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Solving the relativistic Rankine-Hugoniot condition in the presence of a magnetic field
in the astrophysical scenario of a neutron star

Ritam Mallick*

Department of Physics, Institute of Physics, Bhubaneswar 751005, India
(Received 30 December 2010; revised manuscript received 7 November 2011; published 20 December 2011)

The Rankine-Hugoniot condition has been solved to study phase transition in an astrophysical scenario mainly
in the case of phase transition from a neutron star (NS) to a quark star (QS). The equations of state and
temperature play a huge role in determining the nature of the front propagation, which brings about the phase
transition in a NS. The shock jump conditions can be solved analytically, but the situation changes drastically
by the inclusion of the magnetic field. High magnetic fields, which are always associated with a NS play a huge
role in determining the structure and evolution of a NS. So, a magnetic field has been introduced in the shock
jump condition in the de Hoffmann-Teller frame. The modified conservation condition for the perpendicular and
oblique shocks is obtained in this frame. Numerical solution of the perpendicular shock has been obtained, which
shows considerable deviation from the nonmagnetic case. The results show that the magnetic field helps in shock
generation. It also indirectly hints at the instability of the matter and thereby the NS for very high magnetic field,
implying that NSs can only support a magnetic field of some finite strength.
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I. INTRODUCTION

When the velocity of a fluid in motion becomes comparable
with or exceeds that of sound, the effect due to compressibility
of the fluid becomes of prime importance. For a wave
propagating in a nonconducting gas, when the amplitude is so
small that linear theory applies, the disturbance propagates as
a sound wave. If the gas has a uniform pressure and density, the
speed of propagation of sound and the wave profile maintains
a fixed shape, since each part of the wave moves with the same
speed. However, when the wave possesses a finite amplitude,
so that nonlinear terms in the equation become important, the
crest of the sound wave moves faster than its leading or trailing
edge. This causes a progressive steepening of the front portion
of the wave as the crest catches up and, ultimately, the gradient
of pressure, density, temperature, and velocity becomes so
large that dissipative processes, such as viscosity or thermal
conduction, are no longer negligible. Then a steady wave shape
is attained, called a shock wave. The shock wave moves at a
speed in excess of the speed of sound, so the information
cannot be propagated ahead to signal its imminent arrival, since
such information would travel at sound speed relative to the
undisturbed medium ahead of the shock. The dissipation inside
the shock front leads to a gradual conversion of the energy
being carried by the wave into heat. Thus, the effects of the
passage of a shock wave are to convert ordered (flow) energy
into random (thermal) energy through particle collisions and
also to compress and heat the gas. The shock front itself is in
reality a very thin transition region. Its width is typically only
a few mean-free paths, with particle collisions establishing the
new uniform state behind the shock.

The relativistic shock propagates into a medium with a
changing equation of state. Therefore, a simple analysis of the
jump condition for a polytropic or perfect fluid is not adequate
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and a deep understanding of this problem calls for the full
theoretical description of the relativistic shock in a medium
with arbitrary equation of state. Further complication might
arise if there is the presence of a significant magnetic field. In
fact, one can show that the relative importance of a magnetic
field can grow during a collapse. In the field of nuclear physics,
high-energy collisions among heavy ions can be modeled by
using fluid dynamical concepts. Also, some current models
under investigation predict that relativistic shocks (or rela-
tivistic detonation and deflagration) might be related to the
phase transition from nuclear matter to quark matter.

Relativistic shock waves have been the subject of early
investigation in relativistic fluid dynamics and magnetofluid
dynamics. In relativistic fluid dynamics the pioneering work
is that of Taub [1] where the relativistic form of jump
condition is established. A detailed analysis of the thermo-
dynamic treatment of classical shock waves was done by
Thorne [2]. Explicit solutions of the jump condition have
been obtained for special equation of states. De Hoffmann
and Teller [3] presented a relativistic magnetohydrodynamic
(MHD) treatment of shocks, eliminating the electric field by
transforming to a frame where the flow velocities are parallel
to the magnetic field vector (called the de Hoffmann- Teller
frame). Shock waves in relativistic magnetofluid have been
investigated extensively and in a rigorous mathematical way
by Lichnerowicz [4]. Detonation and deflagration waves in
relativistic magnetofluid dynamics for nuclear physics and
cosmology have been investigated in Refs. [5,6]. Recently
it has been shown [7] that the normal of the front can be
a timelike four-vector. This is frequently the case for rapid
energetic processes such as in supernovas or hadronization
and freeze-out in ultrarelativistic heavy-ion collisions. This
possibility was overlooked in Taub’s original publication and
in several subsequent works and was corrected by Csernai
[7,8]. With a homogeneous scalar background field on one side
of the front (quark gluon plasma with MIT bag model equation
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of state) was solved in general thereafter [9,10]. The detailed
method to solve such problems was recently described [11].

In the astrophysical scenario shock plays a very important
role in determining the outcome of compact stars. In the case
of massive stars, in the range between 8–100 solar masses,
which are thought to be the progenitors of type II supernovas,
one of the most viable mechanisms for producing an explosion
is gravitational collapse and bounce [12]. In this case a shock
is formed outside the inner core, which propagates outwards
reaching relativistic speeds. Shock waves are also responsible
for phase transition and gamma ray bursts (GRBs) in compact
stars.

In this paper I will mostly concentrate on the phase
transition scenario in a compact star. Witten [13] conjectured
of strange quark matter (SQM), consisting of approximately
equal numbers of up (u), down (d), and strange (s) quarks, is
believed to be the ground state of strong interaction. This was
supported by model calculations for certain ranges of values
for strange quark mass and strong coupling constant [14]. After
that there have been constant efforts at confirming the existence
of SQM, though transiently, in ultrarelativistic collisions. On
the other hand, SQM could naturally occur in the cores of
compact stars, where central densities are expected to be an
order of magnitude higher than the nuclear matter saturation
density. Thus, neutron stars that have sufficiently high central
densities might convert to strange stars, or at least hybrid (a
star with a quark core) stars. These transitions may lead to
various observable signatures in the form of a jump in the
breaking index and gamma ray bursts [15,16], and a full quark
star (QS) might help in explaining the phenomena of observed
quasiperiodic oscillations [17].

There may be several scenarios by which neutron stars
could convert to quark stars. It could happen through a seed
of external SQM [18], or be triggered by the rise in the central
density due to a sudden spin-down in older neutron stars [19].
Several authors have studied the conversion of nuclear matter
to strange matter under different assumptions [20–30]. They
have been summarized in a recent work of mine [31] and for
the constraint of space, I do not repeat them here.

After the discovery of magnetars, some compact stars
were found to have very high surface magnetic fields. The
magnetic fields in such stars are so high that it is believed
the evolution of the star is hugely influenced by the magnetic
field. The nature of the magnetic field in the interior of the
star is hidden from direct observation and is still a matter
of much debate. The nuclear matter of the neutron star (NS)
is charge neutral on the whole but locally it is not. So in
the interior, locally, it may be considered as a plasma. So it
may be considered that the magnetic fields are frozen to the
plasma and the liquid can move freely along the magnetic
lines of force without affecting them. Therefore the simple
relativistic Rankine-Hugoniot condition is not sufficient for
such cases of stars with high magnetic field. To have a
full understanding of the properties of a NS and its phase
transition to QS, such conditions should be examined in the
presence of high magnetic fields. In this paper I intend to
carry out such a basic calculation. The paper is organized
as follows. First I will discuss the general Rankine-Hugoniot
condition as a discontinuity in the conversion front. In Sec. III,

I will introduce magnetic field and study the set of modified
conservation equations in the de Hoffmann-Teller frame. Then
in Sec. IV, I show my results and, finally, I conclude in Sec. V
by discussing and summarizing them.

II. GENERAL RANKINE-HUGONIOT CONDITION

In this section I will discuss the general Rankine-Hugoniot
condition as the conservation equations that balance the
conversion of neutron-proton (n-p) matter to two-flavor quark
matter, consisting of u and d quarks along with electrons
for ensuring charge neutrality. I heuristically assume the
existence of a combustive phase transition front. Using the
macroscopic conservation conditions, I examine the range
of densities for which such a combustion front exists. It
should be mentioned here that I am following the work of
Taub, that is only considering the spacelike four-vector and
ignoring the timelike four-vector. This is therefore not the
most general solution of the problem but is quite useful
for the astrophysical case. The normal to the front is said
to be spacelike or timelike if the normalization of the unit
vector is 1 or −1. The spacelike surface corresponds to
the ordinary surface in three-dimensional coordinate space,
which travels with a velocity smaller than that of light, while
the timelike surface appears when an instantaneous bulk phase
transition of plasma occurs. Both kinds of shocks satisfy
the same shock equation, however the physical consequence
are quite different. To have a more detailed study of such shock
one should read the pioneering work by Csernai [7,8] and its
application in nuclear collision [9,32]. However most of such
analysis is confined to the discussion of heavy-ion collision
and the timelike four-vector analysis is most important in the
case where the interior region of the plasma is sufficiently
supercooled and an instantaneous global phase transition to
a superheated dense hadron gas may take place through a
timelike surface. This may also be important for implosion
shocks in a NS preceding a supernova. Therefore a general
(both spacelike and timelike) approach is advisable. As this
introduces a magnetic field in the Rankine-Hugoniot condition
in the astrophysical scenario, I am assuming the simplest case,
which will give an insight into the problem, and the general
problem would be my next goal.

Let us consider the physical situation where a combustion
front has been generated in the core of the NS. This front
propagates outward through the neutron star with a certain
velocity, leaving behind a u-d matter. In this case my
assumptions are that the front is infinitesimal, the matter flow
velocities are perpendicular to the front, and I am in the rest
frame of the conversion front. In the following, I denote all
the physical quantities in the hadronic sector by subscript 1
and those in the quark sector by subscript 2. The conservation
condition for energy momentum and baryon number relates
the quantities on the opposite sides of the front. In the rest
frame of the combustion front, these conservation conditions
is given by [30,33,34]

ω1v
2
1γ

2
1 + p1 = ω2v

2
2γ

2
2 + p2, (1)

ω1v1γ
2
1 = ω2v2γ

2
2 , (2)
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and

n1v1γ1 = n2v2γ2. (3)

In the above three conditions vi (i = 1, 2) is the velocity,
pi is the pressure, γi = 1√

1−v2
i

is the Lorentz factor, ωi =
εi + pi is the specific enthalpy, and εi is the energy density of
the respective phases. The velocities of the matter in the two
phases, given by Eqs. (1)–(3), can be solved, such that [33]

v2
1 = (p2 − p1)(ε2 + p1)

(ε2 − ε1)(ε1 + p2)
, (4)

and

v2
2 = (p2 − p1)(ε1 + p2)

(ε2 − ε1)(ε2 + p1)
. (5)

It is possible to classify the various conversion mechanisms
by comparing the velocities of the respective phases with the
corresponding velocities of sound, denoted by csi , in these
phases. These conditions are summarized in Ref. [35].

For the conversion to be physically possible, velocities
should satisfy an additional condition, namely, 0 � v2

i � 1.
Here I find that the velocity condition puts severe constraint
on the allowed equations of state.

III. MAGNETIC FIELD INCLUSION

The NS as a whole may be charge neutral but locally it is
not, as a huge number of neutron, protons, and electrons are
in motion within the star. So, for the infinitesimal shock front
I treat it as a plasma. The magnetic fields are thought to be
frozen in plasma, so that the particles move along the magnetic
field vector. In order to limit myself to the simplest possible
case I assume that the conductivity is infinite. The assumption
also indicates that the electric field vanishes in a coordinate
system that is at rest in the liquid. That is, I am moving in the
de Hoffmann-Teller frame.

In a conducting gas, a magnetic field can interact strongly
with the flow. The analysis of the shock waves therefore
becomes more complex, but the basic principles remain
the same. A set of jump conditions can again be derived,
but they are considerably more complicated than the pure
hydrodynamic shock case. The extra complexity arises both
from the presence of an extra variable, namely the magnetic
field strength, and also from the fact that the magnetic field and
the matter velocities may be inclined with the shock normal.

A shock propagating through a magnetic fluid produces
a significant difference in matter properties on either side of
the shock front. The thickness of the front is determined by a
balance between convective and dissipative effects. However,
dissipative effects at high temperature are only comparable to
convective effects when the spatial gradients in matter vari-
ables become extremely large. Hence, shocks in such matter
tend to be extremely narrow, and are well approximated as
discontinuity. The hydrodynamical equations, and Maxwell’s
equations, can be integrated across a shock to give a set of
jump conditions that relate matter properties on each side of
the shock front. If the shock is sufficiently narrow then these
relations become independent of its detailed structure.

In the rest frame of the shock, it propagates in the x

direction, that is, the shock front coincides with the y-z
plane. Furthermore, the regions of the plasma upstream and
downstream of the shock, which are termed regions 1 and 2,
respectively, are spatially uniform and non-time-varying. It
follows that ∂/∂t = ∂/∂y = ∂/∂z = 0. Moreover, ∂/∂x = 0,
except in the immediate vicinity of the shock. Finally, let the
velocity and magnetic fields upstream and downstream of the
shock all lie in the x-y plane. The magnetic field is given by
Bi for the respective phases.

The first nontrivial shock is called perpendicular shock in
which both the upstream and downstream plasma flows are
perpendicular to the magnetic field, as well as the shock front.
Due to infinite conductivity, the electric fields vanishes, and
by definition of the perpendicular shock only the y component
of the magnetic field is present. As only the y component
survives, I denote B1,y = B1 and B2,y = B2. B1 and B2 are
related by virtue of the fact that the magnetic field lines are
frozen to the plasma. Therefore

B1

n1
= B2

n2
. (6)

As the number density of the particles are still conserved, I
have

n1v1γ1 = n2v2γ2. (7)

Therefore I can write

B1v1γ1 = B2v2γ2. (8)

Following similarly Ref. [3], the conservation equation for
the momenta can be written as

ω1v
2
1γ

2
1 + p1 + B1

2

8π
= ω2v

2
2γ

2
2 + p2 + B2

2

8π
, (9)

and the conservation equation for the energy is expressed as

ω1v1γ
2
1 + v1γ1

B1
2

4π
= ω2v2γ

2
2 + v2γ2

B2
2

4π
. (10)

The last three equations can be reduced to two equations, given
by

ω1v
2
1γ

2
1 + p1 + B1

2

8π
= ω2v

2
2γ

2
2 + p2 + B1

2

8π

(
v1γ1

v2γ2

)2

,

(11)

ω1v1γ
2
1 + v1γ1

B1
2

4π
= ω2v2γ

2
2 + v2γ2

B1
2

4π

(v1γ1)2

v2γ2
, (12)

and can be solved numerically to obtain v1 and v2.
The most general shock is the oblique shock in which the

plasma velocities and the magnetic fields on each side of the
shock are neither parallel nor perpendicular to the shock front.
The conservation conditions for such shocks are given by

ω1v
2
1xγ

2
1 + p1 + B1

2

8π
− B1x

2

4π

= ω2v
2
2xγ

2
2 + p2 + B2

2

8π
− B2x

2

4π
, (13)
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ω1v1xv1yγ
2
1 + v1xγ1

B1xB1y

4π
= ω2v2xv2yγ

2
2 + v2xγ2

B2xB2y

4π
,

(14)

ω1v1xγ
2
1 + v1xγ1

B1
2

4π
− B1x(B1v1)γ1

4π

= ω2v2xγ
2
2 + v2xγ2

B2
2

4π
− B2x(B2v2)γ2

4π
, (15)

B1yv1xγ1 − v1yB1xγ1 = B2yv2xγ2 − v2yB2xγ2 (16)

B1x = B2x (17)

and

n1v1xγ1 = n2v2xγ2. (18)

There may be two easier cases for the above complicated
equations.

Case 1. v1y = 0 = v2y

Then the first four equations would simplify to

ω1v
2
1xγ

2
1 + p1 + B1

2

8π
= ω2v

2
2xγ

2
2 + p2 + B2

2

8π
, (19)

ω1v1γ
2
1 + v1γ1

B1
2

8π
− B1x(B1v1)γ1

4π

= ω2v2γ
2
2 + v2γ2

B2
2

8π
− B1x(B2v2)γ2

4π
, (20)

B2y = v1γ1

v2γ2
B1y (21)

Case 2. B1y = 0 = B2y

ω1v
2
1xγ

2
1 + p1 = ω2v

2
2xγ

2
2 + p2, (22)

ω1v1xγ
2
1 + v1xγ1

B1
2

8π
− B1x(B1v1)γ1

4π

= ω2v2xγ
2
2 + v2xγ2

B2
2

8π
− B1x(B2v2)γ2

4π
, (23)

ω1v1xv1yγ1
2 = ω2v2xv2yγ2

2 (24)

IV. RESULTS

I started my calculations by using the nuclear matter
equations of state (EOS) obtained through the nonlinear
Walecka model [36]. In the present paper, I consider the
conversion of nuclear matter, consisting of only neutrons,
protons, and electrons, to a two-flavor quark matter. The final
composition of the quark matter is determined from the nuclear
matter EOS by enforcing the baryon number conservation
during the conversion process. While describing the state
of matter for the quark phase, I consider a range of values
for the bag constant. Nuclear matter EOS is calculated at
zero temperature, whereas the two-flavor quark matter EOS
is obtained both at zero temperature as well as at finite
temperatures, because the propagation of the shock may heat
up the matter.
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FIG. 1. Variation of different matter velocities with baryon
number density for T = 0 MeV, BG

1/4 = 160 MeV and strange
quark mass ms = 200 MeV. The dark-shaded region corresponds to
deflagration, the light-shaded region corresponds to detonation, and
the unshaded region corresponds to supersonic conversion processes.

To examine the nature of the hydrodynamical front arising
from the neutron to two-flavor quark matter conversion, I plot,
in Fig. 1, the quantities v1, v2, cs1, and cs2 as functions of the
baryon number density (nB). As mentioned earlier, the u and
d quark content in the quark phase is kept the same as the
one corresponding to the quark content of the nucleons in the
hadronic phase. With these fixed densities of the massless u
and d quarks and electrons, the EOS of the two-flavor matter
has been evaluated using the bag model prescription.

I find that the velocity condition (vi
2 > 0) is satisfied

only for a small window of ≈±5.0 MeV around the bag
pressure BG

1/4 = 160 MeV. The constraint imposed by the
above conditions results in the possibility of deflagration,
detonation, or supersonic front as shown in the Fig. 1.

In Fig. 1, I considered both the phases to be at zero
temperature. A possibility, however, exists that a part of the
internal energy is converted to heat energy, thereby increasing
the temperature of the two-flavor quark matter during the
exothermic combustive conversion process. In Fig. 2, I plot
the variation of velocities with density at T = 50 MeV, for
which significant change is noticed. This figure shows that the
range of values of baryon density, for which the flow velocities
are physical, increases with temperature. In the present paper
I have considered only the zero-temperature nuclear matter
EOS. On the other hand, equations of state of quark matter
has a finite temperature dependence and hence the difference
between v1 and v2, varies with temperature.

The variation of the velocities with temperature is due to
the fact that higher temperature means higher energy. As the
energy increases the particles becomes more energetic, which
means the matter becomes more excited and compressible.
As matter becomes more compressible due to increase in
temperature, there is now a chance for shock formation, which
was previously not possible.

Until now, figures had been plotted solving the Rankine-
Hugoniot condition. The change in temperature in the EOS
accounted for the change in the nature of the graph. Next I
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FIG. 2. Variation of velocities with baryon number density for
T = 50 MeV, BG

1/4 = 160 MeV and strange quark mass ms =
200 MeV.

plot graphs with a magnetic field included in the conservation
condition for the perpendicular shock. In Fig. 3, I have plotted
curves for different flow velocities varying with baryon density
for the zero-temperature case. The magnetic field used for the
generation of the curve is B = 5 × 1015 G. I find that due to
introduction of the magnetic field, the range of values of baryon
density, for which the flow velocities are physical, increases.
Its nature is quite similar to that for the case of temperature.
Due to the introduction of the magnetic field the pressure
increases (pressure due to magnetic field is B2/8π ) for the
same value of baryon number density. The magnetic field in
the respective phases adjusts in such a way that the resultant
energy and pressure of the two phases gets modified to make
the range of baryon number density increase. For both higher
and lower values of baryon density, previously there was less
chance of shock formation, but now due to the introduction of
the magnetic field there is a greater chance of shock formation.
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FIG. 3. Variation of different matter velocities with baryon
number density for T = 0 MeV and magnetic field strength of
B = 5 × 1015 G.
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FIG. 4. Variation of different matter velocities with baryon
number density for T = 50 MeV and magnetic field strength of
B = 5 × 1015 G.

And therefore the range of baryon density, for which the flow
velocities are physical, gets wider.

Next (Fig. 4), I plot curves for different velocities for the
finite temperature case T = 50 MeV. For same value of the
magnetic field B = 5 × 1015 G, the range of baryon density
gets much wider. This is due to the fact that now both the
temperature and the magnetic field work hand in hand to
increase the chances of shock generation. Both processes
ensure in their own way that the matter parameters adjust
themselves in such a way that there is a greater probability of
shock generation.

In Fig. 5 I have plotted exclusively v1 and v2 for two cases,
one without magnetic field and the other with magnetic field.
The nature of the curve remains the same, which is v1 is always
greater than v2, meaning the shock front propagates outward.
The range of baryon density, for which the matter velocities
are finite, increases with the magnetic field. I have plotted this
for the zero-temperature case. In Fig. 6 I have plotted the same
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FIG. 5. Comparison of vn and vs with baryon number density for
T = 0 MeV, for two values of magnetic field strength B = 0 and
B = 1 × 1016 G.
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FIG. 6. Comparison of vn and vs with baryon number density for
T = 50 MeV, for two values of magnetic field strength B = 0 and
B = 5 × 1015 G.

for the finite-temperature case and find that for lesser value of
magnetic field, the same increase in range of baryon number
density is seen, and the reason is the same as discussed earlier.

In Fig. 7, I have plotted v1 for different values of magnetic
field. I find that as the value of the magnetic field increases the
range of baryon number density increases, which is what was
expected (and discussed previously). But as I go on increasing
the magnetic field v1 does not comes down on the lower half of
the curve. This is due to the fact that, at such high value of the
magnetic field the matter becomes unstable. At the other half
where matter is at much higher density, it can support such
field strength. But if I further increase the magnetic field the
matter cannot support such high fields whatever the density
might be. The maximum value of magnetic field that matter
can support is a few times 1017 G (in my case the cutoff value
is 2 × 1017 G). So I find that there is a cutoff value for the
magnetic field, which the matter can support. It seems from
this analysis that a NS (the analysis is being done for the phase
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FIG. 7. Comparison of vn with baryon number density for T =
0 MeV with different values of magnetic field strength.
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FIG. 8. Comparison of vn with baryon number density for T =
50 MeV with different values of magnetic field strength.

transition of nuclear matter to two-flavor quark matter in a
NS) also can support up to a finite value of magnetic field.
This curve is plotted for zero temperature, and in Fig. 8 I have
plotted the same for finite temperature. Qualitatively the nature
of the graph remains the same; only the quantitative value of
the magnetic field changes. It shows that hotter matter can
support a lesser value of magnetic field than colder matter.

V. CONCLUSION

Finally in this section I summarize my results. I find that the
Rankine-Hugoniot condition can be solved to determine the
condition for different types of wave generation in a neutron
star. It also determines the mode of the propagation of the
wave front. The temperature (finite temperature of the matter)
helps in the generation of the front and as the temperature
rises the shock front can generate both at much lower and at
much higher baryon densities. Next I write down the modified
conservation conditions in the presence of magnetic field.
To do such an analysis I go the de Hoffmann-Teller frame,
with matter having infinite conductivity. The matter is also
field frozen. With such assumptions I have written down the
conservation conditions for both the perpendicular and oblique
shock waves. The inclusion of the magnetic field introduces not
only extra conditions but also the earlier existing conditions
get modified. I have numerically solved for the velocity of
the matter of the two phases for the perpendicular shock.
I have matched my nonmagnetic numerical results with the
analytically solvable nonmagnetic solutions. The oblique wave
equation gets very much complicated and the solution of the
simultaneous equations does not converge for different values
of the baryon densities. So I have not plotted the results for the
oblique waves.

Solving the perpendicular wave for finite magnetic field I
found that the range of baryon density, for which the flow
velocities of matter are physical, increases with magnetic field
strength. This is because by the introduction of the magnetic
field the resultant pressure and energy redistribute in such
a way that, for the same baryon density, the probability for
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shock generation increases. From the results it seems that
there is a cutoff in the magnetic field strength that matter
can support, beyond which the matter becomes unstable and
the flow velocities become imaginary. This indirectly, on the
other hand, suggests that a NS cannot support a magnetic field
up to certain field strength. This may be a very significant
result in the sense that it provides an upper limit of magnetic
field strength in a NS. Observations suggest that the maximum
surface magnetic field in NS can be of the order of a few
times 1015 G. The interior of the star is hidden from direct
observation, so various models for magnetic field structure at
the core of the star have been proposed. Some such models
predict that the field strength at the interior may be abnormally
high (much higher than 1018 G. My analysis gives an upper
limit to the magnetic field at the interior of the star, which
may discard such abnormally high magnetic field models. At
this point I should mention the fact that one of the reasons for
having imaginary velocities might be the noninclusion of the
timelike four-vector. That has been the case for ultrarelativistic
heavy-ion collision where considering only the spacelike
four-vector has given rise to imaginary charges. Therefore the
inclusion of the timelike four-vector may set a cutoff for the
magnetic field. The shocks with timelike four-vector is much
more important for the implosion shocks in a NS preceding a
supernova explosion, but it may also set a cutoff for my case.
Therefore final say for such a cutoff of magnetic field value has

to be done after we have done a more general solution of the
problem. However, this is the simplest nontrivial solution with
magnetic field, and I expect correction in the magnetic field
value (cutoff) with more complicated models (such as oblique
shocks and with timelike four-vector). To finally summarize
my results, I must mention that this is a treatment of modified
conservation conditions done in the presence of magnetic field
in the astrophysical phase transition scenario. This provides
interesting results, which indirectly hint at the upper limit
of magnetic field strength that may be present in a NS.
More interesting results are anticipated with the full general
solution (having both spacelike and timelike four-vector and
also solving for the oblique waves). Again the jump conditions
are solved in the special de Hoffmann-Teller frame, and more
complicated solutions are expected for a general frame without
such assumptions. Recently more general jump conditions
have been solved mainly in the heavy-ion collision scenario
and a possible focus for the future is to solve them in the
astrophysical scenarios of a NS.
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