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Bulk fermionic matter, as can be notably found in supernova matter and neutrons stars, is subject to correlations
of infinite range due to the antisymmetrization of the N -body wave function, which cannot be explicitly accounted
for in a practical simulation. This problem is usually addressed in condensed matter physics by means of
the so-called twist averaged boundary condition method. A different ansatz based on the localized Wannier
representation has been proposed in the context of antisymmetrized molecular dynamics. In this paper we work
out the formal relation between the two approaches. We show that, while the two coincide when working with
exact eigenstates of the N -body Hamiltonian, differences appear in the case of variational approaches, which are
currently used for the description of stellar matter. Some model applications with fermionic molecular dynamics
are shown.
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I. INTRODUCTION

Interacting fermionic systems in the bulk limit are a
standard object of theoretical study in condensed matter
physics. Electrons are subject to an external periodic potential
in the presence of a crystalline ionic structure, and the bulk
limit can be seen as an infinite number of spatial replicas of
a finite system within a specific geometry [1]. In this case,
the observables of the bulk system can be obtained from the
modelization of one single elementary cell, provided adequate
boundary conditions are applied to the many-body wave
function. This amounts to introducing a Bloch phase or twist to
each wave function in the single-particle basis, and averaging
the twisted observables over the different phases within the first
Brillouin zone [2,3]. In practical applications, this technique
has been applied to quantum Monte Carlo (QMC) simulations
of electron systems also in the absence of any external
periodic potential [2–4]. In this case, the introduction of Bloch
phases has to be understood as a technique to accelerate
the convergence toward the thermodynamic limit of these
very expensive numerical calculations, which would otherwise
become prohibitive in computation time. In the absence of an
external potential, the periodic cell is just a computation cell
with no physical meaning, and independence of the results
with respect to its size has to be checked.

Regarding the strongly interacting fermionic systems stud-
ied in nuclear physics, the bulk limit has not attracted
much interest in the community, since nuclei are finite.
However there are physical situations where the properties
of fermionic matter composed of protons and neutrons in the
thermodynamic limit are essential, such as for core-collapsing
supernovas, and for the crusts of the neutron stars that are
left over by the explosions. This nucleonic stellar matter
covers a very wide domain of densities ranging from less than
ρ ≈ 108 g cm−3 to a few times the normal saturation nuclear
density ρ ≈ 1014 g cm−3, temperatures between less than 1 and
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more than 20 MeV, and proton fractions varying between 0. and
0.5. In the subsaturation density regime, it is well established
that matter is charge neutral and is mainly composed of
neutrons, protons, electrons, positrons, and photons in thermal
and typically also chemical equilibrium [5,6]. Depending on
the thermodynamic condition, neutrinos and antineutrinos can
also participate in the equilibrium.

A very large amount of literature exists on the microscopic
modelizations of the neutron star outer and inner crusts [6].
In this regime, at zero temperature and relatively low density,
matter consists of a lattice of Wigner-Seitz (WS) cells, each
cell containing a spherical neutron-rich nucleus immersed in
a dilute gas of neutrons and relativistic electrons uniformly
distributed inside the cell [7,8]. The linear size of the cell is
several hundreds of fermis in the outer crust. The size decreases
going toward the center of the neutron star, and the central nu-
cleus becomes heavier and increasingly neutron rich. Typical
values [7] in the inner crust range from about 200 particles in
a cell of linear size of about 50 fm for ρ ≈ 10−4 fm−3 to about
1500 particles in a cell of linear size of about 15 fm for ρ ≈ 8 ×
10−2 fm−3. Most of the existing calculations are based on varia-
tional approaches (Hartree-Fock or Hartree-Fock-Bogoliubov)
and employ mixed Dirichlet-Neumann boundary conditions at
the edge of the cell [7], chosen to produce a flat density close
to the cell border and thus to simulate a uniform neutron gas.
The specific way of fixing these mixed boundary conditions
is not completely clear, and discrepancies due to the choice
of fixing these conditions increase with density [9]. A more
conceptual problem with Dirichlet or Neumann boundary
conditions is that they neglect antisymmetrization correlations
that extend beyond the cell size. This has been pointed out
in Refs. [10–13], where Bloch boundary conditions, similar
to the ones used for the QMC modelizations of bulk electron
systems, have been employed. In these works it was shown
that both the neutron specific heat and the motion of unbound
neutrons are affected by these effects.

In the intermediate region between crust and core, complex
phases are predicted that can break the spherical symmetry
of the Wigner-Seitz cell, and can violate the associated

065806-10556-2813/2011/84(6)/065806(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.065806


F. GULMINELLI, T. FURUTA, O. JUILLET, AND C. LECLERCQ PHYSICAL REVIEW C 84, 065806 (2011)

translational invariance. This is even more true at finite
temperature, where the periodicity of the Wigner-Seitz cell
is broken by thermal agitation. These conditions are met
in stellar matter in the pre- and post-bounce supernova
dynamics, as well as in the cooling process of proto-neutron
stars. Even when periodicity cannot rigourously be assumed
in these thermodynamic conditions, it can be kept as a
practical working hypothesis, allowing one to address the
thermodynamic limit. As already mentioned, the drawback
of that is that convergence with respect to the cell size
has to be systematically checked. Time-dependent variational
microscopic calculations have been proposed to address this
region, where statistical averages are calculated from time
averages, assuming ergodicity [14–17]. These works have
shown that structures, though they can be degenerate in energy
[17], are nonetheless approximately periodic in space even at
finite temperature.

In these calculations simple periodic boundary conditions
are employed, completely neglecting the antisymmetrization
correlations beyond the calculation grid. The importance
of properly accounting for these correlations was recently
stressed in Ref. [18]. In this work, a specific ansatz for
the boundary conditions based on the localized Wannier
representation has been proposed in the context of anti-
symmetrized molecular dynamics. It was shown that such
boundary conditions allow one to obtain a distribution similar
to the one of a free Fermi gas if Gaussian wave packets of
fixed width are periodically disposed on a two-dimensional
grid, while an artificial Pauli potential is needed in order
to obtain the same result with classical molecular dynamics.
This result implies that, in the inner crust region where stellar
matter contains an important component of quasifree neutrons,
properly accounting for the periodic character of the system
may be of importance.

To conclude these introductory remarks, it appears that
simple Dirichlet, Neumann, or periodic boundary conditions
are not adapted to the description of bulk fermionic matter.
Different solutions are proposed in the literature for different
applications, namely twist averaged boundary conditions
(TABC) in the QMC method [2,3], the Bloch method in mean-
field calculations [10–13], and the Wannier replica method for
molecular dynamics approaches [18], but the equivalence of
the different techniques and/or their domain of validity is not
completely clear.

In this paper, we will formally develop the link between
the different methods and show some model applications for
simple noninteracting nuclear systems described through the
variational Fermionic molecular dynamic (FMD) method. We
will show that Bloch (or TABC) and the replica method are
equivalent when they are applied to the exact eigenstates
of the many-body Hamiltonian. When this is not the case,
as for variational mean-field theories applied to interacting
systems, the equivalence is broken. In this case, the Bloch or
TABC technique can produce solutions which differ from the
exact results more than if simple periodic boundary conditions
are applied. Conversely, the replica method appears more
powerful and can easily be applied to any variational based
mean-field treatment with an affordable extra computational
cost. Our numerical applications will concern one-dimensional

systems, for which it has been recently argued [19] that
additional drawbacks appear in the TABC method. However
it is important to remark that one-dimensional modelizations
can often be used in the stellar matter case where (except at
very high density close to saturation) spherical symmetry is
often a good approximation.

II. THE BLOCH THEOREM AND TWIST AVERAGED
BOUNDARY CONDITIONS

We want to address the physical problem of an infinite
system (specifically, the neutron star crust) consisting of an
infinite number of spatial replicas of finite systems of linear
size L (the Wigner-Seitz cells). To simplify the notation we will
work in one dimension only. The extension to three dimensions
is straightforward.

A. The Bloch theorem at the N-body level

We are interested in the translational invariance properties
of the Hamiltonian induced by the imposed periodicity. The
Hamiltonian of the global system is obviously invariant with
respect to a simultaneous translation of all particle coordinates
of the same arbitrary length r . This invariance physically
corresponds to the general statement that the center-of-mass
momentum is a good quantum number. This symmetry has
no influence in an infinite system, and we will not consider
it further. Working in a finite box of linear size L that is
replicated induces an extra nontrivial invariance, which we
now discuss. Because of the cell periodicity, the Ntot → ∞
particle coordinates can be divided into mtot = Ntot/N groups
of N particles each, where �x(m) ≡ (x̂m

1 , . . . , x̂m
N ) denotes

coordinates of particles associated to the mth replica defined
by x̂m

i = x̂0
i + mL. The total Hamiltonian of the infinitely

replicated system reads

Ĥ =
∞∑

m=−∞
HL( �̂x(m)

), (1)

where the cell Hamiltonian is

ĤL =
N∑

i=1

⎛
⎝t̂i +

∞∑
m=−∞

N∑
i>j

v(x̂i − x̂j − mL)

⎞
⎠ . (2)

Note that the Hilbert space of the cell Hamiltonian is a finite
N -body space even if the particles’ wave functions are not
necessarily confined in the specific volume of the cell. This
Hamiltonian is invariant under the translation of any particle
coordinate xk of length mL, with integer m. This invariance
can be expressed as

[ĤL, T̂k(m)] = 0, (3)

where T̂k(m) = exp[− i
h̄
mL · p̂k] is the L-translational op-

erator of particle k. Translational invariance implies that
the eigenfunctions �(x1, . . . , xN ) of the cell Hamiltonian
equation (2) can be written as

T̂k(m)�θk,m
= exp(−iθk,m)�θk,m

, (4)

065806-2



BOUNDARY CONDITIONS FOR STAR MATTER AND OTHER. . . PHYSICAL REVIEW C 84, 065806 (2011)

where θk,m is the eigenvalue associated with the translation
xk → xk − mL. Because of the property of translational
operators T̂k(m1)T̂k(m2) = T̂k(m1 + m2), the eigenvalues sat-
isfy θk,m1 + θk,m2 = θk,m1+m2 . This means that we can associate
the translational invariance of periodicity L for particle k with
an eigenvalue θk such that

θk,m = mθk. (5)

Let us define an auxiliary wave function as

�(x1, . . . , xN ) = exp

(
−i

θk

L
xk

)
�(x1, . . . , xN ). (6)

Using the fact that � is an eigenfunction of the translation
operator in Eq. (4), we get

�(x1, . . . , xN )

= exp

(
−i

θk

L
(xk − mL)

)
exp(−imθk)�(x1, . . . , xN )

= �(x1, . . . , xk − mL, . . . , xN ). (7)

We have shown that, if � is an eigenfunction, then the function
� defined by Eq. (6) is a periodic function of period L. The
same reasoning can be done for any particle k = 1, . . . , N .
This means that the eigenfunctions of the translationally
invariant Hamiltonian equation (2) can be written as

�(x1, . . . , xN ) = exp

(
i

1

L

N∑
k=1

θkxk

)
�(x1, . . . , xN ), (8)

where � is a periodic function that is invariant under the
translation mL of any particle coordinate.

Since the Hamiltonian equation (2) is invariant under the
translation of any particle coordinate separately, one could
consider in principle a different phase θk for each particle.
However, the indistinguishability of nucleons imposes the
condition that all the phases must be equal, as we now show [4].
Let us consider a phase θ1 for the L translation of particle 1,
and a phase θ2 for the L translation of particle 2:

�(x1 + L, x2, . . . , xN ) = exp(iθ1)�(x1, x2, . . . , xN ), (9)

�(x1, x2 + L, . . . , xN ) = exp(iθ2)�(x1, x2, . . . , xN ). (10)

Applying the permutation symmetry to Eq. (9) gives

�(x1, x2, . . . , xN ) = − exp(−iθ1)�(x2, x1 + L, . . . , xN ).

(11)

Applying a translation −L to the second coordinate gives

�(x1, x2, . . . , xN ) = − exp[−i(θ1 − θ2)]�(x2, x1, . . . , xN ).

(12)

Applying the permutation symmetry once again we get

�(x1, x2, . . . , xN ) = exp[−i(θ1 − θ2)]�(x1, x2, . . . , xN ),

(13)

which shows that the two phases must be equal, θ1 = θ2 = θL.
To be precise we could have θ1 − θ2 = 2nπ with any integer n,
but the phase θL can be taken without any loss of generality in
the interval (0, 2π ] or (−π, π ]; that is, in the first Brillouin

zone. Indeed if we consider a very large number Nr of
replicas of the WS cell, Nr → ∞, the effect of the Bloch
phase is negligible and we can write global periodic boundary
conditions for the wave function,

�(x1, . . . , xi + NrL, . . . , xN ) = �(x1, . . . , xN ), (14)

that is, usual Born-von Karman boundary conditions. This
implies exp(iθLNr ) = 1 or θL = (2n − Nr )π/Nr , with integer
n. Let us write n = n′Nr + n′′ with 1 � n′′ � Nr and integer
n′, then

θL = (2n′ − 1)π + θ, (15)

with −π < θ � π . Finally, the wave function is

�(x1, . . . , xN ) = exp

(
i
θ

L

N∑
i=1

xi

)
�(x1, . . . , xN ). (16)

This Bloch formulation is a possible way to represent the
eigenfunction of the exact N -body Hamiltonian in the cell,
accounting for the infinite-range antisymmetrization correla-
tions with the replicated system. It amounts to introducing an
extra quantum number θ ,

�(x1, . . . , xN ) = 〈x1, . . . , xN |�n, θ〉, (17)

where �n denotes the ensemble of the other good quantum
numbers. The system observables will thus explicitly depend
on the phase θ .

The form of the periodic Hamiltonian equation (1) implies
that the wave function of the global system can be expressed as
an antisymmetrized product of N -body Bloch wave functions
(16) according to

�tot(x1, . . . , x∞) = Â
∞∏

m=−∞
�θm

(
xm

1 , . . . , xm
N

)
. (18)

The twist averaged boundary condition method consists of
assuming that the different angles θm in the product are all
different. Then the physical value of any observable Ô can
be computed from Eq. (18) with the extra restriction θm 
= θn,
giving

〈Ô〉tot
n =

∞∑
m=−∞

〈�n, θm|Ô|�n, θm〉. (19)

We can see that, within this decoherence hypothesis among the
different phases, possible nondiagonal terms disappear and the
observables per unit cell are obtained as simple averages over
phases:

〈Ô〉Ln = 1

2π

∫ π

−π

dθ〈�n, θ |Ô|�n, θ〉. (20)

We will explicitly show in the following that the parts
of the Fock space corresponding to different phases are
indeed disjoint in the case of Slater determinants. For more
complex eigenstates, Eq. (20) has to be considered as an
approximation, which however appears very well verified in
practical applications [3].
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B. Application to Slater determinants

In the following we look for an ansatz for �(x1, . . . , xN )
to be introduced as a variational approximation to the
full N -body problem. In particular, mean-field approaches,
including antisymmetrized molecular dynamics (AMD) and
fermionic molecular dynamics (FMD), are based on a Slater
approximation. This means that the variational ansatz can be
written as

�(x1, . . . , xN ) = Â
N∏

k=1

uk(xk), (21)

where Â is the antisymmetrization operator among the N par-
ticles and uk(x + mL) = uk(x) ∀k. To fulfill this periodicity
condition we can write

uk(x) = N
∞∑

m=−∞
gk(x − mL), (22)

where g is an arbitrary function and N is a normalization
factor. In the following we will show applications with
the nonorthogonal single-particle FMD and AMD basis sets
[20,21] given by non-normalized Gaussian wave packets

gZk
(x) ≡ exp

(
− 1

2ak

(Zk − x)2

)
, (23)

where Zk and ak are complex variational parameters. For this
specific choice the translation of the argument is equivalent to
a translation of the Gaussian centroid Zk ,

uk(x) = lim
Nr→∞

1√
Nr

Nr/2∑
m=−Nr/2

gZk+mL(x), (24)

where the dependence on ak is implicit and is omitted to
simplify the notation-. It is important to remark that the choice
of the normalization in Eq. (24) guarantees that the norm of
the wave function is finite, which will allow the numerical
evaluations below. In the special case where the Gaussian
width is sufficiently small with respect to the cell size, such
that the overlaps between Gaussians can be neglected, this
norm is readily evaluated as 〈uk|uk〉 = √

π |ak|.
Let us consider a generic one-body operator Ô = ∑N

k=1 ôk .
The matrix element in r-space representation reads

ojk = 〈uj |ô|uk〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dx ′ u∗

j (x ′)o(x ′, x)uk(x)

= lim
Nr→∞

∫ Nr
2 L

− Nr
2 L

dx

∫ ∞

−∞
dx ′ u∗

j (x ′)o(x ′, x)uk(x). (25)

Because of the periodicity of the uk this simplifies to

ojk = lim
Nr→∞

Nr

∫ L/2

−L/2
dx

∫ ∞

−∞
dx ′ u∗

j (x ′)o(x ′, x)uk(x), (26)

where we have used the fact that the operator is translationally
invariant. For a local one-body operator Â = ∑N

k=1 âk the
matrix element simplifies to

ajk = lim
Nr→∞

Nr

∫ L/2

−L/2
dx u∗

j (x)a(x)uk(x). (27)

This shows that, because of the periodicity, only integrals
over a single box are needed. The expectation value of the
observable Ô is given by the following (for the moment we are
ignoring the Bloch phase, and considering expectations only
over the auxiliary function �, which we indicate by 〈· · ·〉�):

〈Ô〉� = 〈�|Ô|�〉 =
N∑

k=1

okk (28)

if the uk constitute an orthonormal basis, and

〈Ô〉� = 〈�|Ô|�〉
〈�|�〉 =

N∑
j,k=1

ojkB
−1
kj (29)

if not. Here Bjk is the overlap matrix

Bjk = 〈uj |uk〉. (30)

Implementing the ansatz (24), the matrix element of a generic
local operator is calculated by

ajk = lim
Nr ,N ′

r ,N
′′
r →∞

N ′′
r√

NrN ′
r

Nr/2∑
m=−Nr/2

N ′
r /2∑

m′=−N ′
r /2

×
∫ L/2

−L/2
dx g∗

Zj +mL(x)a(x)gZk+m′L(x). (31)

Because of the finite norm of uk , the double sum is a convergent
quantity with an increasing number of replicas,

lim
Nr ,N ′

r→∞

Nr/2∑
m=−Nr/2

×
N ′

r /2∑
m′=−N ′

r /2

∫ L/2

−L/2
dx g∗

Zj +mL(x)a(x)gZk+m′L(x) (32)

= lim
Nr ,N ′

r→∞
1√

NrN ′
r

Nr/2∑
m=−Nr/2

×
N ′

r /2∑
m′=−N ′

r /2

∫ ∞

−∞
dx g∗

Zj +mL(x)a(x)gZk+m′L(x) (33)

= 〈uk|â|uk〉. (34)

This means that the limits in Eq. (31) can be performed
separately, giving:

ajk =
∫ L/2

−L/2
dx

∞∑
m,m′=−∞

g∗
Zj +mL(x)a(x)gZk+m′L(x). (35)

In the hypothesis that the spatial extension of the wave
function is negligible beyond a linear size Lmax = ML,
limx→±Lmax〈x|gZ〉 = 0, we can write

ajk =
∫ L/2

−L/2
dx

M∑
m,m′=−M

g∗
Zj +mL(x)a(x)gZk+m′L(x), (36)

which is a feasible integral. Equation (36) is readily general-
ized to the case of a nonlocal operator.
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Because of the translational invariance, the wave function
has to be multiplied by the Bloch phase factor, Eq. (16). This
means that the expectation values of observables have to be
corrected with respect to Eqs. (28), and (29):

〈Ô〉� =
N∑

j,k=1

ojkθB
−1
kjθ = 〈�θ |Ô|�θ 〉

〈�θ |�θ 〉 , (37)

where the notation 〈· · ·〉� corresponds to a specific choice for
the (arbitrary) Bloch phase −π < θ � π ,

�θ (x1, . . . , xN ) = Â
N∏

k=1

ψkθ (xk), (38)

ψkθ (x) = exp(iθx/L)uk(x). (39)

We can finally write the expression of the different matrix
elements for the infinite periodic system, for a given choice of
the Bloch phase θ . The overlap matrix is not influenced by the
Bloch phase, and the same is true for the matrix element of
any local operator:

ajkθ =
M∑

m,m′=−M

∫ L/2

−L/2
dx g∗

Zk+mL(x)a(x)gZk+m′L(x) = ajk.

(40)

In particular the local density

ρθ (x) =
A∑

j,k=1

〈x|ψk〉〈ψj |x〉B−1
kj

=
A∑

j,k=1

〈x|uk〉〈uj |x〉B−1
kj = ρ(x)

is independent of θ .
The situation is different for nonlocal operators, because in

this case the Bloch phase no longer cancels:

ojkθ =
∞∑

m=−∞

M∑
m′=−M

∫ L/2

−L/2
dx

×
∫ ∞

−∞
dx ′ g∗

Zj +mL(x ′)o(x, x ′)gZk+m′L(x)

× exp[iθ (x − x ′)/L]. (41)

Let us take the example of the momentum operator

k̂ψj (x) = −i

M∑
m=−M

exp(iθx/L)

(
∂

∂x
+ iθ

L

)
gZj +mL(x).

(42)

The expectation value of the total momentum in the cell K̂ =∑N
j=1 k̂j is given by

〈K̂〉� =
N∑

ji=1

〈ψj |k̂|ψi〉B−1
ij

=
N∑

ji=1

〈uj |k̂|ui〉B−1
ij + N

θ

L
= 〈K̂〉� + N

θ

L
. (43)

We can see that the Bloch phase physically represents a boost to
the center-of-mass motion. It will cancel when performing the
average between the different phases −π < θ � π (TABC),
but this will give a finite contribution to the kinetic energy.
Indeed, if we consider the square momentum,

k̂2ψj (x) = − exp(iθx/L)

×
M∑

m=−M

(
∂2

∂x2
+ 2iθ

L

∂

∂x
− θ2

L2

)
gZj +mL(x).

(44)

This gives rise to a total kinetic energy expectation value

〈ÊK〉� = h̄2

2m

N∑
jk=1

〈ψj |k̂2|ψk〉B−1
kj

+ h̄2

2m

2θ

L
〈K̂〉� + h̄2

2m
N

θ2

L2

= < ÊK >� +h̄2θ

mL
< K̂ >� + N

2m

(
h̄θ

L

)2

. (45)

This extra kinetic-energy term linked to the Bloch phase
explicitly enters in the energy variation (or in the equations
of motion, in the case of dynamical models [16,17,20,21]). If
we consider the typical size of a Wigner-Seitz cell as calculated
by Negele and Vautherin [7], in the inner crust (L ≈ 15 fm)
the phase effect gives rise to an energy contribution 	E ≈
11 MeV, which is far from being negligible if we compare it
to the corresponding Fermi energy EF ≈ 24 MeV [10–12].

C. One-dimensional model cases

As a first model case, we consider one-dimensional free
particles. Even if this system is clearly very far from the cor-
related dishomogeneous solutions relevant for stellar matter, it
has the advantage of being exactly solvable. Moreover, it is an
especially interesting test case for molecular dynamics models
[18,20,21] and more general models employing localized
wave functions [17]. These models are optimized to treat
density fluctuations but are not necessarily adapted to treat the
coupling to the continuum, which is needed for the extreme
neutron-proton ratio found in the inner crust of neutron stars.

In one dimension, the energy per particle of a degenerate
ideal Fermi gas at density ρ = N/L = kF /π is given by eFG =
h̄2π2ρ2/6m. In the case of a finite system of N particles within
a length L with periodic boundary conditions, the energy levels
are given by

Ei = h̄2

2m

(
2πni

L

)2

, (46)

where ni is an integer within the interval [−N
2 , N

2 ]. Due to this
level degeneracy, the total cell momentum 〈K̂〉L is equal to
±πN

L
for an even number of particles, while it is zero for an

odd number.
Because of the periodicity of the system, it is easier to

work in Fourier space. All one-body observables can be
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expressed as a function of the one-body density in momentum
space ρ�(k, k′) = ∑N

i,j=1〈k|ψi〉〈ψj |k′〉B−1
ij , where the single-

particle states are given in the momentum representation.
These states can be obtained by taking the Fourier transform
of the wave function. Considering that a periodic function can

always be expressed as a Fourier series,

un(x) =
∞∑

l=−∞
cnle

(−2πilx/L), (47)

we get for an unnormalized Gaussian wave packet

ψnθ (k) =
√

2π

∞∑
l=−∞

cnl δ(θ/L − k − 2πl/L)

= lim
Nr→∞

∞∑
l=−∞

Nr
2∑

m=− Nr
2

√
2π

Nr

1

L

∫ L
2

− L
2

dx gZn+mL(x)e2iπlx/Lδ(θ/L − k − 2πl/L)

= lim
Nr→∞

∞∑
l=−∞

√
2π

Nr

1

L

∫ Nr L
2

− Nr L
2

dx gZn
(x)e2iπlx/Lδ(θ/L − k − 2πl/L)

= 2π

L

√
an

Nr

∞∑
l=−∞

e− an
2 ( 2πl

L )2

ei 2πl
L

Znδ(θ/L − k − 2πl/L). (48)

At variance with the spatial density, the momentum density thus explicitly depends on the value of the phase θ = Lk0:

ρθ (k) = lim
Nr→∞

4π2

NrL2

∞∑
l=−∞

N∑
n,p=1

B−1
n,p

√
ana∗

pe− an+a∗
p

2 ( 2πl
L )2

ei 2πl
L (Zn−Z∗

p)δ(θ/L − k − 2πl/L). (49)

The momentum density is obtained by averaging over the different phase values, giving

ρ(k) = lim
Nr→∞

2π

NrL

∞∑
l=−∞

Nr
2∑

m=− Nr
2

N∑
n,p=1

B−1
n,p

√
ana∗

pe− an+a∗
p

2 ( 2πl
L

)2
ei 2πl

L
(Zn−Z∗

p). (50)

We can see that the value of ρ in k is solely determined
by the wave function � corresponding to the phase value
θ = k − 2π

m
, which corresponds to a unique value in the first

Brillouin zone. This means that the number of points chosen
for the discretization of the integral over the Bloch phase
defines the resolution of the momentum density: the Bloch
phase generates new plane waves that “fill up” the distribution
as needed to obtain a continuous Fermi sea starting from the
discrete levels of a finite system.

The total energy and momentum easily follow:

〈Ê〉 = h̄2

2m

∫ ∞

−∞
dkρ(k)k2, 〈K̂〉 =

∫ ∞

−∞
dkρ(k)k. (51)

The result for the FMD model with N = 3 particles and Nr =
28 replicas is shown in Fig. 1. We have chosen a particle
density ρ = 1.37

π
and a mass m = 938.9 MeV corresponding

to the free nucleon mass. The size L of the elementary cell
is directly proportional to the number of particles in the cell
according to L = N

ρ
. The FMD ground state is obtained by

minimizing the total energy with respect to the variational
parameters �z = {Zn, an, n = 1, . . . , N}. This can be obtained
by using the gradient method, or alternatively by the numerical

solution of the FMD equations of motion [20]:

d〈Ĥ 〉�
dzi

=
∑

j

C∗
ij

dz∗
i

dt
, (52)

Cij = ih̄
∂2

∂z∗
i ∂zj

ln〈�|�〉. (53)

It is possible to show [20] that if a friction term is added as a
multiplicative factor on the right-hand side of Eq. (52),

d〈Ĥ 〉�
dzi

= A∗ ∑
j

C∗
ij

dz∗
i

dt
, (54)

it gives a dynamics of the variational parameters leading to a
decrease over time of the total energy. The resulting dissipative
dynamics can be written as

d〈Ĥ 〉�
dt

= 2i�(A)
∑
ij

Cij

dz∗
i

dt

dzj

dt
, (55)

and this equation is numerically followed until convergence.
As expected, Fig. 1 shows that the periodicity in k space

is reproduced by the calculation. This is due to the implicit
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FIG. 1. (Color online) FMD calculation of a system of three free
particles in a one-dimensional box of size L with Bloch boundary
conditions. Upper part: behavior of (a) the total linear momentum
and (b) total energy as a function of the Bloch wave number k0 =
θ/L. Full lines: total expectation values 〈K̂〉� and 〈Ĥ 〉� (see text)
normalized to the Fermi momentum; dashed lines: averages over
the variational part of the wave function 〈K̂〉� and 〈Ĥ 〉� without
the contribution of the Bloch phase (see text), again normalized to
the Fermi momentum; dashed-dotted line: total energy average over
the Bloch phases. Lower part: (c) spatial ρ(x) and (d) momentum
ρ(k) density.

dependence of the expection values 〈P̂ 〉� and 〈Ĥ 〉� on the
choice of the Bloch quantum number k0 = θ/L obtained
through the variational procedure.

The exact results for a free Fermi gas are recovered in
the model. This means that the FMD ansatz for the wave
function appears to be adapted to describe the free-particle
system. This was not a priori obvious because the choice
of single-particle wave packets represents a restriction of
the complete Slater determinant variational space, and the
plane wave is obtained only as a mathematical limit a → ∞ of
the wave function, which is not exactly accessible in numerical
simulations. This implies that the FMD model, which has been
introduced essentially to describe cluster degrees of freedom,
can also address continuum states.

The other interesting point is that the exact Fermi gas
result is obtained with any arbitrary number of particles in
the simulation. For the three-particle system shown in Fig. 1,
the triangles in the lower right part of the figure show the
momentum values allowed for this finite system. These values
are eigenvalues of the periodic part of the wave function �, and
their spacing decreases with increasing number of particles.
As shown by Eq. (50), the effect of the θ quantum number
is to produce all the other missing values for the k quantum
number that would be accessible to the infinite system, thus
reproducing the continuous Fermi distribution.

In conclusion, the application of TABC to Bloch single-
particle wave functions appears to be a very powerful method
to recover the correct kinetic energies and wave functions
at the thermodynamic limit with variational methods applied
to small systems even in one dimension. A word of caution
is however necessary: to demonstrate the Bloch theorem we

have explicitly used the fact that the states are eigenvectors of
the many-body Hamiltonian, which is in general not true when
using variational methods. For this reason we will develop an
alternative scheme in the next section.

III. THE REPLICA METHOD

The twist averaged boundary conditions are currently
applied in QMC calculations of correlated electron systems
at the thermodynamic limit. In the specific framework of
fermionic molecular dynamics, an alternative method to deal
with the infinite-range antisymmetrization correlations has
been proposed, based on the localized Wannier representation
[18]. Taking advantage of the nested structure of the overlap
matrix in a periodic system, an analytical method of inversion
of this matrix is proposed in Ref. [18]. We present here
a slightly different derivation of the same equations for an
application to any arbitrary single-particle basis.

A. General formulation

Let us consider that our WS cell contains already many
different replicas of the physical system, Ntot = NrN , where
finally we will let Nr → ∞. Similarly, we now interpret the
simulation cell Ltot = NrL as a huge length, Nr � 1, such
that working with a finite Ltot can be considered equivalent to
the thermodynamic limit, meaning that the scaling has to be
fulfilled for all observables Ô:

〈Ô〉 = Nr〈Ô〉L, (56)

with

〈Ô〉L = 1

Nr

Ntot∑
j,k=1

ojkB
−1
kj , (57)

independent of the periodicity properties of the Hamiltonian.
If we consider the Ntot-body wave function, the invariance
property of the system under the translation mLtot of any
particle coordinate is still verified. The difference with respect
to the previous section is that the system composed of Ntot

particles has an additional symmetry which is not directly
linked with the use of a finite box L but is rather due to the
physical periodicity of the “pasta” structures over a length
scale L = Ltot/Nr . We have already observed that, because
of the absence of an external field, the cell Hamiltonian
equation (2), which now represents the full Hamiltonian
equation (1),

Ĥ =
Ntot∑
i=1

t̂i +
∞∑

m=−∞

Ntot∑
i>j

v(x̂i − x̂j − mLtot), (58)

is invariant under the simultaneous translation of every particle
coordinate of any arbitrary length. The translational invariance
that will be relevant to us is the invariance under the simultane-
ous translation of every particle coordinate of physical length
L, defined as the periodic length of the one-body density,

ρ(x + mL) = ρ(x). (59)

If the Hartree-Fock field is an external field, this translational
invariance would be the only one verified by the mean-field
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Hamiltonian, and it would be verified for each particle
coordinate separately. The situation is different in the case
of an interacting system, as described by the self-consistent
Hartree-Fock approach. In this case, translational invariance
with respect to any arbirary length is respected because of the
self-consistency of the mean-field approach, Uij = δEHF/δρji ,
where EHF is the interaction part of the Hartree-Fock energy.
However, this translational invariance applies only to the
simultaneous translation of all particle coordinates. The only
special feature of the length L is that Eq. (59) is fulfilled,
which will allow us to impose a simplified expression for the
one-body wave functions, as we will see in a moment.

Following the derivation of the previous section, these two
invariance properties lead to the definition of a Bloch phase
for the Ntot-body wave function according to

�(x1, . . . , xNtot ) = exp

(
i

θl

LNtot

Ntot∑
k=1

xk

)
�(x1, . . . , xNtot ),

(60)

where � is a periodic function that is invariant both under the
translation mL of all Ntot particle coordinates simultaneously
and under the translation mLtot of any particle coordinate.

The difference with respect to the derivation of the previous
section is that now we have a factor 1/Ntot multiplying
the Bloch phase. Since we are at the thermodynamic limit
Ntot → ∞, the correction on kinetic observables induced by
this Bloch phase can be neglected and we can consider that
the total Ntot-body wave function � shares the periodicity
properties of �.

Let us now look for an ansatz for this L- and Ltot-
periodic �(x1, . . . , xNtot ), to be introduced as a variational
approximation to the full Ntot-body problem. We take the same
Slater ansatz used in the previous section,

�(x1, . . . , xNtot ) = Â
Ntot∏
k=1

uk(x), (61)

with uk(x + mLtot) = uk(x). Because of the periodicity of the
one-body density, each subcell of linear dimension L can be
exactly associated with a finite number N = Ntot/Nr particles,
and the wave function can be written, introducing a subcell
index m, as

�(x1, . . . , xNtot ) = Â
N∏

k=1

Nr/2∏
m=−Nr/2

uk,m(x). (62)

Moreover, the periodicity of ρ can be written as

ρ(x + L) =
Nr/2∑

m,m′=−Nr/2

N∑
k,j=1

u∗
k,m(x + L)uj,m′(x + L)B−1

jk

=
Nr/2∑

m,m′=−Nr/2

N∑
k,j=1

u∗
k,m(x)uj,m′ (x)B−1

jk = ρ(x).

(63)

This condition can be satisfied by introducing only N indepen-
dent one-body wave functions uk,m(x) = uk(x − mL), where

in principle uk are arbitrary (nonperiodic) functions. If these
functions would form an orthonormal basis

〈j,m|k,m′〉 = δjkδmm′ , (64)

the problem would be reduced to an N -body problem as with
the ansatz (21). Indeed in the calculation (57) of an arbitrary
one-body observable, only the uk , k = 1, . . . , N functions
would be needed:

〈Ô〉L = 1

Nr

Ntot∑
k=1

okk =
N∑

k=1

okk. (65)

B. Application to nonorthogonal single-particle basis

For practical applications we will not work with an or-
thonormal basis, but we want to use the FMD-AMD Gaussian
wave-packet variational ansatz (23), namely

uk(x − mL) = gZk+mL(x). (66)

Since the gZk+mL do not form an orthonormal basis, we are left
with a problem of computational size N2

tot, which is impossible
to solve (recall Ntot → ∞).

A possibility would be again to impose the simplified
expression

�(x1, . . . , xNtot ) =
Nr/2∏

m=−Nr/2

Â
N∏

k=1

gZk+mL(x)

=
Nr∏

m=1

�(x1, . . . , xN ), (67)

which allows one to work with only N functions.
The conceptual problem with this simple ansatz (67) is that

it neglects the antisymmetrization correlations among different
cells. We know that such correlations are important as they
are at the origin of the band structure. For this reason we
need to keep the antisymmetrization correlation among all the
Ntot = NrN particles.

By introducing a linear transformation

�uk = Û �gk (68)

defined by

uk,n(x) = 1√
Nr

Nr/2∑
m=−Nr/2

exp

(
im

2πn

Nr

)
gZk+mL(x), (69)

we can reduce the computation size to NrN
2, keeping the

antisymmetrization correlations among all the Ntot = NNr

particles. It is interesting that, in the limit of Nr → ∞,
this transformation coincides with the definition of Wannier
functions [1]. This transformation preserves the determinant

Â
Nr/2∏

m=−Nr/2

gZk+mL(x) = Â
Nr∏
n=1

uk,n(x), (70)

so that we can write

�(x1, . . . , xNtot ) = Â
Nr/2∏

n=−Nr/2

N∏
k=1

uk,n(x). (71)
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The advantage of the transformation (69) is that matrices are
block diagonal; that is, functions corresponding to different
phases γ = (2n − Nr )π/Nr are orthogonal:

〈uj,n|uk,n′ 〉 = δn,n′Bjk(n). (72)

We have thus shown that the decoherence hypothesis (19) of
the TABC method is exactly verified in the case of variational
approaches based on Slater determinants.

Having recovered the orthogonality on the level of the
replica quantum number, we can write

〈Ô〉L� = 1

Nr

Nr/2∑
n=−Nr/2

N∑
j,k=1

〈uj,n|ô|uk,n〉B−1
kj (n). (73)

The matrix element of any operator is given by

ojk(n) = 〈uj,n|ô|uk,n〉 =
∫ L/2

−L/2
dx

Nr/2∑
m,m′=−Nr/2

g∗
Zj +mL(x ′)o(x, x ′)gZk+m′L(x) exp

(
−i(m − m′)

2πn

LNr

)
(74)

and explicitly depends on the n quantum number associated with the antisymmetrization among the different subcells. In
particular, the overlap matrix reads

Bjk(n) = 〈uj,n|uk,n〉 =
∫ L/2

−L/2
dx

Nr/2∑
m,m′=−Nr/2

g∗
Zj +mL(x)gZk+m′L(x) exp

(
−i(m − m′)

2πn

LNr

)
. (75)

Using the same argument that we used for the expectation (36), the series can be reduced to a finite sum

Bjk(n) =
M∑

m,m′=−M

∫ L/2

−L/2
dx g∗

Zj +mL(x)gZk+m′L(x) exp

(
−i(m − m′)

2πn

LNr

)
. (76)

In practical application, a large value of M ≈ 10 is needed to describe noninteracting particles, but M = 1 turns out to be sufficient
in the presence of the nuclear and Coulomb interactions for the particle densities relevant for the neutron star crust. From a
computational viewpoint, M = 1 is equivalent to calculating a single Gaussian overlap between each pair if periodic boundary
conditions are applied to the Gaussian, meaning that the simulation of the infinite system is not more expensive numerically than
the one for the finite system. The analogous expression for the matrix elements reads

〈uj,n|â|uk,n〉 =
M∑

m,m′=−M

∫ L/2

−L/2
dx g∗

Zj +mL(x)a(x)gZk+m′L(x) exp

(
−i(m − m′)

2πn

LNr

)
. (77)

Going to the Nr → ∞ limit we can write

lim
Nr→∞

2πn

LNr

= γ, (78)

with −π < γ � π . The observables read

〈Ô〉L� = 1

2π

∫ π

−π

dγ

N∑
j,k=1

〈uj,γ |ô|uk,γ 〉B−1
kj (γ ), (79)

which is expected to give equivalent results to the implemen-
tations where TABC are applied.

The FMD ground-state energy for a system of two free
particles in one dimension is shown in Fig. 2 as a function of
the number of replicas, with the Wannier choice for the wave
packets. For each calculation, the number M was chosen to
be high enough to have convergent results. We have already
observed that the FMD variational space is sufficiently flexible
to describe a free-particles system. The FMD solution for
each value of Nr thus represents the exact energy of a finite
system with periodicity L = 2/ρ and size Ltot = LNr . The
thermodynamic limit, corresponding to the anlytical Fermi
gas result, is obtained for about ten replicas, corresponding to
ten values for the phase γ of Eq. (78).

IV. COMPARISON OF THE TWO METHODS

In the previous sections, we have introduced the Bloch
and the Wannier representations as two alternative ways to
address the thermodynamical limit in variational theories.
From a principle point of view the two approaches are very

 12
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E
/N

[M
eV

]

N r

FIG. 2. (Color online) Energy per particle associated to a system
of two free FMD particles in one dimension at a density ρ = 1.37

π
as

a function of the number of replicas. Dashed-dotted line: free Fermi
gas in one dimension.
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similar, however they lead to very different expressions in the
calculation of observables. In particular, the consideration of
only diagonal terms in the phase quantum number naturally
emerges as a consequence of the orthogonality of the Wannier
basis in the replica method, while it appears as a simple
working hypothesis in TABC. Moreover, the equivalence
is expected in the ideal case of an infinite number of
twists and under the condition that the wave function is an
exact eigenvalue of the Hamiltonian. This first condition is
numerically expensive, while the second is not assured in
variational methods. For all these reasons, the equivalence of
the two formalisms is not a priori clear, and will be discussed
in the present section.

A. Finite number of replicas and finite number of twists

We now show that, in the hypothesis that the variational
theory produces the exact eigenvectors of the many-body
Hamiltonian, the two methods to treat the antisymmetrization
correlations can be mapped on each other for any system size.

In the Bloch formalism, if we impose that the condition
of periodic boundaries (14) is verified for a finite translation
of size NrL, the original problem of an infinite system with
periodicity L is transformed into the problem of a finite system
of size NrL, with periodic boundary conditions.

The allowed values for θ are then discrete: θ = 2n−Nr

Nr
π ,

where n is an integer. This amounts to discretizing the integral
(20) with 	θ = 2π

Nr
. We then expect the two methods to give

exactly the same results. This expectation is confirmed by
Fig. 3, which compares, for the case of the noninteracting
one-dimensional system, the energy obtained considering a
periodic system of Ntot = ρNrL particles with the calculation
of a reduced N = ρL system averaged over Nr phases with
the two (Bloch and replica) proposed methods. We can see
that the agreement is perfect for all sizes, and all calculations
converge to the free Fermi gas result with increasing number
of replicas (respectively, twists).
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FIG. 3. (Color online) Energy per particle of a free periodic one-
dimensional system at a density ρ = 1.37

π
as a function of the number

of replicas. The upper abscissa represents the total linear size in the
case of simple periodic boundary conditions (full line), the lower one
is the number of replicas for the replica method (crosses), and the
number of twists for the Bloch method (circles). Dashed-dotted line:
free Fermi gas in one dimension.

This shows the equivalence of the different methods when
the wave vector is an eigenvalue of the Hamiltonian.

B. Limitations of the Bloch method in variational applications

In realistic applications of interacting fermion system, the
variational solution is always an approximation of the exact
eigenvalue. This may create a bias in the method, which
we now discuss. For Eq. (4) to correctly account for the
correlations due to the particles outside the cell L, it is
necessary that the wave function �θ be an eigenfunction of
the Hamiltonian. Conversely, the Wannier representation can
be obtained from the solution of the infinite periodic system
via a simple linear transformation, Eq. (68). Of course if the
variational ansatz is not adequate to describe the exact state,
both representations will be false. However, the error due to
the inadequacy of the solution in the cell L will be propagated
in an uncontrolled way in the Bloch method for the description
of the global system, and this will not be the case for the replica
method, which directly addresses the replicated system of size
NrL.

To illustrate this difference, we can once again take the
simple example of the noninteracting Fermi gas. There is a
popular microscopic theory in nuclear physics, the so-called
AMD model [21], where the single-particle wave packets are
Gaussians of fixed width. With this ansatz the variational space
does not contain the exact solution of this problem at the bulk
limit; that is, an antisymmetrized combination of plane waves.
In particular, if we choose a small value for the width, as it is
variationally obtained to describe finite nuclei [21], it is clear
that the states will be very far from the exact eigenvectors of
the kinetic Hamiltonian. The comparison of the two methods
in this model case is shown in Fig. 4. For both methods a
sufficiently large number of replicas, Nr = 28, is used in order
to have convergent results for a given system size.
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FIG. 4. (Color online) Comparison of the energy per particle with
different boundary conditions for the AMD model in the case of
a noninteracting system as a function of the system size. Dashed-
dotted line: free Fermi gas. Dashed line: AMD ground-state energy
for a system size large enough for finite size effects be negligible
(L = 150). Circles: finite system with Bloch boundary conditions.
Crosses: replica method. Stars: periodic boundary conditions.
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FIG. 5. (Color online) FMD calculation of a system of three
particles in a one-dimensional box of size L subject to a periodic
external potential with Bloch boundary conditions. Upper part:
behavior of the total linear momentum (left) and total energy (right)
as a function of the Bloch wave number k0 = θ/L. Full lines: total
expectation values of (a) the linear momentum 〈K̂〉� and (b) total
energy 〈Ĥ 〉� , normalized to the Fermi momentum; dashed lines:
averages over the variational part of the wave functions 〈K̂〉� and
〈Ĥ 〉� without the contribution of the Bloch phase, again normalized
to the Fermi momentum. Dashed-dotted lines: expectation values
including the phase average. Lower part: dashed-dotted lines:
(c) spatial and (d) momentum density; full line: Gaussian potential.

We can see in Fig. 4 that the AMD ansatz is not adapted
for this problem, from the fact that asymptotically the energy
of the free Fermi gas (full line) is not recovered by the AMD
calculation (dashed line). This asymptotic value is perfectly
reproduced by the replica method (crosses) for any system
size, while the Bloch method (open circles) produces artificial
fluctuations and attains convergence only when the Bloch
phase is negligibly small and the calculation is perfectly
equivalent to simple periodic boundary conditions (stars).

The noninteracting system is certainly not ideal for
the application of the molecular dynamics model. As
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FIG. 6. (Color online) Comparison of the energy per particle
obtained with different boundary conditions for the FMD model in
the case of a system subject to an external Gaussian potential as a
function of the system size. Dashed line: FMD ground state energy
for a system size large enough for finite size effects be negligible
(L = 30). Circles: finite system with Bloch boundary conditions.
Crosses: replica method. Stars: periodic boundary conditions.

a second model case that is closer to the physical case of
the neutron star crust we take a one-body periodic potential,
which is obtained as a periodic self-consistent mean field in
realistic applications of mean-field variational models [6] if the
two-body nuclear and Coulomb interaction is added, including
the interaction with a uniform electron background. For this
model one-dimensional application we only wish to discuss
the effect of the boundary conditions, therefore we restrict our
attention to the simpler case of an external periodic potential. In
particular, the choice of a Gaussian potential has the advantage
of making all calculations analytical. Let us take a potential
form

VGauss(x̂) = V0

N
2∑

n=− N
2

∞∑
m=−∞

exp

(
− 1

2a
(x̂ − bn − mL)2

)
,

(80)

where V0, a, and bn are parameters. In particular, the choice
a = 4

ρ
and bn = n

ρ
for a system with average density ρ,

corresponds to having a single particle per potential well. The
average energy is readily calculated as

〈V̂Gauss〉� = V0 lim
Nr→∞

1

Nr

N∑
i,j=1

B−1
ij

√
2π

aia
∗
j a

a∗
j a + aia + aia

∗
j

×
∞∑

m1,m2,n=−∞
exp

(
−a∗

j (Zi − bn + m1L)2 + ai(Z∗
j − bn + m2L)2 + a[Zi − Z∗

j − (m1 − m2)L]2

a∗
j a + aia + aia

∗
j

)
(81)

Results from the Bloch method for a case of three particles
with an average density ρ = 1.37

π
are presented in Fig. 5.

At variance with the free-particle case, the periodic part of
the wave function � now explicitly depend on the θ quantum
number, leading to a θ dependence of the one-body density.

The comparison between the different methods of treat-
ing the boundary conditions is shown in Fig. 6. Again, a

sufficiently large number of replicas, Nr = 28, is used in order
to have convergent results for a given system size.

This model is less trivial than the free Fermi gas, although
still very schematic. The FMD model is expected to be a
good approximation of this system, but there is no guarantee
the FMD solution should be exact. Similar to the previous
application, the replica method gives by construction the
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asymptotic result for any finite size, provided a sufficient
number of phases is considered. Conversely for the Bloch
method, which is calculated with the same number of phases as
the replica method for the application of Fig. 6, a convergence
is reached only when the effect of the phase can be neglected.

This model example shows that in realistic applications,
where any variational ansatz might be simply an approxi-
mation of the exact energetics of the system, the different
boundary conditions are not equivalent, and the use of Bloch
corrections to the single-particle basis may increase the
deviation with respect to the exact solution.

Specifically, the replica method allows one to exactly
account for the correlations induced by periodicity in an
increased space of size NrL, within a calculation restricted to
the elementary cell of size L. The observables calculated in the
elementary cell are therefore by definition always consistent
with the thermodynamic limit. This is not the case for the
Bloch conditions, which additionally require the trial state to
be close to the exact solution.

It is important to stress that this does not contradict the
fact that in many important physical cases Bloch conditions
are perfectly adequate. In the literature [3] such conditions
were shown to be extremely powerful for addressing problems
where the wave function is strongly delocalized. This is
consistent with our finding that a free Fermi gas can be well
reproduced with TABC even within a Gaussian basis, which is
clearly not well adapted to the physical problem under study.

The simple examples we have worked out tend to show that
Bloch boundary conditions might be less well adapted when
the wave functions are strongly localized, which appears to be
the case in the physical problem of the neutron star inner crust.

V. CONCLUSIONS

In this paper we have introduced and critically discussed
two different ways of addressing the boundary conditions
in a finite fermionic system in order to account for the
infinite-range antisymmetrization correlations present at the
thermodynamical limit. In the case of state vectors that are
eigenstates of the many-body Hamiltonian, we have shown
that the use of Bloch wave functions with twist averaged
boundary conditions physically corresponds exactly to a bigger
system consisting of a number of replicas of the system
under study equal to the number of phases. In turn, this last
formalism can be interpreted as the use of localized Wannier
states. While these different representations are equivalent
when dealing with eigenvectors, the same is not true in the
case of approximate solutions of the many-body problem,
as is the case in the variational approach. In this case, the
approach of the thermodynamic limit is not properly treated
by the Bloch method, while the replica method provides a
very accurate evaluation of the Fock energy. Even in the case
of a nonorthogonal single-particle basis, this method can be
numerically implemented with a moderate computational cost,
opening the possibility of a completely quantum-mechanical
treatment of nuclear matter with molecular dynamics
approaches.
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