] [K] Ref. [29] [K] Ref. [29]

0+ 1S0 −50.84 −50.66 −58.71 −58.61 −68.82 −68.50

Table II we can judge the precision of the method, which is of
the order of 0.5% or better.

V. CONCLUSIONS

In this work the elastic scattering matrix has been de-
termined using bound-state-like wave functions. To this end
two integral relations derived from the KVP have been used.
Initially, these integral relations were derived in Ref. [10] in
order to extract phase shifts from the solutions calculated
using the hyperspherical adiabatic expansion in the three-
nucleon system. In this method the boundary conditions at
large distances are imposed in terms of the hyperradius ρ.
However, as explained in Ref. [10], the boundary conditions
depend explicitly on the Jacobi coordinates xi , yi describing
the asymptotic configuration of a deuteron formed by particles
(j, k) and an incoming nucleon (particle i). The equivalence
between imposing the boundary conditions in ρ or in the
Jacobi coordinates directly results in very large values of
the hyperradius where the relation ρ ≈ yi is verified. As a
consequence, the phase shifts obtained from the adiabatic
expansion require a large number of terms to converge.
On the other hand, the phase shifts obtained as a quotient
of the two integral relations converge much faster, and, in
fact, the rate of convergence is similar to that one obtained
in the case of bound state solutions. The reason behind this
fact is that the integral relations depend only on the internal
part of the wave function. Therefore, it is enough that the
wave function verifies (H − E)� = 0 in the internal region
to obtain almost exact results for the scattering matrix at the
center-of-mass energy E. This characteristic allows us to apply
the integral relations using bound-state-like wave functions
obtained from a direct diagonalization of the Hamiltonian H .
Eigenvectors corresponding to eigenvalues belonging to the

continuum spectrum of H can be used as inputs to determine
the scattering matrix at fixed values of E. Applications for
single-channel solutions using semirealistic NN potentials
are given in Ref. [11]. The coupled-channel case of an atom
colliding a dimer formed by other two atoms is given in
Ref. [30].

In the present work, applications to elastic scattering of a
nucleon on a deuteron (A = 3) or on 3He (A = 4) below the
breakup threshold using realistic nucleon-nucleon potentials
has been discussed. In particular, for A = 3, two or three
solutions at the same energy have to be determined, corre-
sponding to the different possible asymptotic configurations
of the system. A detailed construction of such solutions, using
the nonlinear parameter β as a control parameter, has been
analyzed. Moreover it has been shown that the eigenvectors
of successive eigenvalues organize in pairs (for J = 1/2±)
or in triplets (for J > 1/2), corresponding to the different
asymptotic structures. The control parameter β has been
tuned to find solutions having the same eigenvalue that have
been used to calculate the scattering matrix at the selected
energy. The obtained results are in close agreement with those
presented in the A = 3 benchmarks of Refs. [1,16] and in
the A = 4 benchmark of Ref. [29]. In particular, the results
for p-d and p-3He scattering demonstrate that the scattering
matrix can be calculated using bound-state-like wave functions
also in scattering of charged particles.

Well-established bound-state methods to diagonalize the
nuclear Hamiltonian in systems with A > 4 already exist. The
formulation of the scattering matrix presented in this work will
allow us to extend these studies to the low-energy continuum
spectrum. It will be then possible to compare theoretical
predictions for scattering observables to the experimental data
in order to evaluate the capability of the present models for the
interaction to describe the nuclear structure. Studies along this
line are at present being intensively pursued.
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