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Potential energy surfaces of actinide nuclei from a multidimensional constrained covariant density
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The potential energy surfaces of actinide nuclei in the (β20, β22, β30) deformation space are obtained from a
multidimensional constrained covariant density functional theory. With this newly developed theory, we are able
to explore the importance of the triaxial and octupole shapes simultaneously along the whole fission path. It is
found that aside from the octupole deformation, the triaxiality also plays an important role upon the second fission
barriers. Both the outer and the inner barriers are lowered by the triaxial deformation compared with axially
symmetric results. This lowering effect for the reflection-asymmetric outer barrier is 0.5∼1 MeV, accounting for
10%∼20% of the barrier height. With the inclusion of the triaxial deformation, a good agreement with the data
for the outer barriers of actinide nuclei is achieved.
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Since the first interpretation of the nuclear fission by
the barrier penetration [1], it has been a difficult task to
describe this phenomenon theoretically. For example, in order
to study the fission problem, one should first have very accurate
information about the fission barrier; a 1-MeV difference in
the fission barrier could result in several orders of magnitude
difference in the fission half-life. Particularly, to explore the
island of stability of superheavy nuclei (SHN) [2–4], it is
more and more desirable to have accurate predictions of fission
barriers of SHN [5–8].

Currently, three types of models are used for calculating
fission barriers. During a long period, the majority of these
works is based on the macroscopic-microscopic (MM) models
[5,9–11]. The MM models make use of the Strutinsky shell
correction method, allowing fast calculations of multidimen-
sional potential energy surfaces (PES’s) containing most of the
important shape degrees of freedom. Until now, it is still an
important candidate for large-scale fission barrier calculations
based on the examination of multidimensional PES’s [10]. In
recent years, the rapid development of the density functional
theories (DFT) also makes it possible to calculate the fission
barriers fully self-consistently [12–15]. There are mainly two
reasons to apply DFT’s in the study of fission properties.
First, many new functional forms and effective interactions are
proposed with much better performances for the excited-state
as well as the ground-state calculations [16–20]. Fission
barrier calculations are also helpful for developing these
DFT’s. Second, in DFT’s, much more shape degrees of
freedom can be included self-consistently. For example,
the symmetry-unrestricted Skyrme-Hartree-Fock-Bogoliubov
model has been applied for the fission studies [21]. Aside from
these two types of models, there exist also methods intending to
combine the advantages of the MM and self-consistent models,
such as the extended Thomas-Fermi method [22].
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The double-humped fission barriers of actinide nuclei
can be used to benchmark the predictive power of theoret-
ical models [13,23–25]. Various shape degrees of freedom
play important and different roles in the occurrence and
in determining the heights of the inner and outer barriers.
For example, it has long been known from MM model
calculations that the inner fission barrier is usually lowered
when the triaxial deformation is allowed, while for the
outer barrier, the reflection-asymmetric (RA) shape is favored
[26,27]. Later on, these points were also revealed in the
nonrelativistic [24] and relativistic [15,28] density functional
calculations, respectively. It is thus customary to consider
only the triaxial and reflection-symmetric (RS) shapes for
the inner barrier and axially symmetric and RA shapes for
the outer one [5,29,30]. It has been pointed out that “there is
no reason for a fissioning actinide nucleus not to penetrate
all symmetry-breaking shapes on its way from the first
(triaxial) to the second (mass-asymmetric) saddle” [31]. The
nonaxial octupole deformations are considered in both the MM
models [32] and the nonrelativistic Hartree-Fock theories [33].
However, a multidimensional structure of PES’s including
both the triaxial and RA shape degrees of freedom has not
been explored yet in the framework of covariant DFT. In this
paper, we will investigate the influence of the triaxiality and
the octupole shape on the PES’s all the way from the ground
state to the fission configuration when both shape degrees of
freedom are included simultaneously. To this end, not only as
many self-consistent symmetries should be broken, but also
multidimensional constraints are needed [34].

To calculate the potential energy surfaces and fission
barriers, in this work we use the covariant density functional
theory (CDFT) [17,19,20,35,36]. By breaking not only the
axial [37,38] but also the reflection symmetries [39], we
developed multidimensional constrained CDFT’s in which the
functional can be one of the following four forms: the meson
exchange or point-coupling nucleon interactions combined
with the nonlinear or density-dependent couplings [40]. If not
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specified, the functional form of the point-coupling nucleon
interaction with nonlinear self-energy terms and the parameter
set PC-PK1 [41] are used in this work.

For the parametrization of the nuclear shape, we adopt the
conventional ansatz in mean-field calculations

βλμ = 4π

3ARλ
〈Qλμ〉, (1)

where Qλμ are the mass multipole operators. When the axial
and reflection symmetries are broken, the nuclear shape is
invariant under the reversion of x and y axes. In other words,
the intrinsic symmetry group is V4 and all shape degrees
of freedom βλμ with even μ, including the triaxial (μ �= 0)
and octupole (λ = 3) deformations, are possible. Irrespective
with the self-consistent symmetries, the single-particle wave
functions and various densities are expanded on an axially
deformed harmonic oscillator basis [38,42]. In order to get
a fast convergence of the results against the basis size,
in the elongated direction, more states are included in the
basis. Following Warda et al. [43], the basis is truncated
as nz/Qz + (2n⊥ + |m|)/Q⊥ � Ncut. Here, nz, n⊥, and m

are quantum numbers characterizing each state in the basis,
Qz = MAX(1, bz/b0), Q⊥ = MAX(1, b⊥/b0), and b0, bz, and
b⊥ are the oscillator lengths. The calculated binding energy of
240Pu at β20 = 1.3 varies only about 130 and 20 keV when Ncut

increases from 16 to 18 and from 18 to 20. This means a good
convergence, and such a truncation scheme with Ncut = 16
ensures a 0.2-MeV accuracy for the deformation range we are
interested in. In this work, Ncut = 16 (20) is used in the triaxial
(axial) calculations. More details of the convergence study will
be given in Ref. [40]. The BCS approach is implemented in our
model to take into account the pairing effect. Since it has been
found that the BCS calculation with a constant pairing gap can
not provide an adequate description of the fission barriers [14],
we use a delta force for the pairing interaction with a smooth
cutoff [41,44].

We performed one- (1D), two- (2D), and three-dimensional
(3D) constrained calculations for the actinide nucleus 240Pu. In
Fig. 1, we show the 1D potential energy curves (PEC) from an
oblate shape with β20 about −0.2 to the fission configuration
with β20 beyond 2.0, which are obtained from calculations with
different self-consistent symmetries imposed: the axial (AS)
or triaxial symmetries combined with reflection-symmetric or
-asymmetric cases. The importance of the triaxial deformation
on the inner barrier and that of the octupole deformation on the
outer barrier stressed by earlier studies [15,24,28] are clearly
seen here: The triaxial deformation reduces the inner barrier
height by more than 2 MeV and results in a better agreement
with the empirical datum; the RA shape is favored beyond the
fission isomer and lowers very much the outer fission barrier.
Aside from these features, we observe that the outer barrier is
also considerably lowered by about 1 MeV when the triaxial
deformation is allowed. Again, a better reproduction of the
empirical barrier height can be seen for the outer barrier. We
note that this feature can only be found when the axial and
reflection symmetries are simultaneously broken.

How the PES of 240Pu becomes unstable against the triaxial
distortion can be seen much more clearly in Fig. 2, in which we
show 2D PES’s from calculations without and with the triaxial

FIG. 1. (Color online) Potential energy curves of 240Pu with
various self-consistent symmetries imposed. The solid black curve
represents the calculated fission path with V4 symmetry imposed, the
red dashed curve represents that with axial symmetry (AS) imposed,
the green dotted curve represents that with reflection symmetry (RS)
imposed, the violet dotted-dashed line represents that with both
symmetries (AS and RS) imposed. The empirical inner (outer) barrier
height Bemp is denoted by the gray square (circle). The energy is
normalized with respect to the binding energy of the ground state.
The parameter set used is PC-PK1.

deformation. When the triaxial deformation is allowed, the
binding energy of 240Pu assumes its lowest possible value at
each (β20, β30) point. At some points, we get nonzero β22

values. That is, nonaxial solutions are favored at these points
rather than the axial ones. The triaxial deformation appears

FIG. 2. (Color online) Potential energy surfaces of 240Pu in the
(β20, β30) plane from calculations (a) without and (b) with the triaxial
deformation included. The energy is normalized with respect to the
binding energy of the ground state. The numbers in (b) show the
values of β22 at these points. The fission path is represented by a
dashed-dotted line. The ground state and fission isomer are denoted
by full and open circles. The first and second saddle points are denoted
by full and open triangles. The contour interval is 1 MeV.
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mainly in two regions in Fig. 2. One region starts from the first
saddle point and extends roughly along the direction of the
β30 axis up to a very asymmetric shape with β30 ∼ 1.0. In this
region, the values of β22 are about 0.06∼0.12, corresponding
to γ ∼ 10◦. The energy, especially the inner barrier height, is
lowered by about 2 MeV. The other region is around the outer
barrier and the β22 values are about 0.02∼0.03, corresponding
to γ ∼ 2◦. About 1 MeV is gained for the binding energy at
the second saddle point due to the triaxiality. In other regions,
e.g., in the ground state and fission isomer valleys, only axially
symmetric solutions are obtained.

Next, we examine the full 3D PES of 240Pu obtained from
the newly developed multidimensional constrained CDFT. For
simplicity, in Fig. 3 are shown only five typical sections of the
3D PES of 240Pu in the (β22, β30) plane calculated at β20 = 0.3
(around the ground state), 0.6 (around the first saddle point),
0.9 (around the fission isomer), 1.3 (around the second saddle
point), and 1.6 (beyond the outer barrier), respectively. Many
conclusions can be drawn by examining these 3D PES’s. First,
the ground state and the fission isomer are both axially and
reflection symmetric as what is shown in the 1D PEC and
the 2D PES. But, with the 3D PES, one can investigate the
stability of 240Pu against the β22 and β30 deformations. One
finds that the stiffness of the fission isomer is much larger
than that of the ground state against both the β22 and β30

FIG. 3. (Color online) Sections of the three-dimensional PES of
240Pu in the (β22, β30) plane calculated at β20= 0.3 (around the ground
state), 0.6 (around the first saddle point), 0.9 (around the fission
isomer), 1.3 (around the second saddle point), and 1.6 (beyond the
outer barrier), respectively. The energy is normalized with respect
to the binding energy of the ground state. The contour interval is
0.5 MeV. Local minima are denoted by crosses.

deformations. Second, while around the inner barrier, the shape
of 240Pu is triaxial and reflection symmetric, the second saddle
point, which is close to β20 = 1.3, appears as both a triaxial
and reflection-asymmetric shape. Third, the triaxial distortion
appears only on the top of the fission barriers.

It has been pointed out that one may obtain spurious saddle
points if only a small number of shape degrees of freedom
are constrained (see, e.g., Ref. [5]). That is, the calculated
fission path may jump from one valley to another and results
in discontinuities in the lower-dimensional PES’s; in some
cases, a continuous path may even cross a higher saddle point.
Although the spurious saddle points may not be excluded
completely, most of them can be avoided if (i) the obtained
fission path keeps to be continuous in the energy as well
as the most important shape degrees of freedom and (ii) the
results are examined by higher-dimensional calculations. We
have carefully checked the full 3D PES and found that the
fission path enters and exits the triaxial configuration rather
smoothly, which tells that no sudden jump is found and
the 1D (with the β20 deformation constrained and β22, β30

deformations imposed) and 2D (with β20, β30 deformations
constrained and the β22 deformation imposed) calculations
of the fission barriers may be well justified for 240Pu. It
is clear that the continuity of the fission path found in a
lower-dimensional constraint calculation is a necessary but
not sufficient condition for locating the correct saddle point.
In order to have a strictly definite conclusion, one certainly
should carry out multidimensional constrained calculations
with even higher-multipolarity deformations included.

For the RS calculations, the triaxiality also lowers the fission
path by a few MeV beyond the second saddle point. This point
is illustrated by the dotted line in Fig. 1 and the local minima
with β30 = 0.0 in the β20 = 1.6 subfigures of Fig. 3. However,
it is relatively unimportant because the RA fission is still the
most favored one even when triaxiality is included.

Guided by the features found in the 1D, 2D, and 3D
PES’s of 240Pu, the fission barrier heights are extracted for
even-even actinide nuclei, the empirical values of which are
recommended in RIPL-3 (see Table XI in Ref. [45]). The
emphasis is put on the influence of the triaxial deformation on
the two fission barriers.

As it has been shown previously, around the inner barrier,
an actinide nucleus assumes triaxial and reflection-symmetric
shapes. Thus, in order to obtain the inner fission barrier
height, we can safely make a one-dimensional constrained
calculation with the triaxial deformation allowed and the re-
flection symmetry imposed. In Fig. 4(a), we present the
calculated inner barrier heights B i

f and compare them with the
empirical values. It is seen that the triaxiality lowers the inner
barrier heights of these actinide nuclei by 1 ∼ 4 MeV as what
has been shown in Ref. [15]. In general, the agreement of our
calculation results with the empirical ones is very good with
exceptions in the two thorium isotopes and 238U. For 230Th
and 232Th, the calculated inner barrier heights are smaller by
about 2 or 1 MeV than the empirical values depending on
whether the triaxial deformation is allowed or not. In these two
nuclei, the outer barrier is higher than the inner one. This may
result in some uncertainties when determining empirically the
height of the inner barrier, which is not the primary one [12].
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FIG. 4. (Color online) The inner (B i
f ) and outer (Bo

f ) barrier
heights of even-even actinide nuclei. The axial (triaxial) results are
denoted by open (full) symbols. The empirical values are taken from
Ref. [45] and represented by gray squares.

Similar results for 230Th and 232Th were obtained from the
Skyrme-Hartree-Fock-Bogoliubov model [12] and very small
inner barrier height were achieved for 232Th in Ref. [15]. For
238U, B i

f from the axial calculation agrees with the empirical
value very well. The triaxiality reduces the barrier height by
about 1.5 MeV, thus bringing a discrepancy that was similar
to the result in Ref. [15].

To obtain the outer fission barrier height Bo
f , the situation

becomes more complicated because more shape degrees of
freedom have important influences around the outer fission bar-
rier. For example, the inclusion of the reflection-asymmetric
shape makes it possible to have in the (β20, β30) plane two
or more competing fission paths with different octupole
deformations. In consequence, one often observes in the 1D
PEC two or more fission paths. This happens in 244Pu and
244,246,248Cm in this study and we present a typical example
in Fig. 5 for 248Cm. In this figure, one finds that there are two
fission paths, both in the 1D E ∼ β20 curve and in the 2D
E ∼ (β20, β30) PES. One path denoted by “I” favors shapes
with larger octupole deformations and the other denoted by
“II” favors less RA shapes. In such nuclei, it is not safe
to perform a 1D constrained calculation in order to get
Bo

f . Thus, we first assume the axial symmetry and make a
2D calculation in the (β20, β30) plane from which we can
approximately identify the lowest fission path β lowest

30 (β20) and
the location of the second saddle point. Then, along this fission
path, we perform a 1D β20-constrained calculation with the
triaxial and octupole deformations allowed. At each point
with β20, the initial deformations are taken as β ini

22 = 0 and

FIG. 5. (Color online) (a) One-dimensional potential energy
curve E ∼ β20 and (b) two-dimensional potential energy surface
E ∼ (β20, β30) of 248Cm, in the outer barrier region with the axial
symmetry imposed in the calculation. In both figures, the energy is
normalized with respect to the binding energy of the ground state.
The fission path I (II) is represented by solid (dashed-dotted) lines
and the corresponding saddle point is denoted by up (down) triangles.
The fission isomer is denoted by an open circle. In (a), the empirical
outer barrier height is depicted by the dashed-dotted line. In (b), the
contour interval is 0.5 MeV.

β ini
30 = β lowest

30 (β20). In this 1D PEC, we can locate the second
saddle point and extract the outer barrier height for each
nucleus.

In the lower panel of Fig. 4, we show the results of
outer barrier heights Bo

f and compare them with empirical
values. For most of the nuclei investigated here, the triaxiality
lowers the outer barrier by 0.5∼1 MeV, accounting for about
10%∼20% of the barrier height. One finds that our calculation
with the triaxiality agrees well with the empirical values, and
the only exception is 248Cm. From the calculation with the
axial symmetry imposed, the outer barrier height of 248Cm
is already smaller than the empirical value. The reason for
this discrepancy may be related to the fact that there are two
possible fission paths beyond the first barrier, as seen in Fig. 5.
For the path I, with a lower saddle point from which we get
the outer fission barrier height, the barrier is very wide, and for
the path II with a higher saddle point, the barrier is relatively
narrow. Therefore, the empirical value of the outer fission
barrier height may not be easily extracted for the following
two reasons: (i) there must be a strong competition between
the two fission paths, and (ii) when the empirical value of the
outer barrier height is evaluated, it is usually assumed that the
second barrier is in an antiparabolic shape with a fixed and
smaller width [45].
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We also examined the parameter dependency of our results.
The lowering effect of the triaxiality on the outer fission barrier
is also observed when parameter sets other than PC-PK1 are
used.

In summary, a multidimensional constrained covariant
density functional theory is developed, which allows us to
study the importance of the triaxial and octupole shapes simul-
taneously along the whole fission path. The one-dimensional
PEC E ∼ β20, two-dimensional PES E ∼ (β20, β30), and
three-dimensional PES E ∼ (β20, β22, β30) of actinide nuclei
are shown and studied in details. Both the triaxiality and the
reflection asymmetry play crucial roles at and around the
second saddle point. The outer barrier as well as the inner
barrier are lowered by the triaxial deformation compared with

axially symmetric results. For most of the nuclei investigated
here, the triaxiality lowers the outer barrier by 0.5∼1 MeV,
accounting for about 10%∼20% of the barrier height. The
calculated results of the outer barrier heights agree well with
the empirical values.
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