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The effect of the symmetry energy on the properties of compact stars is discussed. It is shown that, for stars
with masses above 1M�, the radius of the star varies linearly with the symmetry energy slope L. We also analyze
the dependence of the hyperon content and onset density of the direct Urca process on the symmetry energy and
meson coupling parametrization.
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I. INTRODUCTION

Constraining the high-density equation of state (EOS) of
neutron-rich matter is essential to understand the physics of
compact stars [1].

There have been recent attempts to set constraints on the
high-density EOS using observational data obtained from
compact stars [2,3], or microscopic calculations [4]. In
particular, in Ref. [3] an empirical dense equation of state
obtained from a heterogeneous set of six neutron stars with
well-determined distances was proposed.

Phenomenological nuclear models are generally fit to the
ground-state properties of nuclei and, frequently, also to the
collective response of these systems [5–7], or nuclear matter
saturation properties [8]. However, these constraints generally
only determine quite uniquely the EOS close to saturation
density and for an isospin asymmetry smaller than 0.2 [9,10].
Extrapolation to high densities and/or high isospin asymme-
tries is kept unconstrained and different models predict quite
different neutron star properties.

In Ref. [11] it was proposed that the parametrization of
the nuclear EOS could also be constrained by the collective
response of nuclei to the isoscalar monopole giant resonance
(ISGMR) and the isovector dipole giant resonance (IVGDR).
The author of [11] has proposed that the ISGMR and IVGDR
of 208Pb were sensitive both to the incompressibility K and the
symmetry energy εsym, due to its isospin asymmetry. There-
fore, the ISMGR data from a nucleus with a well-developed
breathing mode but a small neutron-proton asymmetry such as
90Zr should be used to fix the incompressibility at saturation
instead of a nucleus with a nonnegligible isospin asymmetry
like 208Pb. Once the incompressibility at saturation is fixed, the
IVGDR 208Pb may be used to constrain the symmetry energy.

This information together with the ground-state properties
of nuclei has been used to define the Florida State University
(FSU) parametrization proposed in Ref. [6]. However, since
the high-density EOS is not constrained, FSU presents an EOS
that is too soft at high densities and does not predict a star
with a mass larger than 1.72M�, which is 0.25M� below
the mass 1.97 ± 0.04 M� of the recent mass measurement
of the binary millisecond pulsar PSR J16142230 [12]. In
order to overcome this drawback, the parametrization [7]
was built in a way close to FSU but including an extra
constraint: the EOS is compatible with the empirical equa-

tion of state determined in Ref. [3]. As a result the new
parametrization predicts stars with larger masses and smaller
radii [7].

In the present work we want to understand how sensitive is
the mass or radius curve of a family of stars to the symmetry
energy and its slope at saturation. We study not only maximum-
mass configurations but also stars with a mass in the range
1.0M� < M < 1.4M�. These stars have a central density that
goes from 1.5 ρ0 to 2–3 ρ0, and therefore we will be testing
the equation of state at suprasaturation densities.

At high density the formation of hyperons is energetically
favorable and therefore we also study the effect of the
symmetry energy on the appearance of these exotic degrees
of freedom [8,13]. We consider two different hyperon-meson
parametrizations: a first one proposed in Ref. [8] and a second
one that takes into account the different binding energies of
the hyperons [14,15].

In Sec. II we present the formalism used in the present
work, in Sec. III the results are presented and discussed, and
in the last section conclusions are drawn.

II. THE FORMALISM

In the present section we present the hadronic equations of
state (EOS) used in this work. We describe hadronic matter
within the framework of the relativistic nonlinear Walecka
model (NLWM) [16]. In this model the nucleons are coupled
to neutral scalar σ , isoscalar-vector ωμ, and isovector-vector
�ρμ meson fields. We include a ρ-ω meson coupling term as in
Refs. [6,7,17] in order to study the effect of the symmetry
energy on the star properties while leaving the isoscalar
channel fixed.

The Lagrangian density reads

L =
8∑
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TABLE I. The σ and ω meson potentials for symmetric nuclear
matter at saturation.

NL3 GM1 GM3 NLρ FSU IU-FSU

Vσ (MeV) 377.15 281.34 206.28 234.68 358.94 359.15
Vω (MeV) 305.46 215.71 145.45 171.10 282.42 276.84

+ 1

4!
ξg4

ω(ωμωμ)2 − 1

4
�Rμν · �Rμν + 1

2
m2

ρ �ρμ · �ρμ

+�v
(
g2

ρ �ρμ · �ρμ
)(

g2
ωωμωμ

)
, (1)

where m∗
j = mj − gσjσ is the baryon effective mass, �μν =

∂μων − ∂νωμ, �Rμν = ∂μ �ρν − ∂ν �ρμ − gρ( �ρμ × �ρν), gij are the
coupling constants of mesons i = σ, ω, ρ with baryon j , mi

is the mass of meson i, and l represents the leptons e− and
μ−. The couplings k (k = 2MNg3

σ b) and λ (λ = 6g4
σ c) are

the weights of the nonlinear scalar terms and �τ is the isospin
operator. The sum over j in Eq. (1) extends over the octet of
lightest baryons {n, p,�,�−, �0, �+, �−, �0}.

We consider two different sets of hyperon-meson couplings.
For the coupling set A the ω and ρ meson-hyperon coupling
constants are obtained using SU(6) symmetry:

1
2gω� = 1

2gω� = gω� = 1
3gωN, (2)

1
2gρ� = gρ� = gρN, gρ� = 0, (3)

where N means “nucleon” (giN ≡ gi). The coupling constants
{gσj }j=�,�,� of the hyperons with the scalar meson σ are
constrained by the hypernuclear potentials in nuclear matter to
be consistent with hypernuclear data [14]. The hypernuclear
potentials were constructed as

Vj = xωjVω − xσjVσ , (4)

where xij ≡ gij /gi , Vω ≡ gωω0 and Vσ ≡ gσσ0 are the nuclear
potentials for symmetric nuclear matter at saturation with the
parameters of Table I. Following Ref. [14], we use

V� = −28 MeV, V� = 30 MeV, V� = −18 MeV. (5)

All hyperon coupling ratios {gσj , gωj , gρj }j=�,�,� are now
known once the coupling constants {gσ , gω, gρ} of the nucleon
sector are given.

However, while the binding of the � to symmetric nuclear
matter is well settled experimentally [18], the binding values
of the �− and �− have still a lot of uncertainties. Experiments
involving kaons and pions [19] and related Distorted Wave
Impulse Approximation (DWIA) analyses [20] suggest that
the � nuclear potential is repulsive (see also [21] for a
recent review). Experimental data for the isoscalar � potential
seem to be compatible with +30 ± 20 MeV [21]. There is
not much experimental information on the interaction of �

with nuclear matter. Measurements from the production of
� in the 12C(K−,K+)12

� Be are compatible with a shallow
attractive potential V� ∼ −14 MeV [22]. Taking for the � a
less attractive potential or for the � an even more repulsive
potential would reduce the fraction of hyperons in stellar
matter.

Therefore, in order to show how results are sensitive to the
hyperon couplings we consider set B defined as proposed
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FIG. 1. (Color online) EOS for symmetric matter and different
models: pressure as a function of the baryon number density. The
enclosed area represents experimental data according to Danielewicz
et al. [25].

in Ref. [8] with xσ = 0.8 and equal for all the hyperons.
We obtain the fraction xω from Eq. (4) with Vj = V� =
−28 MeV, and take the same value for all the hyperons. For the
hyperon-ρ-meson coupling we consider xρ = xσ . This choice
of coefficients has been shown to give high maximum-mass
configurations [23] which could describe the millisecond
pulsar J1614-2230 mass [12].

In Table II we give the symmetric nuclear matter properties
at saturation density as well as the parameters of the models
used in the present work.

The equations of state (EOS) are the standard relativistic
mean-field equations known in the literature. In case of Eq. (1),
the EOS are the same as presented in Ref. [9] for the hadronic
case. The baryon number density is

nB =
8∑

j=1

nj , (6)

where nj is the baryon number density of baryon j at zero
temperature,

nj = 1

3π2
k3
Fj , (7)

and kFj is the Fermi momentum of baryon j . For the sake of
comparisons with symmetric nuclear matter (nB = np + nn),
the symmetry energy is defined as

Esym = 1

2

[
∂2(E/nB)

∂α2

]
α=0

= k2
F

6EF

+ g2
ρ

4m∗
ρ

2 nB, (8)

where E is the energy density obtained from Eq. (1) for j =
1, 2 and with no leptons, α is the asymmetry parameter α =
(N − Z)/A = (nn − np)/nB , EF = (k2

F + m∗2)1/2 with kF =
(3π2nB/2)1/3, m∗

ρ
2 = m2

ρ + 2�vg
2
ωg2

ρω
2
0, and the slope of the

symmetry energy is

L =
[

3nB

∂Esym

∂nB

]
nB=n0

. (9)
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TABLE II. Parameter sets used in this work and corresponding saturation properties.

FSU [6] IU-FSU [7] NLρ [24] NL3 [5] GM1 [8] GM3 [8]

n0 (fm−3) 0.148 0.155 0.160 0.148 0.153 0.153
K (MeV) 230 231.2 240 271.76 300 240
m∗/m 0.62 0.62 0.75 0.60 0.70 0.78
m (MeV) 939 939 939 939 938 938
−B/A (MeV) 16.3 16.4 16.0 16.299 16.3 16.3
Esym (MeV) 32.6 31.3 30.5 37.4 32.5 32.5
L (MeV) 61 47.2 85 118 94 90
mσ (MeV) 491.5 491.5 512 508.194 512 512
mω (MeV) 782.5 782.5 783 783 783 783
mρ (MeV) 763 763 763 763 770 770
gσ 10.592 9.971 8.340 10.217 8.910 8.175
gω 14.302 13.032 9.238 12.868 10.610 8.712
gρ 11.767 13.590 7.538 8.948 8.196 8.259
b 0.000756 0.001800 0.006935 0.002052 0.002947 0.008659
c 0.003960 0.000049 −0.004800 −0.002651 −0.001070 −0.002421
ξ 0.06 0.03 0 0 0 0
�v 0.03 0.046 0 0 0 0

When the hyperons are present we define the strangeness
fraction

fs = 1

3

∑
j |sj |nj

nB

, (10)

where sj is the strangeness of baryon j and nB in this case is
given by Eq. (6).

III. RESULTS

In Figs. 1 and 2(a), the pressure of symmetric nuclear matter
and the symmetry energy, respectively, are plotted for a large
range of densities. In Fig. 1 we also include the experimental
constraints obtained from collective flow data in heavy-ion
collisions [25]. We have considered a wide range of models
frequently used to study stellar matter or finite nuclei with quite
different behaviors at high densities. Even though some of the
models do not satisfy the constraints determined in Ref. [25],

as a whole this set of models allows us to understand the
influence of a hard or soft equation of state (EOS) and a hard
or soft symmetry energy on the star properties.

We have considered the following parametrizations: NL3
[5], with a quite large symmetry energy and incompressibility
at saturation and which was fit in order to reproduce the ground
state properties of both stable and unstable nuclei. FSU [6],
which was accurately calibrated to simultaneously describe
the GMR in 90Zr and 208Pb and the IVGDR in 208Pb and
still reproduce ground-state observables of stable and unstable
nuclei. FSU is very soft at high densities, therefore the authors
of [7] have proposed a parametrization with similar properties,
which they call Indiana University-FSU (IU-FSU), having
a harder behavior at high densities. GM1 and GM3 [8] are
generally used to describe stellar matter, with a symmetry
energy not so hard as the one of NL3, and NLρ [24], which has
been used to discuss the hadron-matter–quark-matter transition
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FIG. 2. (Color online) Symmetry energy as a function of the baryon number density (a) for different models and (b) for modified IU-FSU.
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TABLE III. Parameter sets generated from the IU-FSU model (set 1) that differ in their value of the symmetry energy Esym and corresponding
slope L at saturation but have the same isoscalar properties.

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

gρ 13.590 11.750 10.750 10.150 9.500 8.750 8.650
�v 0.0406 0.03643 0.02905 0.02354 0.01635 0.00598 0.00439
Esym (MeV) 31.34 32.09 32.74 33.26 34.00 35.21 35.41
L (MeV) 47.20 55.09 62.38 68.73 78.45 96.02 99.17

in Ref. [26], and that has, at high densities, a behavior between
GM1 and GM3.

In order to study the effect of the isovector channel in
the star properties we also consider a modified version of
the IU-FSU parametrization: we keep the isoscalar channel
and change gρ and �v keeping the symmetry energy fixed at
the density 0.12 fm−3. It has been shown in Ref. [10] that
phenomenological models fit to the properties of nuclei and
nuclear matter have similar values of symmetry energy for
this density. We generate a set of models that differ in their
symmetry energy and corresponding slope at saturation, as
indicated in Table III, but have the same isoscalar properties.
In Fig. 2(b) we show the symmetry energy density dependence
of this set of models. Set 1 is the parametrization IU-FSU. The
other parametrizations have a larger symmetry energy and a
larger slope L at saturation. The maximum value of L we
considered is within the experimental values obtained from
isospin diffusion in heavy-ion reactions [27]. The range of
values considered for L span all the interval obtained for L

from different analysis of experimental measurements [28]
and a microscopic Brueckner Hartree-Fock calculation [29].
Smaller values of L would give unacceptable EOS because
they would predict that neutron matter is bound.

The effect of the symmetry energy on the strangeness
fraction is seen in Figs. 3 and 4. It is clear from these figures
that the strangeness content is sensitive to the model and
the meson-hyperon couplings. In general, the softer the EOS
the larger the strangeness onset density and the smaller the
strangeness content. From Fig. 4, we conclude that the smaller
the symmetry energy the smaller the hyperon content. A large

meson-hyperon vector coupling, as occurs in set B, hinders
the formation of hyperons.

However, we should point out that, when comparing
different models, we are comparing not only the effect of
the density dependence of the symmetry energy but also
the density dependence of the isoscalar channel (i.e., the
incompressibility and effective mass). This explains why
FSU, a softer EOS with a smaller incompressibility, has
a smaller strangeness content than IU-FSU, a model with
softer symmetry energy than FSU above the saturation
density.

The EOS of the IU-FSU EOS becomes softer than GM3
(NLρ) for densities above ∼5n0 (∼3.5n0); see Fig. 1. This
explains why IU-FSU has a smaller hyperon content with
respect to GM3 (set A) or GM3 and NLρ (set B) at high
densities but not at intermediate densities. On the other hand,
FSU is always softer than all the other EOSs and, for set
B below 3n0 and 5n0, its strangeness fraction is larger than
the corresponding fraction in the NLρ and GM3 models,
respectively. This behavior is defined by the effective masses:
NLρ and GM3 have larger effective masses (i.e., smaller
gs couplings) and, therefore, the chemical potential of the
hyperons decreases slower with density and the onset occurs
at larger densities. At large densities the sigma field saturates
and the behavior of the system is defined by the vector meson.

We also comment on the behavior of NL3 with set B: NL3 is
a model that breaks down at quite low densities when hyperons
are included because the effective mass of the nucleons goes
to zero (nB ∼ 4n0); see Ref. [30]. This explains why the NL3
curve in Fig. 3(b) stops below 4n0.
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FIG. 3. (Color online) Strangeness fraction when hyperons are present for (a) set A and (b) set B.
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When comparing results with the modified versions of the
IU-FSU model we are not changing the isoscalar channel. FSU
has a softer EOS than IU-FSU (i.e., a smaller incompressibility
at high densities). As a result, the formation of hyperons is
hindered in FSU with respect to IU-FSU. The explanation is
the difference on the isoscalar channel of these two models.

The symmetry energy is directly affecting the isovector
chemical potential and, therefore, the chemical equilibrium.
In Fig. 5, the chemical potential for neutral, positively
charged, and negatively charged baryons in β equilibrium
are represented. It is seen that the neutron chemical potential
becomes slightly smaller for a softer symmetry energy, because
the ρ-meson field is weaker. However, the density dependence
of the symmetry energy has a stronger effect on the electron
chemical potential: a smaller L corresponds to a smaller
proton fraction and, therefore, electron fraction, so that the
electron chemical potential decreases when L decreases.
As a result, the sum μn + μe, which defines the chemical
potential of single negatively charged baryons, feels a much
stronger reduction than the neutron chemical potential, and the
difference μn − μe, which defines the chemical potential of

single positively charged baryons, increases above saturation
density when L decreases.

As a consequence, a soft symmetry energy shifts the
hyperon onset to larger densities, if �, a neutral hyperon with
isospin zero, is the first hyperon to appear. This is the case of set
A (see the left panel of Fig. 6). However, the onset of hyperons
is not affected by L when a negatively charged hyperon such
as �− is the first hyperon to appear, such as, for instance,
in set B (see the right panel of Fig. 6). Although the sum
μn + μe decreases, the same happens with the �− chemical
potential and the net result is that the onset of the hyperon �−
is almost independent of L. As soon as � appears, the different
parametrizations of the modified IU-FSU start to differ.

In Tables IV–IX, we give the direct Urca onset density,
mass and radius of maximum-mass stars, the radius of stars
with M = 1.0M� and 1.4M�, the symmetry energy Esym, and
the symmetry energy slope L. Tables IV and V give this
information for stars without hyperons. Tables VI and VIII
give this information for stars with hyperons that couple to
mesons through set A. Tables VII and IX give this information
for stars with hyperons that couple to mesons through set B.
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The properties of stars obtained with models NL3, GM1, GM3,
NLρ, FSU, and IU-FSU are given in Tables IV, VI, and VII,
respectively, and the properties of stars from a set of EOS
obtained from IU-FSU by changing the isovector channel are
presented in Tables V, VIII, and IX.

Cooling of the star by neutrino emission can occur relatively
fast if the direct Urca process, n → p + e− + ν̄e, is allowed
[31]. The direct Urca (DU) process takes place when the
proton fraction exceeds a critical value xDU [31], which can
be evaluated in terms of the leptonic fraction as [32]

xDU = 1

1 + (
1 + x

1/3
e

)3 . (11)

where xe = ne/(ne + nμ) is the electron leptonic fraction, ne is
the number density of electrons, and nμ is the number density
of muons. Cooling rates of neutron stars seem to indicate
that this fast cooling process does not occur and, therefore,
a constraint is set imposing that the direct Urca process is
only allowed in stars with a mass larger than 1.5M�, or a less
restrictive limit, 1.35M� [32]. Since the onset of the direct
Urca process is closely related with the density dependence of
the symmetry energy, this constraint gives information on the
isovector channel of the EOS. In stellar matter with hyperons,
the direct Urca process may also occur for the hyperons. As
discussed in Ref. [33], although the neutrino luminosities

TABLE IV. Symmetry energy and no-hyperon star properties for
NL3, GM1, GM3, FSU, and IU-FSU EOS. The onset density of the
direct Urca process, symmetry energy slope and symmetry energy at
saturation, mass and radius of the maximum-mass configuration, and
radius of 1.4M� and 1.M� stars are given.

Set L Esym RMmax R1.4M� R1.0M�
nurca/n0 (MeV) (MeV) Mmax/M� (km) (km) (km)

NL3 1.38 118.0 37.4 2.81 13.38 14.71 14.65
GM1 1.81 94.0 32.5 2.39 11.99 13.81 13.76
GM3 2.04 90.0 32.5 2.04 10.94 13.12 13.38
NLρ 2.14 85.0 30.5 2.11 10.88 12.92 13.08
FSU 3.16 61.0 32.6 1.73 10.87 12.41 12.78
IU-FSU 3.95 47.2 31.3 1.95 11.23 12.55 12.51

in these processes are much less than the ones obtained in
the nucleon direct Urca process, they will play an important
role if they occur at densities below the nucleon direct Urca
process. In particular, the process � → p + e + ν̄ may occur
at densities below the nucleon DU onset.

In Fig. 7 the proton fractions for β-equilibrium matter are
plotted for NL3, GM1, GM3, FSU, and IU-FSU. The black
region defines the proton fraction at the onset of the direct
Urca process.

The effect of the symmetry energy and the hyperon content
on the onset density of the nucleon direct Urca process is
seen in Fig. 8 as function of the slope L for the IU-FSU and
modified versions in the left panel and for the NL3, GM1,
GM3, NLρ, FSU, and IU-FSU models in the right panel. We
first analyze the effect of the symmetry energy slope on this
quantity. We conclude that: (a) for matter without hyperons the
larger the L the smaller the neutron-proton asymmetry above
the saturation density and, therefore, the smaller the direct
Urca onset density; (b) the larger the slope the smaller the onset
density because a larger L corresponds to a harder symmetry
energy and, therefore, larger fractions of protons are favored;
(c) for a low value of L the presence of hyperons decreases the
onset density. The effect of the inclusion of hyperons depends
on the hyperon-meson coupling. With set A, � is the first

TABLE V. Symmetry energy and no-hyperon star properties for
IU-FSU modified EOS. The onset density of the direct Urca process,
symmetry energy slope and symmetry energy at saturation, mass and
radius of the maximum-mass configuration, and radius of 1.4M� and
1.M� stars are given.

Set L Esym RMmax R1.4M� R1.0M�
nurca/n0 (MeV) (MeV) Mmax/M� (km) (km) (km)

1 3.95 47.20 31.34 1.95 11.23 12.55 12.51
2 3.42 55.09 32.09 1.95 11.27 12.68 12.72
3 2.99 62.38 32.74 1.95 11.31 12.78 12.88
4 2.66 68.73 33.26 1.95 11.35 12.86 13.00
5 2.24 78.45 34.00 1.95 11.41 13.00 13.20
6 1.74 96.02 35.21 1.97 11.57 13.33 13.60
7 1.68 99.17 35.41 1.98 11.63 13.41 13.70
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TABLE VI. Symmetry energy and star properties for NL3, GM1,
GM3, FSU, and IU-FSU EOS and set A for the meson-hyperon
couplings. The onset density of the direct Urca process, symmetry
energy slope and symmetry energy at saturation, mass and radius of
the maximum-mass configuration, and radius of 1.4M� and 1.M�
stars are given.

Set L Esym RMmax R1.4M� R1.0M�
nurca/n0 (MeV) (MeV) Mmax/M� (km) (km) (km)

NL3 1.38 118.0 37.4 2.00 13.51 14.71 14.65
GM1 1.81 94.0 32.5 1.82 12.83 13.80 13.75
GM3 2.04 90.0 32.5 1.595 12.20 13.12 13.37
NLρ 2.14 85.0 30.5 1.594 11.94 12.91 13.08
FSU 3.51 61.0 32.6 1.375 11.95 – 12.79
IU-FSU 3.28 47.2 31.3 1.55 11.92 12.54 12.50

hyperon to appear, as can be seen in Fig. 6(a). With the onset
of �, the neutron fraction decreases as well as the proton
fraction. The behavior of the onset density for the DU depends
on the balance between these two effects. In general the DU
process is favored but, for a small range of L (65 < L < 80
MeV), the DU process may occur at densities larger than the
values obtained for nucleonic matter. (d) The hyperon direct
Urca may occur at densities below the onset of the nucleon
direct Urca for set A if L is low enough (L < 68 MeV), as
shown in the left panel of Fig. 8, where the green dots define
the onset density of the process � → p + e + ν̄.

For set B, �− is the first hyperon to appear according to
Fig. 6(b). With the onset of a negatively charged hyperon,
�− or �−, there is an increase of the proton fraction due
to electrical neutrality as well as a decrease of the neutron
fraction: both effects favor the DU onset.

In Figs. 9–11, the mass radius for the families of stars
obtained, respectively, from the EOS without hyperons and
from the EOS with the meson-hyperon sets A and B are shown.
In the three figures, we show on the left panel the curves
obtained with models NL3, GM1, GM3, NLρ, FSU, and IU-
FSU, and in the right panel we show the curves for IU-FSU and
the modified IU-FSU models. We also include the constrains
obtained by [3] and the mass of the millisecond binary pulsar
J1614-2230 [12]. For the crust of the star we have joined our

TABLE VII. Symmetry energy and star properties for NL3, GM1,
GM3, FSU, and IU-FSU EOS and set B for the meson-hyperon
couplings. The onset density of the direct Urca process, symmetry
energy slope and symmetry energy at saturation, mass and radius of
the maximum-mass configuration, and radius of 1.4M� and 1.M�
stars are given.

Set L Esym RMmax R1.4M� R1.0M�
nurca/n0 (MeV) (MeV) Mmax/M� (km) (km) (km)

NL3 1.3827 118.0 37.4 2.43 13.51 14.71 14.65
GM1 1.8121 94.0 32.5 2.18 11.81 13.81 13.75
GM3 2.0370 90.0 32.5 1.88 11.05 13.12 13.38
NLρ 2.1389 85.0 30.5 1.91 10.92 12.89 13.09
FSU 2.4346 61.0 32.6 1.42 10.76 11.32 12.77
IU-FSU 2.4585 47.2 31.3 1.69 11.14 12.37 12.50

TABLE VIII. Symmetry energy and star properties for IU-FSU
modified EOS and set A for the meson-hyperon couplings. The
onset density of the direct Urca process, symmetry energy slope and
symmetry energy at saturation, mass and radius of the maximum-mass
configuration, and radius of 1.4M� and 1.M� stars are given.

Set L Esym RMmax R1.4M� R1.0M�
nurca/n0 (MeV) (MeV) Mmax/M� (km) (km) (km)

1 3.28 47.20 31.34 1.55 11.92 12.54 12.50
2 3.17 55.09 32.09 1.54 12.01 12.67 12.72
3 3.02 62.38 32.74 1.54 12.08 12.77 12.88
4 2.88 68.73 33.26 1.53 12.15 12.86 13.01
5 2.24 78.45 34.00 1.53 12.28 12.99 13.20
6 1.72 96.02 35.21 1.54 12.60 13.32 13.61
7 1.68 99.17 35.41 1.54 12.66 13.41 13.70

EOS with the Negele and Vautherin EOS [34] for the inner
crust and the Baym-Pethick-Sutherland (BPS) EOS [35] for
the outer crust.

We discuss first the results without hyperons (Fig. 9). All the
models except FSU are able to describe the pulsar J1614-2230.
However, only IU-FSU and FSU satisfy the constrains on [3].
The set of relativistic mean-field (RMF) models chosen has
quite different properties and is reflected in the differences
between the models: the harder models like NL3 and GM1
predict larger masses and radii, the softer EOS, FSU, the
smallest mass, the smaller the L the smaller the radius. This
last property is clearly seen in the left panel of Fig. 12
were the radius of maximum-mass stars (squares), 1.4M�
stars (circles), and 1.0M� stars (triangles) are plotted as a
function of the symmetry energy slope for nucleonic stars.
The full symbols are for the modified IU-FSU models and
the empty symbols are for the NL3, GM1, GM3, NLρ, and
FSU models. The modified IU-FSU models show that, if the
isoscalar channel is left unchanged, the radius decreases if L

decreases. This reduction is larger for 1.0M� stars (more than
1 km for 45 < L < 100 MeV) but even for the maximum-mass
configurations there is still a 0.5 km difference. The set of RMF
models chosen also show the same trend. However, since the
isoscalar properties differ among the models, and they also
affect the radius, the linear behavior is not present.

TABLE IX. Symmetry energy and star properties for IU-FSU
modified EOS and set B for the meson-hyperon couplings. The
onset density of the direct Urca process, symmetry energy slope and
symmetry energy at saturation, mass and radius of the maximum-mass
configuration, and radius of 1.4M� and 1.M� stars are given.

Set L Esym RMmax R1.4M� R1.0M�
nurca/n0 (MeV) (MeV) Mmax/M� (km) (km) (km)

1 2.4585 47.20 31.34 1.69 11.14 12.37 12.50
2 2.3916 55.09 32.09 1.69 11.20 12.46 12.71
3 2.3246 62.38 32.74 1.68 11.25 12.56 12.88
4 2.2577 68.73 33.26 1.68 11.29 12.64 13.01
5 2.1239 78.45 34.00 1.68 11.36 12.80 13.20
6 1.7225 96.02 35.21 1.69 11.57 13.18 13.63
7 1.6779 99.17 35.41 1.69 11.62 13.27 13.70
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FIG. 7. (Color online) Onset of direct Urca process in stellar matter without hyperons: proton fraction for β-equilibrium matter and proton
fraction at the onset of the direct Urca process (black region) (a) for NL3, GM1, GM3, NLρ, FSU, IU-F and (b) for modified IU-FSU.
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FIG. 10. (Color online) Mass-radius relations obtained for NL3, GM1, GM3, NLρ, FSU, and IU-FSU with the hyperon-meson coupling
(a) set A and (b) set B.

Including hyperons in the EOS makes the EOS softer at
large densities and the mass of the maximum-mass stars is
smaller [36]. This is seen in Fig. 10 were the mass-radius
curves obtained with hyperon-meson coupling sets A and
B are plotted in the left and right panels, respectively. We
conclude that it is important to have correct couplings since
the star masses are sensitive to the hyperon couplings. For
set A only the NL3 model is able to describe the PSR
J1316-2230, while within set B NL3, GM1, GM3, and NLρ

are able to describe a star with a mass (1.97 ± 0.4)M�. The
trend discussed above between the star radius and L is still
present in these stars; see the empty symbols in the middle
and right panels of Fig. 12. This trend is confirmed by the
modified IU-FSU models; see full symbols in the middle
and right panels of Fig. 12. Stars with 1.0M� and 1.4M�
contain no hyperons, or only a small fraction, and therefore
their radii do not different from the results obtained for np

matter. Maximum-mass stars, however, do have hyperons and
their radii depend on the hyperon couplings chosen: for set
A radius is larger and the maximum mass is smaller than
the corresponding quantities predicted by set B. None of the
models are able to describe PSR J1614-2230. We also conclude

that the mass of the maximum-mass configuration is quite
insensitive to the symmetry energy slope.

IV. CONCLUSIONS

In the present work we studied the effect of the density
dependence of the symmetry energy on the star properties,
namely, the hyperon content, DU, radius, and mass.

The study was performed within the RMF framework.
We considered parametrizations which have been fit to the
equilibrium properties of stable and unstable nuclei and/or
dynamical response of nuclei, or to the saturation properties
of symmetric nuclear matter. In order to test the density
dependence of the symmetry energy we considered the IU-
FSU parametrization. Keeping the isoscalar channel fixed,
we changed the isovector channel in order to reproduce the
values of the symmetry energy slope that were obtained from
experimental measurements, 40 < L < 110 MeV [27,28].

For the hadronic EOS, we considered two different
parametrizations of the meson-hyperon couplings: in set A we
considered the couplings that reproduce the binding energy of
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FIG. 11. (Color online) Mass-radius relations obtained with the modified IU-FSU and with the meson-hyperon coupling for (a) set A and
for (b) set B.
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hyperons to symmetric nuclear matter; however, since only
the binding energy of the � is well determined, we have
also considered set B, which corresponds to the couplings
proposed in Ref. [8] with xs = 0.8. With set B and the GM1
parametrization of the RMF for the nuclear EOS, the authors
of [23] could obtain a maximum-mass-star configuration of the
order of the one recently measured by Demorest et al. [12].

We analyzed the effect of L on the radius of stars with 1M�,
1.4M� and maximum-mass configurations. The first two cases
correspond to stars that have a central baryonic density in the
range 1.5ρ0 to 3ρ0 and therefore give information on the EOS
just above the saturation densities. These densities will be
probed at the GSI Facility for Antiproton and Ion Research
(FAIR) [37].

We have concluded that the radius of the star is sensitive
to the slope L, and, in particular, the smaller the value of the
slope, the smaller the radius of the star. It was also shown
that the density dependence of the symmetry energy affects
the onset density of the direct Urca process: the smaller L, the
larger the density. This can be understood because a smaller L

at saturation corresponds to a softer symmetry energy at high
densities, and, therefore, a smaller proton fraction. However,
the DU onset also depends on the hyperon content and the
hyperon-meson couplings. If � is the first hyperon to appear,
the DU may be hindered or favored according to a balance
between the neutron and proton reductions. However, if a
negatively charged hyperon such as the �− is the first hyperon
to appear, there is a decrease of the neutron fraction and an
increase of the proton fraction: both effects favor the DU onset.

It was also shown that the larger L, the larger the hyperon
content because a larger L makes the EOS harder and,
therefore, it is energetically favorable to have a larger hyperon
fraction. However, this only occurs if the first hyperon to
appear is the �. A delicate balance between the increase
suffered by the chemical potential of the �− and the neutron
plus electron chemical potential may make the hyperon onset
independent of L.

We also conclude that the total strangeness content is sensi-
tive to the meson-hyperon couplings and stronger constraints
on the determination of these constants are required. For larger
hyperon-vector meson couplings we have obtained a smaller
strangeness content.

According to recent estimates based on a microscopic non-
relativistic approach, including hyperon degrees of freedom
seems to make the EOS too soft even including three-body
forces [38], so that at most star masses of 1.6M� are attained,
far from the very precise mass value recently measured [12].
More data on hypernuclei are required in order to clarify this
point.
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(2009); F. Özel, G. Baym, and T. Guver, Phys. Rev. D 82, 101301
(2010).

[3] A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.
722, 33 (2010).

[4] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Phys.
Rev. Lett. 105, 161102 (2010).

[5] G. A. Lalazissis, J. König, and P. Ring, Phys. Rev. C 55, 540
(1997).

[6] B. G. Todd-Rutel and J. Piekarewicz, Phys. Rev. Lett. 95, 122501
(2005); F. J. Fattoyev and J. Piekarewicz, Phys. Rev. C 82,
025805 (2010).

065810-10

http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://dx.doi.org/10.1016/j.physrep.2007.02.003
http://dx.doi.org/10.1088/0004-637X/693/2/1775
http://dx.doi.org/10.1088/0004-637X/693/2/1775
http://dx.doi.org/10.1103/PhysRevD.82.101301
http://dx.doi.org/10.1103/PhysRevD.82.101301
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevC.55.540
http://dx.doi.org/10.1103/PhysRevC.55.540
http://dx.doi.org/10.1103/PhysRevLett.95.122501
http://dx.doi.org/10.1103/PhysRevLett.95.122501
http://dx.doi.org/10.1103/PhysRevC.82.025805
http://dx.doi.org/10.1103/PhysRevC.82.025805


NEUTRON STAR PROPERTIES AND THE SYMMETRY ENERGY PHYSICAL REVIEW C 84, 065810 (2011)

[7] F. J. Fattoyev, C. J. Horowitz, J. Piekarewicz, and G. Shen, Phys.
Rev. C 82, 055803 (2010).

[8] N. K. Glendenning and S. A. Moszkowski, Phys. Rev. Lett. 67,
02414 (1991).

[9] Rafael Cavagnoli, Constança Providência, and Debora P.
Menezes, Phys. Rev. C 83, 045201 (2011).
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[32] T. Klähn et al., Phys. Rev. C 74, 035802 (2006).
[33] M. Prakash, M. Prakash, J. M. Lattimer, and C. J. Pethick,

Astrophys. J. 390, L77 (1992).
[34] J. W. Negele and D. Vautherin, Nucl. Phys. A 207, 298 (1973).
[35] G. Baym, C. Pethick, and D. Sutherland, Astrophys. J. 170, 299

(1971).
[36] M. Prakash, I. Bombaci, M. Prakash, P. J. Ellis, J. M. Lattimer,

and R. Knorren, Phys. Rep. 280, 1 (1997).
[37] S. Chattopadhyay, J. Phys. G 35, 104027 (2008); P. Senger et al.,

ibid. 36, 064037 (2009); CBM Collaboration, Johann M. Heuser,
Nucl. Phys. A 830, 563c (2009) [http://www.gsi.de/fair].

[38] I. Vidaña, D. Logoteta, C. Providência, A. Polls, and I. Bombaci,
Europhys. Lett. 94, 11002 (2011).

065810-11

http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevLett.67.2414
http://dx.doi.org/10.1103/PhysRevLett.67.2414
http://dx.doi.org/10.1103/PhysRevC.83.045201
http://dx.doi.org/10.1103/PhysRevC.83.045810
http://dx.doi.org/10.1103/PhysRevC.66.034305
http://dx.doi.org/10.1103/PhysRevC.69.041301
http://dx.doi.org/10.1103/PhysRevC.69.041301
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1103/PhysRevC.62.034311
http://dx.doi.org/10.1103/PhysRevLett.89.171101
http://dx.doi.org/10.1016/j.physrep.2007.08.002
http://dx.doi.org/10.1016/j.nuclphysa.2009.05.002
http://dx.doi.org/10.1016/j.nuclphysa.2009.05.002
http://dx.doi.org/10.1016/0375-9474(77)90626-1
http://dx.doi.org/10.1016/0375-9474(77)90626-1
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevC.64.044302
http://dx.doi.org/10.1103/PhysRevC.64.044302
http://dx.doi.org/10.1143/PTP.80.757
http://dx.doi.org/10.1143/PTP.80.757
http://dx.doi.org/10.1103/PhysRevLett.83.5238
http://dx.doi.org/10.1103/PhysRevLett.89.072301
http://dx.doi.org/10.1103/PhysRevLett.90.049902
http://dx.doi.org/10.1103/PhysRevC.70.044613
http://dx.doi.org/10.1143/PTP.112.895
http://dx.doi.org/10.1103/PhysRevC.74.064613
http://dx.doi.org/10.1103/PhysRevC.74.064613
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.025
http://dx.doi.org/10.1016/j.nuclphysa.2005.04.025
http://dx.doi.org/10.1016/j.nuclphysa.2005.12.018
http://dx.doi.org/10.1143/PTPS.186.270
http://dx.doi.org/10.1103/PhysRevC.58.1306
http://dx.doi.org/10.1103/PhysRevC.61.054603
http://dx.doi.org/10.1103/PhysRevD.77.083002
http://dx.doi.org/10.1103/PhysRevD.77.083002
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1103/PhysRevC.65.045201
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1126/science.1078070
http://dx.doi.org/10.1103/PhysRevC.83.014911
http://dx.doi.org/10.1103/PhysRevLett.94.032701
http://dx.doi.org/10.1103/PhysRevLett.94.032701
http://dx.doi.org/10.1103/PhysRevC.76.051603
http://dx.doi.org/10.1103/PhysRevC.76.024606
http://dx.doi.org/10.1103/PhysRevC.76.024606
http://dx.doi.org/10.1103/PhysRevLett.102.122701
http://dx.doi.org/10.1103/PhysRevLett.102.122701
http://dx.doi.org/10.1103/PhysRevLett.102.122502
http://dx.doi.org/10.1103/PhysRevC.80.024316
http://dx.doi.org/10.1103/PhysRevC.80.024316
http://dx.doi.org/10.1103/PhysRevC.81.041301
http://dx.doi.org/10.1103/PhysRevC.80.045806
http://dx.doi.org/10.1103/PhysRevC.69.045803
http://dx.doi.org/10.1103/PhysRevC.69.045803
http://dx.doi.org/10.1103/PhysRevLett.66.2701
http://dx.doi.org/10.1103/PhysRevLett.66.2701
http://dx.doi.org/10.1103/PhysRevC.74.035802
http://dx.doi.org/10.1086/186376
http://dx.doi.org/10.1016/0375-9474(73)90349-7
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1016/S0370-1573(96)00023-3
http://dx.doi.org/10.1088/0954-3899/35/10/104027
http://dx.doi.org/10.1088/0954-3899/36/6/064037
http://dx.doi.org/10.1016/j.nuclphysa.2009.09.048
http://www.gsi.de/fair
http://dx.doi.org/10.1209/0295-5075/94/11002

