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Spin excitonic and diffusive modes in superfluid Fermi liquids
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The role of the particle-particle p-wave spin interaction in Fermi liquids with an s-wave pairing is studied.
Depending on the sign of the interaction, there arises either a new exciton collective mode below the pair-breaking
threshold or a diffusive excitation mode above the threshold. The Landau parameters that control the interaction
strength are evaluated for various systems: dilute fermion gases, a degenerate electron liquid, metals, atomic
nuclei, and neutron matter. The interaction removes also the square-root singularity in the phase space of pair-
breaking processes. How these effects influence the neutrino emissivity in neutron Cooper-pair recombinations
in neutron stars is shown.
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Processes with recombinations of Cooper pairs provide
important information about interparticle interactions and
pairing mechanisms in different fermionic systems: ordinary
superconductors [1], liquid 3He and 3He-4He mixtures [2],
cold atomic gases [3], atomic nuclei [4], neutron stars [5,6],
and other systems. In superconductors, they are studied by
absorption of infrared radiation or by Raman scattering [7]. In
the cold fermion-atom gas one can use the Stokes scattering
to detect the onset of the pairing [8]. Inverse pair breaking and
formation (PBF) reactions constitute an important mechanism
of the neutron-star cooling [6,9]. In these processes the energy
is released in the form of neutrino-antineutrino pairs radiated
off the star. The superburst ignition depth is sensitive to the
value of the PBF emissivity in the inner neutron star crust [10].
The PBF processes are important [11] for the description of
the recently observed rapid cooling of the young neutron star
in Cassiopeia A.

It was shown [12] that the residual interaction of single-
particle excitations, which does not contribute to pairing, can
bind them in a state orthogonal to the Cooper pair, generating
collective excitation modes in superconductors. For superfluid
3He a similar mechanism was studied in Ref. [13]. A collective
mode originated by f -wave interactions in the pairing channel
was detected in superfluid 3He-B [14]. Interactions in the same
spin channel in which the pairing occurs have been studied so
far. The influence of the interaction in one spin channel on
pairing in the other spin channel has not yet been considered.

In this Brief Report we study the effects of a p-wave
interaction in the spin-one channel on excitations in a Fermi
system with spin-zero pairing. We calculate a response induced
by the external spin- and helicity-density sources and show
that, depending on the sign of the effective interaction, either
a new exciton mode or a diffusive excitation mode appears.
Then, we evaluate the strength of this effective interaction
for different Fermi systems and, as an example, calculate the
neutrino emissivity in the PBF processes for a neutron star
with the 1S0 neutron pairing, taking into account the effects of
the new collective modes and correlations.

We use the Fermi liquid theory extended to systems with
pairing by Larkin and Migdal and by Leggett [15]. For

processes induced by weak nucleon interactions this approach
was adopted in Ref. [16]. In strongly interacting systems
interactions in the particle-particle (ξ ) and particle-hole (ω)
channels are essentially different. The interaction amplitude of
two fermions with momenta �p = pF �n and �p ′ = pF �n ′ before
and after the interaction in the ξ channel is parameterized
as �̂ξ = �

ξ

0 (�n, �n ′)(iσ ′
2)(iσ2) + �

ξ

1 (�n, �n ′)(iσ ′
2 �σ ′)(�σ iσ2), and

in the ω channel it is parameterized as �̂ω = �ω
0 (�n, �n ′)1′ 1 +

�ω
1 (�n, �n ′) �σ ′ �σ . Here pF stands for the Fermi momentum;

�n and �n ′ are the unit vectors. The unit matrices 1 and 1′
and the Pauli matrices �σ and �σ ′ act in the nucleon spin
space. A superscript ω indicates that the amplitude in this
channel is taken for | �q �v F| � ω � εF, vF is the Fermi velocity,
εF is the Fermi energy, and q = (ω, �q) is the transferred
four-momentum. Coefficients of the harmonic expansion of
the scalar �

ξ,ω

0 and spin �
ξ,ω

1 amplitudes (Landau parameters)
should be either evaluated microscopically or extracted from
the analysis of experimental data [4].

The singlet pairing in a Fermi liquid occurs owing to the
attractive interaction, a2ρ �

ξ

0 = f
ξ

0 < 0. At zero temperature a
paring gap � follows from −1/f

ξ

0 = A0/(a2 ρ) = ln(2 εF/�),
where a is the residue of a pole in the quasiparticle Green’s
function and ρ is the density of states at the Fermi surface.
This expression is naturally generalized for finite temperature
T ; cf. Eq. (5) in the second paper in Ref. [16]. Since g

ξ

0 ≡ 0
for the scattering of identical fermions, the spin interaction
in the ξ channel simplifies as a2ρ�

ξ

1 (�n, �n′) = g
ξ

1 (�n �n′). It
is usually assumed that the higher Legendre harmonics are
much smaller [15]. Since we focus on the spin channel,
the interaction �ω

0 decouples and can be dropped. In the
ω channel, a2ρ�ω

1 = gω
0 + gω

1 (�n′ �n). Contributions from the
zeroth harmonics gω

0 are accompanied by the factor v2
F (see

Ref. [16]) and can be dropped for the nonrelativistic Fermi
liquids under consideration (v2

F � 1). Thus we remain with
only three relevant Landau parameters, f

ξ

0 < 0, g
ξ

1 , and gω
1 .

Let us first set gω
1 to zero and demonstrate the influence

of the interaction in the spin-one ξ channel, g
ξ

1 , on the
s-wave pairing effects. Then, we recover the dependence
on gω

1 .
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Consider now an external perturbation, which couples to
the spin-density operator �s(x) = ψ†(x)�σψ(x) and the helicity-
density operator h(x) = ψ†(x)(�σ �̂p + �̂p�σ )ψ(x)/(2 m), where
ψ is the spinor of a nonrelativistic fermion, �̂p is the momentum
operator, and m is the mass of the free fermion. From
these quantities one can build the axial (A) fermion current
J μ = (h, �s). The Fourier transform of its bare components
after the Fermi liquid renormalization becomes Jω,μ(�n, q) =
(�σ �τ ω

A,1, �στω
A,0). Here τω

A,0 = eA/a and �τ ω
A,1 = eAvF�n/a are the

bare ω vertices; eA is an effective charge of the quasiparticle.
For �ω

1 = 0, which we now exploit, the in-medium vertices
are τA,0(�n, q) = τω

A,0 and �τA,1(�n, q) = �τ ω
A,1(�n, q). For �ω �= 0

these vertices are modified [16]. Additionally, in a system with
pairing new vertices responsible for the PBF processes arise:
�σ τ̃A,0(�n, q) and �σ �̃τA,1(�n, q). They follow from the solution of
the Larkin-Migdal equations [15,16],

τ̃A,0(�n, q) = − g
ξ

1

a2 ρ

(〈(�n �n′) [N (�n′, q) + A0] τ̃A,0(�n′, q)〉�n′

+ 〈
(�n �n′) O(�n′, q; −1) τω

A,0

〉
�n′
)
, (1a)

�̃τA,1(�n, q) = − g
ξ

1

a2 ρ

(〈(�n �n′) [N (�n′, q) + A0] �̃τA,1(�n′, q)〉�n′

+ 〈
(�n �n′) O(�n′, q; +1) �τ ω

A,1(�n′)
〉
�n′
)
. (1b)

The angle brackets indicate the angular averaging 〈· · ·〉�n =∫ d��n
4π

(· · ·). The loop functions O(�n, q; ±1) = 1
2a2ρ (z+ ±

z−)gT (�n, ω, �q ) and N (�n , q) = a2ρ z+ z− gT (�n, ω, �q ) with
z± = (ω ± �v �q )/(2 �), and the master function

gT (�n, ω, �q ) = �2
∫ +∞

−∞

dξp

ε+ ε−

[
E− F−

ω2 − E2−
− E+ (1 − F+)

ω2 − E2+

]
,

where E± = ε+ ± ε−, F± = f (ε−) − f (ε+), f (x) = 1/

[exp(x/T ) + 1], and ε± = [(ξp ± �v�q )2 + �2]1/2. The solu-
tion of Eq. (1a) is

τ̃A,0 = − (�v �q )

2 �
τω
A,0 γ

ξ

‖ 〈gT (�n′) (�nq �n′)2〉�n′ ,

(2)
�̃τA,1 = ω

q
�nq τ̃A,0 − ω τ ω

A,1

2 �
γ

ξ

⊥〈gT (�n′)
1

2
[1 − (�nq �n′)2]〉�n′ �P⊥ ,

where �P⊥ = �n − �nq (�n �nq), �nq = �q/|�q|, and the correlation
factors

[γ ξ

⊥]−1 = 1

3
C0 +

〈
ω2 − (�v �q )2

4 �2
gT (�n)

1

2
[1 − (�n�nq)2]

〉
�n
,

(3)

[γ ξ

‖ ]−1 = 1

3
C0 +

〈
ω2 − (�v �q )2

4 �2
gT (�n)(�n�nq)2

〉
�n

are controlled by one effective interaction parameter,

C0 = 3/g
ξ

1 − 1/f
ξ

0 . (4)

The singlet pairing occurs for f
ξ

0 < 0 and 3f
ξ

0 < g
ξ

1 . Then,
if g

ξ

1 < 0, we have C0 < 0; otherwise, the p-wave pairing is
preferable. For g

ξ

1 > 0 we have C0 > 0.
A response of the Fermi system to the excitation (A),

is determined by the symmetrical current-current correlator

�μν(q) = 1
2 〈Tr{Jω,μ(�n, q) J ν(�n, q)}〉�n where the in-medium

current Jμ(�n, q) = [�σ �χA,1(�n, q), �σχA,0(�n, q)] is expressed via
the reduced current correlators, is [16]

χA,0(�n, q) = L(�n, q; −1) τA,0(�n, q) + M(�n, q) τ̃A,0(�n, q),

�χA,1(�n, q) = L(�n, q; +1) �τA,1(�n, q) + M(�n, q) �̃τA,1(�n, q),

where M(�n, q) = − a2 ρ z+ gT (�n, ω, �q ) and L(�n ,q;±1)
a2 ρ

= ( z+
z−

−
1)gT (�n, (�v�q), �q) − ( z+

z−
− 1∓1

2 ) gT (�n, ω, �q ). The temporal and

spatial components of the tensor are �00 = 〈�τ ω
A,1 �χA,1(�n, q)〉�n

and �ij = δij 〈τ ω
A,0 χA,0(�n, q)〉�n with

1

3

∑
i

�ii = e2
Aρ

〈
(�v �q)

ω − �v �q [gT (�n, (�v�q), �q) − gT (�n, ω, �q)]

〉
�n

+ e2
Aρ

v2
F �q 2

4 �2
γ

ξ

‖ 〈(�nq �n)2 gT (�n, ω, �q)〉2
�n ,

�00 = v2
F

1

3

∑
i

�ii + e2
A ρv2

F〈gT (�n, ω, �q)〉�n

+ e2
Aρ v2

F
ω2

2 �2
γ

ξ

⊥

〈
gT (�n, ω, �q)

1

2
[1 − (�nq �n)2]

〉2

�n

+ e2
Aρ v2

F
ω2 − v2

F q2

4 �2
γ

ξ

‖ 〈gT (�n, ω, �q) (�nq �n)2〉2
�n.

(5)

The mixed components are �i0 = �0i = �n i
q

ω
3|�q|

∑
j �jj .

From Eq. (2) we see that the external perturbation can
induce a singular response in the PBF amplitudes at the values
ω and �q, corresponding to the poles of the functions γ

ξ

⊥ and
γ

ξ

‖ . These poles determine new transverse and longitudinal
collective modes (spin excitons). For �q = 0, the longitudinal
and transverse modes coincide, and their frequency ω follows
from the condition

C0 + y2g̃T (y) = 0 , y = ω/(2�), (6)

where g̃T (y) ≡ gT (0, 2�y − i 0, 0).
Although the full inclusion of the gω

1 dependence is rather
tedious, the modification of Eq. (6) is simply given by
the replacement g̃T (y) → g̃T (y)/[1 + 1

3 gω
1 g̃T (y)]. For

|C0| � 1 this induces the shift

C0 → C = C0/
(
1 + C0g

ω
1 /3

)
. (7)

This relation interpolates between the limits |C0| � 3/|gω
1 |

when C ≈ C0 and |C0| � 3/|gω
1 | when C � (3/gω

1 )[1 −
3/(gω

1 C0)]. So parameter C controls the effects of residual
interactions on the PBF processes.

In the long-wavelength limit (for ω > |�q|) from Eq. (5) we
get ��ij (q) = δij

3
�q 2

ω2 ��00(ω). The response function, which,
for y ∼ 1, has the form

R(y, C) ≡ ��00

e2
Aρv2

F

= C2�g̃T (y)

[C + y2g̃T (y)]2 + [y2�g̃T (y)]2

+π
C2

y2
δ[C + y2g̃T (y)],

�g̃T (y) = −π tanh
(

y�

2T

)
θ (y)

2y
√

y2 − 1
, (8)
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FIG. 1. (Color online) (left) Energies of collective modes (for
�q = 0) as functions of the parameter C for various values of T/�.
(right) The response function R(y) for T = 0 and y > 1 given by
Eq. (8) for various values of the parameter C (solid lines). Dashed
line shows the function R(y, C → ∞).

determines the probability of PBF processes. The cross section
of the excitation scattering in matter is determined by this
response function R.

Solutions of Eq. (6) are shown in Fig. 1 (left) as a function
of C. For C < 0, solutions with y < 1 correspond to the
undamped spin-exciton branch at ω < 2� since �g̃T (y <

1) = 0. For C > 0, solutions exist only if C > −g̃T (1 + 0)
and ω > 2�. Since here �g̃T (y) �= 0, they constitute the
diffusive spin mode. The frequencies of the excitonic and
diffusive modes increase with an increase of T . The response
function R(y) at T = 0 and y > 1 is plotted in Fig. 1 (right)
for various values of the parameter C. For y > 1 the function
R only weakly depends on the sign of C; therefore we show
it only for C > 0. The function R(y, C → ∞) = �g̃T (y) is
shown by the dashed curve. It has a square-root divergence at
y → 1 + 0, which is smeared out for finite values of C. Thus
a finite value of C leads to a reduction of a spin response of
a Fermi liquid close to the threshold for ω > 2�. A similar
effect was discussed in Ref. [7] for the Raman scattering on
metallic superconductors.

To estimate the value of our key parameter C we
need to know Landau parameters g

ξ

1 , f
ξ

0 , and gω
1 . For a

dilute Fermi gas we can use quasiparticle scattering am-
plitudes derived in Ref. [17] up to second order in the
parameter ζ = 2aeffpF/π , where aeff is the effective scat-
tering length. We derive f

ξ

0 = ζ + ζ 2 (2 ln 2 + 1)/3, g
ξ

1 =
3ζ 2(1 − 2 ln 2)/5, gω

1 = −2ζ 2(ln 2 + 2)/5 and obtain C ≈
−5.7/(aeffpF)2. For the neutron gas the vacuum scattering
length is very large, a � 20 fm, but the effective scattering
length is much shorter [18], being determined, e.g., by the
Vlow−k potential as aeff � 2 fm.

For more complex systems parameters in the ξ channel can
be estimated with the help of the Landau ω parameters in the
s-p approximation [19] as

f
ξ

0 =
∞∑
l=0

(−1)l
As

l − 3Aa
l

4
, g

ξ

1 =
∞∑
l=0

(−1)l
As

l + Aa
l

4
, (9)

where As
l = f ω

l /(1 + f ω
l

2 l+1 ) and Aa
l = gω

l /(1 + gω
l

2 l+1 ).

FIG. 2. (Color online) Parameters (left) f
ξ

0 and g
ξ

1 and (right) C

for the neutron matter reconstructed with the Landau ω parameters
calculated in Refs. [18,22] using Eq. (9) as functions of the Fermi
momentum.

The Fermi-liquid approach was applied to the degenerate
electron liquid in Ref. [20]. Using Tables I and II of Ref. [20],
we find C = −2.54 for a small value of the parameter aBpF =
0.032, where aB is the Bohr radius.

For alkali metals at zero pressure the first three ω harmonics
are calculated in Ref. [21]. Applying (9), we then find for
sodium f

ξ

0 (Na) = −0.11, g
ξ

1 (Na) = −0.38, and gω
1 (Na) =

−0.075. Here the p-wave paring is realized since C0 > 0, but
the value |C0| is very small. Bearing in mind large uncertainties
in estimates of the Landau ω parameters, one cannot exclude
that C < 0 at |C| � 1. In the latter case we would deal with
very pronounced effects of the spin-exciton mode. This case
can also be realized if one allows a variation of the pressure.
Thus the presence or absence of the new exciton mode could
indicate the kind of pairing in the given system. For potassium
f

ξ

0 (K) = −0.56, g
ξ

1 (K) = −0.89, and using gω
1 (K) = −0.12,

we obtain C = −1.48.
For the nucleon matter several harmonics of the Landau

ω parameters were evaluated in many works (e.g., see
Refs. [18,22]). The parameter f

ξ

0 related to the 1S0 pairing
was also calculated; see Ref. [6]. On the other hand, the g

ξ

1
parameter is poorly known. Using results from Refs. [18,22],
we reconstruct g

ξ

1 and f
ξ

0 with the help of Eq. (9) and evaluate
parameters C0 and C. For the neutron matter the results are
shown in Fig. 2 as a function of the Fermi momentum. We see
that estimations of C are very uncertain due to the discrepancy
in different estimates of the Landau ω parameters. The results
show that |C| might be less than 10–20 at some densities in
the range of the 1S0 paring, and C might even cross zero. The
existence of regions where C < 0 implies the possibility to
observe the effects of the exciton modes.

Using the values of the Landau ω parameters and their
density dependence extracted from the atomic nucleus prop-
erties [4,23], we obtain C ∼ −10 for pF � 1 fm−1. Thus
the exciton mode could manifest itself in the nuclear surface
phenomena.

Now we apply Eq. (5) to calculate the neutrino emissivity
in the neutron-star matter in the region of the 1S0 pairing. It is
mainly determined by the neutron PBF process induced by the
axial-vector current ∝J μ [16]; the vector current contribution
is O(v4

F) and can be neglected [16,24]. For one type of neutrino
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the emissivity then is given by [16]

ενν̄ = G2g2
A

∫ ∞

0
dωω

∫ ω

0

d| �q |�q 2

48 π4

(qμ qν − gμν) ��μν(q)

exp(ω/T ) − 1
,

where G and gA are the weak-interaction and axial-vector
coupling constants. Integration over |�q | yields

ενν̄ � 8

35 π3
G2g2

Ae2
Aρ v2

F�
7
∫ ∞

1

dy y6 R(y, C)

exp(2y�/T ) + 1
, (10)

where, according to Eq. (8), there can be two contributions
to ενν̄ : one, for arbitrary C, from the pair-breaking continuum
with the diffusive modes at ω > 2 � and the other one, for neg-
ative C, from the spin-exciton mode with the frequency ω(�q) at
0 < ω(�q = 0) < 2 �. The later contribution is associated with
the processes of breaking and formation of spin excitons. In
the limit |C| → ∞ the collective mode contribution vanishes
as ∝1/|C|, and we recover the result [16], ε

(0)
νν̄ , which follows

from (10) after the replacement R(y, C) → R(y, C → ∞) =
�g̃T (y).

Effects of the finite value of C on the neutrino emissivity
in the neutron PBF process are illustrated in Fig. 3, where
we plot the ratio ενν̄/ε

(0)
νν̄ taking into account the standard

temperature dependence of the 1S0 pairing gap �(T ) �
3.1 Tc (1 − T/Tc)1/2, with Tc being the critical temperature.
For |C| ∼ 5–10 [cf. Fig. 2 (right)], the effect becomes
pronounced for T/Tc � 0.5, yielding a suppression for C > 0
and an enhancement for C < 0. Thus in different density
regions there may arise either an enhancement or a suppression
of the PBF emissivity. Effect becomes even more pronounced
for smaller values of |C|.

In conclusion, we found that the spin p-wave inter-
action in the particle-particle channel can produce new
spin excitonic and diffusive modes in Fermi systems with
singlet paring. This interaction leads also to smearing out

FIG. 3. (Color online) The ratio ενν̄/ε
(0)
νν̄ as a function of T/Tc for

various values of C (see curve labels).

the threshold singularity in Cooper-pair–breaking reactions.
We calculated the relevant coupling parameters for several
Fermi systems. Spin excitons may exist in superconducting
potassium, in rare fermion gases, and in the neutron matter. In
atomic nuclei the new spin-exciton mode may be present in
a surface layer. Modifications of the neutrino emissivity due
to the presence of the spin excitonic and diffusive modes may
have an impact on neutron-star cooling.
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