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Coulomb breakup of 6Li into α + d in the field of a 208Pb ion
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The triple differential cross section of the 208Pb(6Li,αd)208Pb quasielastic breakup is calculated at a collision
energy of 156 MeV and a scattering angle range of 2◦–6◦. We fit the parameters of the Woods-Saxon potential
using the experimental α-d phase shifts for different states to describe the relative motion of the α particle and
deuteron. To check the validity of the two particle approach for the α-d system, we apply a potential model to
describe the 2H(α,γ )6Li radiative capture. We calculate the Coulomb breakup using the semiclassical method
while an estimation of the nuclear breakup is made on the basis of the diffraction theory. A comparison of our
calculation with the experimental data of Kiener et al. [Phys. Rev. C 44, 2195 (1991)] gives evidence for the
dominance of the Coulomb dissociation mechanism and the contribution of nuclear distortion, but is essentially
smaller than the value reported by Hammache et al. [Phys. Rev. C 82, 065803 (2010)]. The results of our
calculation for the triple cross sections (contributed by the Coulomb and nuclear mechanisms) of the 6Li breakup
hint toward a forward-backward asymmetry in the relative direction of the α particle and deuteron emission,
especially at smaller scattering angles, in the 6Li center-of-mass (c.m.) system.
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I. INTRODUCTION

The study of processes, relevant for nuclear astrophysics,
by indirect methods gives the possibility to extract the astro-
physical S factor at extremely low energies when extraction
by direct methods is not possible due to the Coulomb barrier
suppression. Among these indirect methods we cite the elastic
Coulomb dissociation method suggested by Baur, Bertulani,
and Rebel [1–3], the asymptotic normalization coefficient
method (ANC) suggested by Mukhamedzhanov and Timo-
feyuk [4–6], and the Trojan horse method (THM) suggested
by Baur and modified by Spitaleri [7,8]. The study of nuclear
reactions at high energy is, in general, very complicated owing
to the strong nuclear interaction between the colliding nuclei.
However, in the peripheral collisions of a light nucleus with
heavy target the reaction mechanism becomes simple owing to
the negligible contribution of nuclear distortion and excitation
becomes purely Coulombic. Electromagnetic excitation is a
very powerful tool for the extraction of information concerning
radiative capture at extremely low energies when the direct
measurements of the radiative capture of nuclei for astro-
physical purposes is impossible. The Coulomb dissociation
experiments are being performed at different centers around
the world (e.g., GSI, Germany [9]; MSU/NSCL, USA [10];
RIKEN, Japan [11]). The value of the astrophysical S factor
extracted from the Coulomb breakup experiment is affected by
various uncertainties, namely (i) the method of extrapolation of
the data to zero energy; (ii) contributions from various electro-
magnetic multipoles (E1, E2, M1); (iii) assumptions about
the nuclear interactions; and (iv) various higher-order effects
(see Refs. [12–15] and references therein). The astrophysical
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S factor at zero energy extracted from the direct radiative
capture and the Coulomb breakup reaction should be the same.
However, the extrapolation to zero energy from the d(α,γ )6Li
and 208Pb(6Li,α d)208Pb reactions gives different values for
the astrophysical factor. This is owing to the fact that at αd

relative energy below 100 keV the E1 dipole cross section
becomes larger than the E2 quadrupole cross section for the
direct capture process, while for the Coulomb breakup the E1
cross section is always smaller than the E2 one at any given
energy. Kiener et al. [16] investigated the Coulomb breakup
of 6Li in the field of the 208Pb ion and extracted a large value
of the astrophysical factor at zero energy from extrapolation
in the range Eαd < 400 keV. Shyam et al. [17] underlined
that the result of the authors of Ref. [16] was free from the
nuclear background, which maybe important. Kiener et al.
did not take the contribution of the dipole transition to the
cross section owing to the isospin selection rule. However,
this rule is violated and E1 transition can still occur. Recently
a new measurement of the Coulomb breakup at extremely high
energy of 6Li (150 A MeV) was performed [18] and the authors
claimed disclosure of evidence for the large contribution of the
Coulomb-nuclear interference. However, the authors did not
present the cross sections (the histograms for the counts in
Figs. 6 and 7 of Ref. [18] were shown). Figure 10 of Ref. [18]
showed the ratio of nuclear to Coulomb differential cross
sections for 6Li which is very large compared to the qualitative
estimation given earlier in Ref. [19].

The dissociation by the nuclear field of a target can be
excluded by the observation of the fragments of the reaction
at forward scattering angles. This extremely small angle
corresponds to the impact parameter essentially larger than
the sum of the nuclear radii of the projectile and the target. For
instance, in the experiments [16] the angle was varied in the
range 2◦–6◦ corresponding to the impact parameter in the range
20–65 fm. However, the dipole transition in the 6Li Coulomb
breakup is suppressed as in the d(α,γ )6Li radiative capture,
therefore, we can expect that the nuclear dissociation gives a
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relatively large contribution to the 6Li Coulomb breakup cross
section.

The problem of the higher-order effects was discussed in
many papers (see, e.g., Refs. [3,20], and references therein). In
the semiclassical theory these effects are inversely proportional
to the impact parameter and the velocity of collision. Therefore
we can constrain ourselves by the first-order amplitude for
the excitation of a fast nucleus at sufficiently small scattering
angles. Among higher-order effects, we also note the three-
body Coulomb effects in the final state, which were discussed
in Refs. [21,22].

In this paper we consider the dissociation
208Pb(6Li,α d)208Pb using the time-dependent perturbation
theory for the Coulomb breakup, whereas the nuclear breakup
is viewed as a diffractive dissociation. Our treatment is
used for the complete analysis of the experiments, which
were performed with a 156 MeV 6Li beam at the Karlsruhe
Isochronous Cyclotron [16]. This reaction is relevant to the
d(α,γ )6Li radiative capture, which is one of the important
nucleosynthesis reactions. When the collision energy is
sufficiently large, we can consider the motion of the center
of mass of a projectile along a classical trajectory. At small
scattering angles of the projectile the value of the impact
parameter would be so large that at such distances only
the Coulomb interaction between the projectile and the
target would be significant. The nuclear breakup does take
place, but it mainly occurs near the target surface where the
nuclear potential of the interaction falls down quickly. At
small scattering angles and high energy collisions, the most
appropriate method of estimation of the nuclear breakup is
the diffraction theory [23] as also has been mentioned above.
Here we mention the experiments concerning the 6Li breakup
at energies 60 MeV [24] and 31, 33, 35, and 39 MeV [25],
which also confirmed the Coulomb dissociation mechanism
of 6Li on 208Pb. However, from our opinion the authors of
Ref. [24] made an erroneous conclusion that the second-order
Coulomb excitation theory can improve the deviation in the
angular distribution between the theory and the experiment.
On the basis of the developed method we desire to make the
analysis of the data presented in Ref. [16] and to explore
the possibility of the extraction of the astrophysical S factor
from the 208Pb(6Li,α d)208Pb reaction by a comparison of our
results with the experimental data of Ref. [16].

We use the system of units in which h̄ = c = 1.

II. GENERAL FORMALISM

In the semiclassical theory the center-of-mass (c.m.) motion
of the projectile is considered classically, whereas the relative
motion of the clusters in the projectile is treated completely
in a quantum mechanical fashion [3]. In this approach
the purely Coulomb breakup cross section of peripheral
208Pb(6Li, αd)208Pb reaction is presented as a product of the
Rutherford scattering cross section of 6Li in the field of 208Pb
ion and the probability of the 6Li → α + d disintegration. We
calculate the probability of disintegration in the 6Li frame
(projectile frame) because the calculation does not depend on
any reference frame. In this frame a heavy 208Pb moves along

a straight line with a constant velocity v. If the energy of the
αd relative motion is small we can restrict it by using only
the low partial waves at l = 0, 1, 2 for the description of the
αd motion. The E2 multipole gives the main contribution to
the transition amplitude of the electromagnetic dissociation of
the 6Li, however, the E1 transition should also be included
to the amplitude owing to a violation of the isospin forbidden
rule.

The time-dependent perturbation for the Coulomb breakup
A + a → A + c + b is

H (t) =
∫

d3x

(
ZAe

|x − R(t)| − ZAe

|R(t)|
)

ρ(x), (1)

where ZAe is the charge of a heavy ion A (208Pb target), the
projectile a (6Li nucleus) is dissociated into b (deuteron) and
c (α particle), R(t) = b + vt gives the position of the target in
the projectile frame, and ρ(x) is the charge density operator,
b is the impact parameter. For the peripheral reaction we can
take the charge density operator in the two-body approach as

ρ(x) = Zbeδ(x − rb) + Zceδ(x − rc), (2)

where ri defines the position of particle i in the projectile
frame and Zie is its charge.

In perturbation theory the amplitude of the transition from
the initial state |i〉 (wave function of the a = b + c system in
the ground state) to the final state |f 〉 (wave function of the
b + c system in the continuum state) is given as a sum

af i = δf i + a
(1)
f i + a

(2)
f i + · · · , (3)

of different order contributions. We use the first-order constrain
for the amplitude of the transition. Expanding H (t) in
multipoles we get

a
(1)
f i = 4πZAe

i

∑
λ,μ

(−1)μ

2λ + 1
〈f | M(λ,−μ) | i〉Sλμ(ω), (4)

where M(λ,μ) is the electric multipole operator

M(λ,μ) =
∫

d3xρ(x)xλYλμ(x̂). (5)

The semiclassical orbital Sλμ(ω) integral is given by

Sλμ(ω) =
∫ +∞

−∞
dt

eiωt

R(t)λ+1
Yλμ[R̂(t)], (6)

where x̂ and R̂(t) are the unit vectors along the position vectors
x and R(t), respectively. The integrals Sλμ(ω) were calculated
analytically and the results of the calculations were presented
in Ref. [26]. Determining the relative coordinate r = rb − rc,
inserting Eq. (2) into Eq. (5), and performing the integration
over variable x we obtain

M(λ,μ) = μλ
bc

[
Zbe

mλ
b

+ (−1)λ
Zce

mλ
c

]
rλYλμ(r̂), (7)

where μbc is the reduced mass of particles b and c. We see
that the dipole transition operator M(1, μ) is not equal to
zero because the value of the charge-to-mass ratio is slightly
different for the α particle and deuteron. Therefore, the E1
transition amplitude is not zero.
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The triple cross section of the Coulomb breakup from the
ground state with angular momentum and parity Jπ

i = 1+ of
6Li to the final state with relative momentum k of the α particle
and deuteron having reduced mass μαd can be expressed in
terms of the excitation amplitude af i

d3σC

d
αdd
LidEαd

= dσR

d
Li

1

2Ji + 1

∑
Mi

|af i |2 μαdk

(2π )3
. (8)

The elastic Coulomb cross section dσR/d
Li is calculated
classically for the scattering of the c.m. of the projectile 6Li.

Next we consider the nuclear breakup. As mentioned
earlier, the nuclear breakup occurs mostly near the surface
of a heavy target nucleus 208Pb. If the scattering angle is small
we may apply the diffraction theory assuming that the target
nucleus is a completely absorptive “black” sphere of radius
Rbl. The amplitude for the elastic breakup according to the
diffraction theory [27] is given by

F(q, k) = iki

2π

∫
d2beiq b

∫
d3rψ∗

k (r)ω(b, r)ψ0(r), (9)

where q = ki − kf , ki is the initial momentum of 6Li and kf

is the final momentum of the c.m. of the α d system after dis-
sociation; |i〉 = ψ0(r) and |f 〉 = ψk(r) are the wave functions
of α d in the bound and continuum states, respectively; b is
the impact parameter of the α d system; ω(b, r) is the total
profile function for the α d system. We may take the vector
q to be orthogonal to the momentum vector ki due to high
energy collision and small scattering angle (q ≈ ki · θ , where
θ is the scattering angle). The total profile function

ω = ωα + ωd − ωαωd (10)

is composed of the profile functions of the fragments. The
third term in Eq. (10) describes the double scattering and its
contribution to the cross section is much smaller than the
contributions of the first two terms. Neglecting the double-
scattering term we obtain the cross section of the nuclear
breakup as

d3σN

d
αdd
LidEαd

=
∣∣∣∣kiRbl

J1(qRbl)

q
s(q, k)

∣∣∣∣
2
μαdk

(2π )3
, (11)

where J1(x) is the Bessel function and

s(q, k) =
∫

d3r eiq rψ∗
k (r)ψ0(r). (12)

The total cross section is considered as the sum

d3σt

d
αdd
LidEαd

= d3σC

d
αdd
LidEαd

+ d3σN

d
αdd
LidEαd

.

(13)

In Eq. (13) the Coulomb-nuclear interference term is ne-
glected. We note that the Coulomb and nuclear breakup are
calculated using different approaches therefore we cannot
calculate the interference term. Even if both the Coulomb
and nuclear breakup amplitudes were calculated using the
same approach, one expects the interference term to be
small (see, for example, the calculation in the distorted wave
Born approximation (DWBA) method used by Bertulani and
Hussein, Figs. 4 and 5 in Ref. [19]). We further note that at

the small scattering angles considered in this calculation, the
elastic Coulomb scattering cross section calculated classically
is equal to the cross section calculated by the diffraction theory.

III. α-d POTENTIALS

To describe the relative motion of the α particle and
deuteron we use the Woods-Saxon potential with the orbital
terms

VN (r) = −
[
V0 − Vsl(l · s)

1

m2
π r

d

dr

]
1

1 + exp[(r − RN )/a]
,

(14)

with the standard value of the diffuseness a = 0.65 fm. The
parameters V0 and Vsl for different αd states is fitted from the
shift phase analysis. We take the nuclear radius of the potential
RN as

RN = r0 · A1/3, (15)

with the standard value r0 = 1.25 fm and the nuclear mass
number A = 6 for 6Li. The Coulomb potential is taken as

VC(r) =
{

ZαZde2

2RC

(
3 − r2

R2
C

)
, r < RC,

Z1Z2e
2

r
, r > RC,

(16)

where Zαe and Zde are the charges of the α particle and
deuteron, respectively; RC = rC A1/3 (rC = 1.25 fm).

The parameters of the depth of the potentials V0 and Vsl

were fixed by fitting the experimental S, P, and D phase shifts
of the elastic α-d scattering [28–32] and the binding energy
of the 6Li ground state. We obtained the following values of
the depths: V0 = 60.73 MeV for the 3S1 state; V0 = 57.0 MeV,
Vsl = 4.0 MeV for the 0P1, 1P1, and 2P1 states; V0 = 55.9 MeV,
Vsl = 4.0 MeV for the 1D1, 2D1 states; and V0 = 55.9 MeV,
Vsl = 5.06 MeV for the 3D1 state. To describe the 3+
resonance of 6Li correctly, the depth of the spin-orbital part of
the potential for the 3D1 state is taken slightly differently.
We note that our fitted parameters of the Woods-Saxon
potential are slightly different from the parameters used in
Ref. [18]. This difference is obvious as the phase shifts are
determined with errors and the resulting fit can give rise to
such differences in the parameters of the potential. Note the
spin-orbital potential in Eq. (14) contains the dimensional
parameter 1/m2

π = 2.136 fm2 while the same potential in
Ref. [18] has λ2 = 4 fm2.

It is important to remember that at low energies the αd

radiative capture depends on the tail of the 6Li bound state wave
function projected on the α-d channel [33,34]. The amplitude
of this tail is the asymptotic normalization coefficient (ANC).
We note that the range for the ANC obtained by various
techniques is wide (C = 1.51–3.25 fm−1/2) [35]. We calculate
the amplitude of the peripheral radiative capture reaction
2H(α,γ )6Li at very low collision energies where the ANC
for the virtual decay 6Li → α + d from the ground state
governs the overall normalization of the peripheral reaction
cross section. The value of the ANC (C0) obtained here using
the fitted potential for the 3S1 state of 6Li is 2.7 fm−1/2. This
value is larger than C = 2.3 fm−1/2 extracted from the elastic
α-d 3S1 experimental phase shift by the analytic extrapolation
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to the pole of the partial scattering amplitude corresponding
to the 6Li ground state [35]. The same value of the ANC
was also obtained from the solution of the three body α-p-n
equation [36], which was used in Refs. [33,34] and confirmed
recently by ab initio calculations [37]. To obtain the ANC
value of 2.3 fm−1/2 we can find the phase-equivalent potential
and the corresponding wave function by the method described
in Ref. [38] and discussed in Ref. [33]. The phase-equivalent
potential does not change the scattering phase shift and the
binding energy, but allows one to get the needed value of
ANC. The phase-equivalent potential has the form

Veff(r) = VN (r) − 2
d2

dr2
feff(r), (17)

where feff(r) means

feff(r) = ln

[
1 + (λ − 1)

(
1 −

∫ r

0
u2(r)dr

)]
. (18)

The corresponding new wave function of the bound state is
equal to

ueff(r) = λ1/2 u(r)

1 + (λ − 1)
∫ r

0 u2(r)dr
, (19)

where u(r) is the wave function obtained from the
solution of the Schrödinger equation with the param-
eters of the Woods-Saxon potential determined from
the phase-shift analysis. We note that to decrease
the value of the ANC we have to take λ > 1.
For our phase-equivalent potential and the wave function
corresponding to C = 2.3 fm−1/2 the value of λ is 1.38. [This
follows from Eq. (19): C = λ−1/2C0]. A detailed description of
this method and its application in the case of the α-d radiative
capture can be found in Ref. [33]. Thus for calculation of
the cross sections of the 2H(α,γ )6Li radiative capture and the
208Pb(6Li,α d)208Pb breakup we use the ueff(r) bound wave
function having C = 2.3 fm−1/2.

IV. RADIATIVE CAPTURE REACTION 2H(α,γ )6Li

Experimental measurements of the cross section of the
2H(α,γ )6Li reaction at extremely low energies are very
difficult to carry out because the cross section is the order of a

few nanobarns and decreases exponentially if the energy goes
to zero. The experimental results for the cross sections of the
direct d + α capture were measured by Robertson et al. [39]
at c.m. energy range 1–3.5 MeV, by Mohr et al. [40] at the
resonance point of 711 keV, and Cecil et al. [41] at an αd

c.m. energy of 53 keV. Furthermore, we mention Refs. [42,43]
where the analysis of the experimental results and theoretical
calculations are given. Nollett et al. [43] used a six-body
approach for the calculation of the αd capture. From the
analysis of the results at the Eαd energy close to zero we see an
essential difference in the value of the astrophysical S factor
depending on the applied value of the ANC. At extremely
low energies the initial wave function of the αd system ceases
to depend on the parameters of the nuclear potential, which is
used to calculate this wave function since the nuclear scattering
phase shifts tend to zero. Therefore, we can replace the wave
function of the initial state of the purely Coulomb wave if
Eαd < 100 keV. For any radiative capture at low energy, the
main contribution comes from E1, E2, and M1 transitions.
However, for the 2H(α,γ )6Li reaction the main contribution
comes from the E2 quadrupole transition at the energy larger
than 200 keV. The E1 transition begins to dominate if the Eαd

energy becomes less than 100 keV. The M1 capture remains
negligible for all astrophysical interesting range of energies.

For the calculation of the d(α,γ )6Li cross section we use
the Woods-Saxon potential with the parameters described in
the previous section. The initial wave function of the αd

system includes the P and D waves which are solutions of
the Schrödinger equation. It is clear that the αd direct capture
is a peripheral reaction at the low energy (Eαd < 300 keV).
Accordingly, the cross section is not sensitive to the choice of
the parameters of potential describing the continuum states. It
is rather strongly dependent on the ANC of the ground state.
Such a property was used for the ANC calculation [33,34],
where the asymptotic wave function of the 6Li ground state
wave function in two-body approximation was applied to find
the astrophysical S factor. The main contribution to the matrix
elements of the direct reaction at Eαd < 300 keV comes from
the external part of the used wave functions, while the internal
part gives a very small contribution. Figure 1(a) shows the
radial part of the integrand for transition from 0P1 to 3S1 at the
energy Eαd = 0.1 MeV. We can see that the replacement of

(a) (b)

FIG. 1. (Color online) (a) The integrand of the matrix element for transition from 0P1 to 3S1 at energy Eαd = 0.1 MeV calculated with the
continuum wave function which is the solution of the Schrödinger equation (solid curve) and with the regular Coulomb wave function (dashed
curve). (b) Same as in (a) for the transition from 3D1 to 3S1 at the resonance energy Eαd = 0.711 MeV.
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FIG. 2. (Color online) The calculated astrophysical S factor
compared with the results of other theoretical calculations and
experimental data. The solid line is our result for the total S factor,
the dashed and dot-dashed lines are the contributions of E2 and
E1 multipolarities, respectively. The dotted line shows the result
of the calculation of the authors of Ref. [43] and dot-dot-dashed line
corresponds to Ref. [18]. The experimental data (�, •, ×) were taken
from their graphical presentation in Ref. [43].

the P continuum wave function by the corresponding regular
Coulomb wave function leads to almost the same value of the
matrix element for the 0P1 → 3S1 transition. We further note
that the same conclusion can be made for the transition from
D states at the low energy.

It seems that in the resonance region the complete micro-
scopic model should be used (see Ref. [43] and references
therein) because the contribution to the transition amplitude
from the internal part of the radial wave functions is also
expected. Nevertheless, the two-particle approach can be used
to describe the 2H(α,γ )6Li resonance reaction and to get a
quantitative result for the cross section at the resonance energy
region. Such instances may be explained by the suppression of
the E1 transition. The resonant amplitude is the result of the
transition from the state 3D1 to the state 3S1 and the transition
remains peripheral due to the large centrifugal barrier in the 3D1

state. The result of our calculations shows that the two-body
wave function for the ground state of 6Li gives an acceptable
result for the resonance cross section and the internal part
of the wave function gives a very small contribution to the
transition amplitude at the resonance energy [see Fig. 1 (b)].
The result of the calculations of the astrophysical S factor as a
function of energy is shown in Fig. 2 over a wider energy range
than shown in Fig. 3 of Ref. [33]. It is clear from Fig. 2 that
the two-body approach for the description of the ground and
continuum states of the αd system gives perfectly good results
at the low energy, including the 3+ resonance energy region.
The value of our calculated astrophysical S factor coincides
with the one presented in Ref. [34] for the low energies. At
an energy larger than 1 MeV our result definitely agrees well
with the experimental data [39], while the results of the authors
of Refs. [18,43] clearly overestimated the data. We also see
a big disagreement of our result with the astrophysical factor
extracted from the Coulomb breakup experiment [16] below
500 keV. We note that the ANC determines the value of the

astrophysical S factor at the energy range Eαd < 300 keV
where the reaction has a clear peripheral mechanism. The ratio
of the astrophysical S factors (or cross sections) calculated
near zero Eαd energy using the ground wave functions with a
different value of the ANC is equal to the square of the ratio
of the corresponding ANCs. As was also mentioned above,
the ground state wave function of 6Li used in our calculation
for the radiative capture has an ANC equal to 2.3 fm−1/2

while the ANC of the bound state wave function used in
Refs. [18,43] is 2.7 fm−1/2 and 3.2 fm−1/2, respectively.1 The
secondary peak of the calculated cross section near Eαd = 3
MeV appears due to the wide resonance in the 3D2 scattering
wave at Eαd = 2.838 MeV. The applied potential describes
this resonance. To explain the disagreement of our results with
the experimental data for Eαd > 3 MeV, we refer to the work
of Nollett et al. [43], where the nature of this disagreement is
discussed in detail. Additionally, we note that for the energy
Eαd > 3 MeV the reaction is no longer peripheral. We have
not calculated the cross section above 6 MeV because the
phase shifts have a large imaginary part due to the open
α + p + n, 5He + p and 5Li + n channels from the energy
E > 5 MeV and the restriction by the single αd channel
becomes incorrect. From Fig. 2 we see that the E1 cross section
dominates the E2 cross section at energies below 100 keV and
SE1(0) = 1.01 MeV nb while SE2(0) = 0.21 MeV nb. Hence
our total calculated value of the astrophysical factor at zero
energy is S(0) = 1.22 MeV nb.

V. RESULTS FOR THE COULOMB BREAKUP OF 6Li

Using the E1 and E2 multipole matrix elements calculated
to determine the αd capture cross section, we compute the
208Pb(6Li,α d)208Pb breakup reaction. The calculated triple
differential cross section [Eq. (8)] includes E1, E2, and
E1E2 terms. The analyzed experimental data of the Coulomb
breakup were taken from Ref. [16], where data are presented
for the scattering angles lab = 2, 3, 4, and 6◦ in the laboratory
frame in Tables III through VI and Figs. 7 and 10, respectively.
To convert the laboratory cross sections into the αd c.m.
cross sections we used the transformation method described
in Ref. [44]. Previously, only the data at the scattering angle
lab = 3◦ were analyzed and the astrophysical factor at zero
energy was extracted from that analysis [16]. The experimental
data at other scattering angles have not been analyzed so
far to the best of our knowledge. We chose the impact
parameter corresponding to the selected scattering angles when
we calculate the Coulomb breakup contribution. In spite of
the fact that the E1 cross section becomes larger than the
E2 cross section for the direct radiative capture at energies
Eαd < 100 keV, the E1 triple cross section is always less than
the E2 one for the Coulomb breakup at any energy including

1The authors of Ref. [43] quoted that the two-cluster αd distribution
function had the dimensionless ANC C0 = 2.26 ± 0.05 which gave
the dimension ANC equal to 1.77 ± 0.04 fm−1/2. This ANC must
lead to S(0) = 0.72 MeV nb, but from Fig. 8 of Ref. [43] we see
that S(0) ≈ 2.5 MeV nb. Therefore we reestimated the value of the
ANC.
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(a) (b)

(c) (d)

FIG. 3. (Color online) (a) Energy distribution of the total triple differential cross section for the 6Li breakup as a function of the relative
energy Eαd at an angle of 2◦ (solid line). The distribution for the purely Coulomb breakup is shown with a dashed line. The experimental data
were taken from Ref. [16]. (b) Same as in (a) but for energy in the close vicinity of zero. Negative and positive Eαd energies denote backward
and forward emission, respectively, of the α particle in the 6Li c.m. frame. (c) and (d) like to (a) and (b), respectively, but at the scattering
angle 3◦.

the range Eαd < 100 keV. In the Coulomb breakup, like the
radiative capture reaction, the contribution of E1 transition
cross section decreases more slowly than E2 cross section
with reduction of energy. For instance, at an αd energy of 100
keV the E1 contribution is less than the E2 one by a factor 70,
and at Eαd = 10 keV their ratio is equal to 1/24. This means
that the Coulomb breakup cross section is mostly defined by
the E2 quadrupole transition at the extremely low energy as
well. There is a contribution of the E1E2 interference term,
but the contribution of the E1 term to the cross section is very
small as compared to the E1E2 interference term.

When we calculate the nuclear breakup cross section
according to Eq. (11), the radius Rbl of the “black” nuclei
208Pb is fixed by means of χ2 so that the sum of the Coulomb
and nuclear cross sections is close to the experimental data
in the energy region 0.4 MeV < Eαd < 0.73 MeV. For the
calculation of χ2 we take into account the region where deutron
emission occurs in the forward direction in the 6Li c.m. frame.
We do not include the region, Eαd < 0.4 MeV because in this
region higher-order effects, such as the three-body Coulomb
effects [21,22], can give a significant contribution. In the
region Eαd > 0.73 MeV the behavior of the experimental cross
section is not clear for the experimental scattering angles and
the experimental error is comparable with the value of the cross
section (see Tables III through VI of Ref. [16]). The value of
χ2 has a minimum when Rbl is taken equal to 6.30, 6.94, 6.34,

and 6.25 fm corresponding to angles lab = 2◦, 3◦, 4◦, and
6◦, respectively. We see that the values of Rbl are close to the
radius of 208Pb.

The results of the calculation of the triple cross sections
are shown in Figs. 3 and 4. A comparison of our calculated
triple cross sections with the experimental data shows that the
Coulomb breakup gives the main contribution into disintegra-
tion process in the energy range 0.4 MeV < Eαd < 0.8 MeV. A
discrepancy exists with the experimental data at the energies
near zero and larger than 0.8 MeV for all scattering angles
(particularly in the case lab = 3◦). As mentioned above,
the purely Coulomb wave function for the αd continuum
state may be applied when the relative αd energy is close
to zero. From analyzing the results done by the authors of
Refs. [16,24,25] at small values of the Eαd relative energy, it
is clear that the purely Coulomb breakup cannot explain the
behavior of the cross section near the threshold. However, the
results of the authors of Ref. [18] showed a huge contribution
of the nuclear breakup at all αd energy regions. Such a
phenomenon may be explained by the wide angular region
of the scattering angle of the c.m. of 6Li (0◦–5◦) while the
grazing angle at this experiment is ∼ 2.5◦–3◦. One expects the
purely Rutherford scattering only below ∼ 2◦ (see also Figs.
7 and 10 of Ref. [18]). At the grazing angle the projectile
6Li moves along the trajectory tangential to the surface of
the target 208Pb where the nuclear breakup mostly occurs. We
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(e) (f)

(g) (h)

FIG. 4. (Color online) Same as in Fig. 3. Panels (e) and (f) show results at the scattering angle 4◦, while panels (g) and (h) show results at
the scattering angle 6◦.

note that an analysis of the Kiener et al. results concerning
angular dependence lab at very low Eαd energy shows a
large divergence with the theoretical results following from the
purely Coulomb disintegration. The contribution of the nuclear
breakup increases the total cross section at most by a factor
of 2 in the region Eαd > 0.8 MeV. A great disagreement still
exists between the theoretical and experimental results near
zero αd relative energy. Figure 5 demonstrates the dependence
of the total cross section and its Coulomb part on the scattering
angle at three values of Eαd . Figure 5(a) shows that the
addition of the nuclear disintegration cannot decrease the
disagreement with the experimental data at the extremely low
energies. At still higher energy the inclusion of the nuclear
breakup into the theory might assist in achieving reasonable
agreement with the experimental data [Figs. 5(b) and 5(c)].
Accounting for the higher-order effects (as mentioned in Sec.
I) may lead to better agreement with the experimental data
at the extremely low energies. In the Kiener et al. work
the grazing angle was ∼13◦ while the measurement was
performed at the scattering angle range 2◦–6◦. Therefore the
contribution of the nuclear breakup to the differential cross
section was small. The same conclusion follows from the
results of our calculations presented in Table I. Note that
similar behavior is observed for other scattering angles. When
the energy Eαd becomes larger than the resonant energy, the
nuclear and Coulomb cross sections become comparable to
each other for the scattering angles 2◦ and 3◦. However,
at scattering angles 4◦ and 6◦, the Coulomb breakup cross
section remains larger than the nuclear breakup cross section.

Figure 3 of Ref. [24] shows how the Coulomb cross section
approaches the experimental data when the relative energy Eαd

increases.
Figures 3 and 4 of our paper also depict the existence of the

backward-forward asymmetry for deuteron emission in the
6Li c.m frame, especially at smaller scattering angles. Such

FIG. 5. (Color online) Triple differential cross section for the 6Li
breakup as a function of the scattering angle lab at selected values
of the relative Eαd energy. Solid line is the sum of the Coulomb and
nuclear contributions, while dashed line is the purely Coulomb one.
The experimental data were taken from Ref. [16].
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TABLE I. Dependence of the ratio of the nuclear (σN =
d3σN

d
αdd
LidEαd
) and the Coulomb (σC = d3σC

d
αdd
LidEαd
) triple cross

sections for the 208Pb(6Li,α d)208Pb breakup on Eαd energy. The
scattering angle lab is 3◦.

Eαd σN σC σN/σC

(MeV) (mb/MeV/sr2) (mb/MeV/sr2)

1.00 6.774 6.316 1.072
0.95 6.372 5.921 1.076
0.90 5.932 5.376 1.104
0.85 5.459 4.641 1.176
0.80 4.981 3.809 1.308
0.77 4.806 3.968 1.211
0.76 4.847 4.708 1.030
0.75 5.048 6.632 0.761
0.74 5.663 11.73 0.483
0.73 7.555 26.98 0.280
0.72 13.97 79.58 0.175
0.71 24.61 172.8 0.142
0.70 16.56 111.9 0.148
0.65 5.043 18.10 0.279
0.60 3.757 10.49 0.358
0.55 3.007 7.621 0.394
0.50 2.395 5.854 0.409
0.45 1.856 4.503 0.412
0.40 1.378 3.372 0.409
0.35 0.964 2.400 0.402
0.30 0.621 1.581 0.393
0.25 0.354 0.927 0.382
0.20 0.168 0.453 0.371
0.15 0.058 0.162 0.360
0.10 1.07×10−2 3.060×10−2 0.349
0.05 3.05×10−4 9.047×10−4 0.337

a type of asymmetry was also observed in the Kiener et al.
experiment [16]. This asymmetry appears due to the change
of sign, both in the Coulomb and nuclear dipole transition
amplitudes, when the direction of deuteron emission is
changed from forward to backward in the 6Li c.m frame.

Thus, the results of our calculations confirm that the nuclear
contribution exists at the considered scattering angles and the
αd energies, but it is not as significant as that concluded by the
authors of Ref. [18]. Such a huge contribution also contradicts
the qualitative estimation given in Ref. [19].

VI. CONCLUSION

Using the simple two-body approach and the effective
potential we have described the cross section and the astro-

physical S factor of the α + d → 6Li + γ radiative capture.
The results are in good agreement with the known experimental
data for the range 0.4 < Eαd < 3.0 MeV. For radiative capture
the contribution of the E1 transition to the cross section
becomes larger than the E2 one at an energy less than 100 keV.
The calculated total value of the astrophysical S factor is equal
to S(0) = 1.22 MeV nb, while SE1(0) = 1.01 MeV nb (83%
of the total S factor) and SE2(0) = 0.21 MeV nb (17% of the
total S factor). The results for the purely Coulomb breakup
are in good agreement with the known experimental data for
the range 0.4 < Eαd < 0.8 MeV. This shows the validity of
the semiclassical method of the calculation for the Coulomb
breakup at high energy collision. The contribution of the E1
transition in the Coulomb breakup is always less than the
E2 one for all energy regions. The nuclear disintegration is
analyzed by a diffraction method which can be applied at
small scattering angles. The radius of “black” target 208Pb is
taken as a fit parameter and the application of the χ2 method
gives reasonable fit to the radius of the target. Our calculated
nuclear distortion is not large and suggests an overestimation
of the contribution of nuclear distortion made by Hammache
et al. [18]. A comparison of our calculation of the triple cross
section, consisting of the Coulomb and nuclear parts, with
the experimental data, shows that disagreement still exists for
Eαd near zero. Taking into account the higher-order effects
may reduce this discrepancy at the low αd relative energy
(Eαd < 0.3 MeV). For instance, the three-body Coulomb
effects are known to strengthen with decreasing αd relative
energy [21,22]. Due to the existence of the nuclear breakup and
the small contribution of the E1 Coulomb disintegration to the
total cross section, it is impossible to extract the correct value
of the astrophysical S factor for α + d → 6Li + γ radiative
capture at low Eαd energy. Extrapolation to zero energy
can give the value of the E2 component, if one is able to
separate the contributions of the nuclear disintegration and
the higher-order effects from experimental data. To us, the
simplest way to get an accurate value of the astrophysical S

factor of peripheral reactions is to measure the ANC of the
wave function in the bound state with a high accuracy which
governs the overall normalization of the peripheral reaction
cross section near zero energy.
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[24] J. Hesselbarth and K. T. Knöpfle, Phys. Rev. Lett. 67, 2773

(1991).
[25] M. Mazzocco et al., Eur. Phys. J. A 18, 583 (2003).
[26] H. Esbensen and C. A. Bertulani, Phys. Rev. C 65, 024605

(2002).
[27] H. Rebel and D. K. Srivastava, Mechanisms of Li-Projectile

Break-Up (Institut für Kernphysik, Karlsruhe, Germany, 1990),
KfK 4761.

[28] L. C. McIntyre and W. Haeberli, Nucl. Phys. A 91, 382
(1967).
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[30] W. Grüebler, P. A. Schmelzbach, V. König, P. Risler, and
D. Boerma, Nucl. Phys. A 242, 265 (1975).
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