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Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in
an ultrastrong magnetic field
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Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20
parametrization) are considered in the magnetic fields H up to 1020 G at finite temperature. In a strong magnetic
field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and
perpendicular to the field direction becomes significant at H > Hth ∼ 1018 G. The longitudinal pressure decreases
with the magnetic field and vanishes in the critical field 1018 < Hc � 1019 G, resulting in the longitudinal
instability of neutron matter. With increasing temperature, the threshold Hth and critical Hc magnetic fields also
increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in
neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of
state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly
magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some
specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down
in a polarized state.
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I. INTRODUCTION

Magnetars are strongly magnetized neutron stars [1] with
emissions powered by the dissipation of magnetic energy.
According to one of the conjectures, magnetars can be
the source of the extremely powerful short-duration γ -ray
bursts [2–5]. The magnetic field strength at the surface of
a magnetar is about 1014–1015 G [6,7]. Such huge magnetic
fields can be inferred from observations of magnetar periods
and spin-down rates or from hydrogen spectral lines. In the
interior of a magnetar the magnetic field strength may be
even larger, reaching values of about 1018 G [8,9]. Under such
circumstances, the issue of interest is the behavior of neutron
star matter in a strong magnetic field [8–12].

A realistic description of neutron star matter should contain,
at least, neutrons, protons, electrons, and muons subject to
the charge neutrality and beta-equilibrium conditions. The
magnetic field then influences the system properties through
Pauli paramagnetism as well as via Landau quantization of
the energy levels of charged particles. Nevertheless, because
the neutron fraction is usually considered to be dominant,
neutron star matter can be approximated by pure neutron
matter as a first step toward a more realistic description of
neutron stars. Such an approximation was used in the recent
study [11] in the model consideration with the effective nuclear
forces. It was shown that the behavior of spin polarization of
neutron matter in the high-density region in a strong magnetic
field crucially depends on whether neutron matter develops a
spontaneous spin polarization (in the absence of a magnetic
field) at several times the nuclear-matter saturation density, or
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the appearance of a spontaneous polarization is not allowed at
the relevant densities (or delayed to much higher densities).
The first case is usual for the Skyrme forces [13–23], while the
second case is characteristic for the realistic nucleon-nucleon
(NN) interaction [24–32]. In the former case, a ferromagnetic
transition to a totally spin-polarized state occurs while, in
the latter case, a ferromagnetic transition is excluded at all
relevant densities and the spin polarization remains quite low
even in the high-density region. If a spontaneous ferromagnetic
transition is allowed, it was shown in the subsequent model
consideration with the Skyrme effective forces [12] that the
self-consistent equations for the spin polarization parameter at
nonzero magnetic field have not only solutions corresponding
to negative spin polarization (with the majority of neutron
spins oriented opposite to the direction of the magnetic field)
but, thanks to the strong spin-dependent medium correlations
in the high-density region, also the solutions with positive spin
polarization. In the last case, the formation of a metastable state
with the majority of neutron spins oriented along the magnetic
field is possible in the high-density interior of a neutron
star.

The scenario for the evolution of spin polarization at high
densities in which the spontaneous ferromagnetic transition
in neutron matter is absent was considered for magnetic
fields up to 1018 G [11]. Such an estimate for the limiting
value of magnetic field strength in the core of a magnetar
is usually obtained from the scalar virial theorem [33] based
on Newtonian gravity. However, the density in the core of
a magnetar is so large that the effects of general relativity
might become important. Then, a further increase of the core
magnetic field is expected above 1018 G [34]. By comparing
with the observational x-ray data, it was argued that the interior
magnetic field strength can be as large as 1019 G [35]. Also,
it was shown in the recent study [36] that, in the core of
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a magnetar, the magnetic field strength could reach values
up to 1020 G, if to assume an inhomogeneous distribution of
matter density and magnetic field inside the neutron star, or
to allow the formation of a quark core in the high-density
interior of a neutron star (concerning the last point, see also
Ref. [37]). Under such circumstances, if to admit the interior
magnetic fields with the strength H > 1018 G, a different
scenario is possible in which a field-induced ferromagnetic
phase transition of neutron spins occurs in the magnetar core.
This idea was investigated in the recent article [38], where
it was shown within the framework of a lowest-constrained
variational approach with the Argonne V18 NN potential
that a fully spin-polarized state in neutron matter could be
formed in a magnetic field H � 1019 G. Note, however,
that, as was pointed out in Refs. [36,39], in such ultrastrong
magnetic fields the breaking of the O(3) rotational symmetry
by the magnetic field results in the anisotropy of the total
pressure, having a smaller value parallel than perpendicular
to the field direction. The possible outcome could be the
gravitational collapse of a magnetar along the magnetic field, if
the magnetic field strength is large enough. Thus, exploring the
possibility of a field-induced ferromagnetic phase transition
in neutron matter in a strong magnetic field, the effect of
the pressure anisotropy has to be taken into account because
this kind of instability could prevent the formation of a
fully polarized state in neutron matter. This effect was not
considered in Ref. [38], thus leaving open the possibility of
the formation of a fully polarized state of neutron spins in a
strong magnetic field. The degree of spin polarization is an
important issue for determining the neutrino cross sections
in the matter, and, hence, it is relevant for the adequate
description of the neutrino transport and thermal evolution
of a neutron star [17]. In the given study, we provide a fully
self-consistent calculation of the thermodynamic quantities of
spin-polarized neutron matter at finite temperature, taking into
account the appearance of the pressure anisotropy in a strong
magnetic field. We consider spin-polarization phenomena in a
degenerate magnetized system of strongly interacting neutrons
within the framework of a Fermi-liquid formalism [40–43],
unlike to the previous works [36,39], where interparticle
interactions were disregarded.

Note that, recently, new parametrizations of Skyrme forces
were suggested, BSk19–BSk21 [44], which aimed to avoid
the spontaneous spin instability of nuclear matter at densities
beyond the nuclear saturation density for the case of zero
temperature. This is achieved by adding different density-
dependent terms to the standard Skyrme interaction. The
BSk19 parametrization was constrained to reproduce the
equation of state (EoS) of nonpolarized neutron matter [45]
obtained in the variational calculation with the use of the
realistic Urbana v14 NN potential and the three-body force
called TNI. The BSk20 force corresponds to the stiffer EoS
[46], obtained in the variational calculation with the use of
the realistic Argonne V18 two-body potential and the semiphe-
nomenological UIX∗ three-body force which includes also a
relativistic-boost correction. Even a stiffer neutron matter EoS
was suggested in the Brueckner-Hartree-Fock calculation of
Ref. [47] based on the same V18 two-body potential and a
more realistic three-body force containing different meson-

exchange contributions. This EoS is the underlying one for the
BSk21 Skyrme interaction. The advantage of all of these newly
developed Skyrme forces is that they preserve the high-quality
fits to the mass data obtained with the conventional Skyrme
forces. An important quantity allowing one to distinguish
between the different representatives of a generalized Skyrme
interaction is the symmetry energy, which is defined as the
difference between the energies per nucleon in neutron matter
and symmetric nuclear matter (an alternative definition of
the symmetry energy is also discussed in Ref. [44]). In the
high-density region, the symmetry energy decreases with
density for the BSk19 force, while it increases with density
for BSk20 (moderately) and BSk21 (steeply) forces. As was
clarified in Ref. [48] by testing almost 90 parametrizations
of the conventional Skyrme forces, the Skyrme interactions,
predicting the increasing behavior of the symmetry energy
with density, put neutron star models in broad agreement with
observations (e.g., providing a satisfactory description of the
minimum rotation period, gravitational mass-radius relation,
and the binding energy released in supernova collapse). Based
on these arguments, one could consider a scenario, in which
the symmetry energy increases with density in the high density
region, to be more realistic. By this reason, in this study we
will choose the BSk20 Skyrme parametrization for carrying
out numerical calculations. Nevertheless, as emphasized in
Ref. [44], only direct experimental evidence related to the
high densities will allow one to ultimately decide which of
the BSk19–BSk21 parametrizations of a generalized Skyrme
interaction is more appropriate for the description of neutron-
rich nuclear systems of astrophysical interest.

At this point, it is worth noting that we consider the
thermodynamic properties of spin-polarized states in neutron
matter in a strong magnetic field up to the high-density region
relevant for astrophysics. Nevertheless, we take into account
the nucleon degrees of freedom only, although other degrees of
freedom such as pions, hyperons, kaons, or even quarks could
be important at such high densities.

II. BASIC EQUATIONS

The normal (nonsuperfluid) states of neutron matter are
described by the normal distribution function of neutrons
fκ1κ2 = Tr�a+

κ2
aκ1 , where κ ≡ (p, σ ), p is momentum, σ is

the projection of spin on the third axis, and � is the the
density matrix of the system [21–23]. The energy of the system
is specified as a functional of the distribution function f ,
E = E(f ), and determines the single-particle energy:

εκ1κ2 (f ) = ∂E(f )

∂fκ2κ1

. (1)

The self-consistent matrix equation for determining the distri-
bution function f follows from the minimum condition of the
thermodynamic potential [40,41] and is

f = {exp(Y0ε + Yiμnσi + Y4) + 1}−1

≡ {exp(Y0ξ ) + 1}−1. (2)

Here the quantities ε, Yi and Y4 are matrices in the space of κ

variables, with (Yi,4)κ1κ2 = Yi,4δκ1κ2 , Y0 = 1/T , Yi = −Hi/T ,
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and Y4 = −μ0/T being the Lagrange multipliers, μ0 being the
chemical potential of neutrons, and T being the temperature.
In Eq. (2), μn = −1.913 042 7 (5)μN is the neutron magnetic
moment [49] (μN being the nuclear magneton) and σi are the
Pauli matrices. Note that, unlike Refs. [12,50], the term with
the external magnetic field H is not included in the single
particle energy ε but is separately introduced in the exponent
of the Fermi distribution (2).

Furthermore, it will be assumed that the third axis is directed
along the external magnetic field H. Given the possibility for
alignment of neutron spins along or opposite to the magnetic
field H, the normal distribution function of neutrons and single-
particle energy ε can be expanded in the Pauli matrices σi in
spin space:

f (p) = f0(p)σ0 + f3(p)σ3,
(3)

ε(p) = ε0(p)σ0 + ε3(p)σ3.

Using Eqs. (2) and (3), one can evidently express the
distribution functions f0 and f3 in terms of the quantities ε:

f0 = 1
2 {n(ω+) + n(ω−)}, (4)

f3 = 1
2 {n(ω+) − n(ω−)}. (5)

Here n(ω) = {exp(Y0ω) + 1}−1 and

ω± = ξ0 ± ξ3, (6)

ξ0 = ε0 − μ0, ξ3 = −μnH + ε3.

The quantity ω±, being the exponent in the Fermi distribu-
tion function n, plays the role of the quasiparticle spectrum.
The branches ω± correspond to neutrons with spin up and spin
down, respectively.

The distribution functions f satisfy the normalization
conditions

2

V
∑

p

f0(p) = �, (7)

2

V
∑

p

f3(p) = �↑ − �↓ ≡ ��. (8)

Here � = �↑ + �↓ is the total density of neutron matter, �↑
and �↓ are the neutron number densities with spin up and
spin down, respectively. The quantity �� may be regarded
as the neutron-spin order parameter which determines the
magnetization of the system M = μn��. The spin ordering
of neutrons can also be characterized by the spin-polarization
parameter

� = ��

�
.

The magnetization may contribute to the internal magnetic
field B = H + 4πM. However, we will assume, analogously
to the previous studies [9,11,12], that, because of the tiny
value of the neutron magnetic moment, the contribution of the
magnetization to the inner magnetic field B remains small for
all relevant densities and magnetic field strengths, and, hence,

B ≈ H. (9)

In order to get the self-consistent equations for the compo-
nents of the single-particle energy, one has to set the energy

functional of the system. It represents the sum of the matter
and field energy contributions

E(f,H ) = Em(f ) + Ef (H ), Ef (H ) = H 2

8π
V. (10)

The matter energy is the sum of the kinetic and Fermi-liquid
interaction-energy terms [22,23]:

Em(f ) = E0(f ) + Eint(f ), (11)

E0(f ) = 2
∑

p

ε0(p)f0(p),

Eint(f ) =
∑

p

{ε̃0(p)f0(p) + ε̃3(p)f3(p)},

where

ε̃0(p) = 1

2V
∑

q

Un
0 (k)f0(q), k = p − q

2
, (12)

ε̃3(p) = 1

2V
∑

q

Un
1 (k)f3(q). (13)

Here, ε0(p) = p2

2m0
is the free single-particle spectrum, m0 is

the bare mass of a neutron, Un
0 (k) and Un

1 (k) are the normal
Fermi-liquid (FL) amplitudes, and ε̃0, ε̃3 are the FL corrections
to the free single-particle spectrum. Using Eqs. (1) and (11),
we get the self-consistent equations for the components of the
single-particle energy in the form

ξ0(p) = ε0(p) + ε̃0(p) − μ0, ξ3(p) = −μnH + ε̃3(p).

(14)

Taking into account expressions (4) and (5) for the distribu-
tion functions f0 and f3, solutions of the self-consistent Eqs.
(14) should be found jointly with the normalization conditions
(7) and (8).

The pressures (longitudinal and transverse with respect to
the direction of the magnetic field) in the system are related
to the diagonal elements of the stress tensor whose explicit
expression reads [51]

σik =
[
f̃ − �

(
∂ f̃

∂�

)
H,T

]
δik + HiBk

4π
. (15)

Here,

f̃ = fH − H 2

4π
, (16)

fH = 1
V (E − T S) − HM is the Helmholtz free energy density,

and the entropy S is given by the formula

S = −
∑

p

∑
σ=+,−

{n(ωσ ) ln n(ωσ ) + n̄(ωσ ) ln n̄(ωσ )},
(17)

n̄(ω) = 1 − n(ω).

For the isotropic medium, the stress tensor (15) is sym-
metric. The transverse pt and longitudinal pl pressures are
determined from the formulas

pt = −σ11 = −σ22, pl = −σ33.
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Hence, using Eqs. (10) and (15), one can get

pt = �

(
∂fm

∂�

)
H,T

− fm + H 2

8π
, (18)

pl = �

(
∂fm

∂�

)
H,T

− fm − H 2

8π
, (19)

where fm = 1
V (Em − T S) is the matter free energy density, and

we disregarded in Eqs. (18) and (19) the terms proportional to
M . The structure of the pressures pt and pl is different, which
reflects the breaking of the rotational symmetry in the magnetic
field. In ultrastrong magnetic fields, the term quadratic in the
magnetic field (the Maxwell term) will dominate, leading to
an increase in the transverse pressure and to a decrease in
the longitudinal pressure. Hence, at some critical magnetic
field, the longitudinal pressure will vanish, resulting in the
longitudinal instability of neutron matter. Obviously, at finite
temperature the pressures pt and pl will be larger compared
to the zero-temperature case, and, hence, an increase in the
temperature will lead to an increase in the critical magnetic
field. Here we would like to find the magnitude of the critical
field at temperatures of a few tens of MeV, which can be
relevant for protoneutron stars, and also to determine the
corresponding maximum degree of spin polarization in neutron
matter.

III. SPIN POLARIZATION AT H = 0, T �= 0

To provide numerical calculations, we use the BSk20
Skyrme interaction [44] developed to reproduce the zero-
temperature microscopic EoS of nonpolarized neutron matter
[46]. Although spontaneous spin polarization at zero temper-
ature is missing for this parametrization for all relevant densi-
ties, it is not excluded that, at finite temperature, a spontaneous
ferromagnetic phase transition could occur. Actually, this is
the case as will be shown later. In the model calculations of
this section we consider temperatures somewhat larger than
the temperatures which could be reachable in the interior of
protoneutron stars [52]. This will help us to find the critical
temperature above which a spontaneous polarization appears,
and will also allow us to determine the relevant temperature
range for studying spin polarization at H �= 0.

The recently developed parametrizations BSk19–BSk21
of the Skyrme effective forces appear as a generalization of
Skyrme effective NN interaction of the conventional form. In
the conventional case, the amplitude of Skyrme NN interaction
reads [53]

v̂(p, q) = t0(1 + x0Pσ ) + 1

6
t3(1 + x3Pσ )�α

+ 1

2h̄2 t1(1 + x1Pσ )(p2 + q2) + t2

h̄2 (1 + x2Pσ )pq,

(20)

where Pσ = (1 + σ 1σ 2)/2 is the spin exchange operator, ti , xi

and α are some phenomenological parameters specifying a
given parametrization of the Skyrme interaction. The Skyrme

TABLE I. Parameters of BSk19–BSk21 Skyrme forces, according
to Ref. [44]. The value of the nuclear saturation density �0 is shown
in the bottom line.

BSk19 BSk20 BSk21

t0 [MeV fm3] −4115.21 −4056.04 −3961.39
t1 [MeV fm5] 403.072 438.219 396.131
t2 [MeV fm5] 0 0 0
t3 [MeV fm3+3α] 23670.4 23256.6 22588.2
t4 [MeV fm5+3β ] −60.0 −100.000 −100.000
t5 [MeV fm5+3γ ] −90.0 −120.000 −150.000
x0 0.398848 0.569613 0.885231
x1 −0.137960 −0.392047 0.0648452
t2x2 [MeV fm5] −1055.55 −1147.64 −1390.38
x3 0.375201 0.614276 1.03928
x4 −6.0 −3.00000 2.00000
x5 −13.0 −11.0000 −11.0000
α 1/12 1/12 1/12
β 1/3 1/6 1/2
γ 1/12 1/12 1/12
�0 [fm−3] 0.1596 0.1596 0.1582

interaction used in Ref. [44] has the form

v̂′(p, q) = v̂(p, q) + �β

2h̄2 t4(1 + x4Pσ )(p2 + q2)

+ �γ

h̄2 t5(1 + x5Pσ )pq. (21)

In Eq. (21), two additional terms are the density-dependent
generalizations of the t1 and t2 terms of the usual form. Specific
values of the parameters ti , xi, α, β, and γ for Skyrme forces
BSk19–BSk21 are given in Table I [44].

The normal FL amplitudes U0 and U1 can be expressed
in terms of the Skyrme force parameters. For conventional
Skyrme force parametrizations, their explicit expressions are
given in Refs. [41,43]. As follows from Eqs. (20) and (21),
in order to obtain the corresponding expressions for the
generalized Skyrme interaction (21), one should use the
substitutions

t1 → t1 + t4�
β, t1x1 → t1x1 + t4x4�

β, (22)

t2 → t2 + t5�
γ , t2x2 → t2x2 + t5x5�

γ . (23)

Therefore, the FL amplitudes are related to the parameters
of the Skyrme interaction (21) by formulas [54]

Un
0 (k) = 2t0(1 − x0) + t3

3
�α(1 − x3) + 2

h̄2 [t1(1 − x1)

+ t4(1 − x4)�β + 3t2(1 + x2) + 3t5(1 + x5)�γ ]k2,

(24)

Un
1 (k) = −2t0(1 − x0) − t3

3
�α(1 − x3) + 2

h̄2 [t2(1 + x2)

+ t5(1 + x5)�γ − t1(1 − x1) − t4(1 − x4)�β]k2.

(25)

Now we present the results of the numerical solution
of the self-consistent equations at H = 0 with the BSk20
Skyrme force. Figure 1 shows the spin-polarization parameter
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FIG. 1. Neutron spin-polarization parameter as a function of the
density for BSk20 Skyrme force at H = 0 and several fixed values
of temperature.

of neutron matter as a function of the density for a few
fixed values of the temperature of several tens of MeV. At
zero temperature, there is no spontaneous polarization at all
relevant densities because two additional terms in a generalized
form (21) of the Skyrme interaction were constrained just
with the aim to exclude a nonzero polarization at vanishing
temperature. Spontaneous polarization does not appear up to
some critical temperature Tc which is, at least, larger than
35 MeV. Beyond Tc, spontaneous spin polarization exists in
a finite-density interval (�c1, �c2 ). The unexpected moment is
that the temperature promotes spontaneous spin polarization,
increasing both the width of the density domain where a
nonzero polarization exists and the magnitude of the spin-
polarization parameter. In particular, if to approach the density
interval (�c1 , �c2 ) from the lower densities, then the left critical
point �c1 , at which spontaneous polarization appears, decreases
with temperature, contrary to intuition which suggests that the
temperature should act as a preventing factor to spin polar-
ization and, hence, should delay its appearance. Analogously,
with increasing temperature the right critical point �c2 for the
disappearance of spontaneous polarization should, according
to intuition, decrease, contrary to what really occurs (i.e., the
critical density �c2 increases with temperature).

In order to clarify whether a spontaneously spin-polarized
state is thermodynamically preferable over the nonpolarized
state, one should compare the corresponding free energies.
Figure 2 shows the difference between the free energies per
neutron of spin-polarized and nonpolarized states, δF/A =
[F (�, T ,�(�, T )) − F (�, T ,� = 0)]/A, as a function of the
density at the same fixed temperatures considered above. It
is seen that a spontaneously polarized state is preferable over
the nonpolarized state for all relevant densities and tempera-
tures where spontaneous polarization exists. With increasing
temperature, the minimum of the difference δF/A becomes
more pronounced and, hence, a spontaneously polarized state
becomes more stable with respect to the nonpolarized one.
Thus, the state with spontaneous polarization, described by

FIG. 2. Difference between the free energies per neutron of spin-
polarized and nonpolarized states as a function of the density at
H = 0 and several fixed values of the temperature for the BSk20
Skyrme force. The difference is shown only for the density domains
where spontaneous polarization exists.

the spin-polarization parameter with such unusual properties
(cf. Fig. 1), is supported thermodynamically by the balance of
the free energies.

In order to get a deeper insight into the problem, let
us consider separate contributions to the difference be-
tween the free energies per neutron δF/A = δE/A − T δS/A.
Figure 3 shows the difference between the energies per
neutron of spin-polarized and nonpolarized states, δE/A =
[E(�, T ,�(�, T )) − E(�, T ,� = 0)]/A, as a function of the
density at the same fixed temperatures considered above. It
is seen that the energy per neutron of a spin-polarized state is
always larger than that of the nonpolarized state for the density
domain where spontaneous spin polarization exists. This is
because increasing the temperature and spin polarization leads
to increasing the kinetic energy term in the energy functional of

FIG. 3. Same as in Fig. 2 but for the difference between the
energies per neutron of spin-polarized and nonpolarized states.
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FIG. 4. Same as in Fig. 2 but for the difference between the
entropies per neutron of spin-polarized and nonpolarized states.

the system. The sign of the difference δE/A could, in principle,
be inverted by the negative contribution of the term in the
energy functional (11) describing spin correlations in neutron
matter with nonzero polarization, but that is not, however,
the case. Therefore, the inequality δF/A < 0 can hold only
because of the inequality δS/A > 0 for the density range
where spontaneous polarization exists. Figure 4 shows that this
is actually true, and the entropy per neutron of a spin-polarized
state is larger than that of the nonpolarized state for the
corresponding temperatures and densities. This unexpected
behavior contradicts intuition which suggests that the entropy
of a more-ordered spin-polarized state should be less than that
of the nonpolarized state. Note that such unusual behavior
of the entropy of a spin-polarized state was found earlier
for neutron matter with the Skyrme effective interaction [55]
and for symmetric nuclear matter with the Gogny effective
interaction [56,57] (in the latter case, for antiferromagnetically
ordered nucleon spins). The difference, however, is that, in
these earlier studies, instability with respect to spontaneous
spin ordering occurred already at zero temperature whereas
in the given case it appears only at temperatures larger than
the critical temperature. Also, it was clarified earlier [55,57]
that the unusual behavior of the entropy of a spin-polarized
state should be traced back to its dependence on the effective
masses of spin-up and spin-down nucleons and to a violation of
a certain constraint on them at the corresponding temperatures
and densities. In Ref. [55], this constraint was formulated
for totally polarized neutron matter and in Ref. [57] for
symmetric nuclear matter with arbitrary antiferromagnetic
spin polarization.

Let us verify now whether this holds true in our case. In the
low-temperature limit the entropy per neutron is given by

S/A =
∑

σ=+,−

π2

2εFσ

T , (26)

where εσ = h̄2k2
Fσ

2mσ
is the Fermi energy of neutrons with spin up

and spin down, and kσ = (6π2�σ )1/3 is the respective Fermi

FIG. 5. Difference D in constraint (27) for the branch � of
spontaneous polarization as a function of density at T = 37 MeV
and T = 40 MeV for the BSk20 Skyrme force.

momentum. The low-temperature expansion (26) is valid until
T/εFσ � 1. By requiring the difference between the entropies
of spin-polarized and nonpolarized states to be negative, one
can derive the following constraint on the effective masses
mn↑ and mn↓ of neutrons with spin up and spin down in a
spin-polarized state [50]:

D ≡ mn↑
mn

(1 + �)
1
3 + mn↓

mn

(1 − �)
1
3 − 2 < 0, (27)

where

h̄2

2m↑(↓)
= h̄2

2m0
+ �↑(↓)

2
[t2(1 + x2) + t5(1 + x5)�γ ]

+�↓(↑)

4
[t1(1 − x1) + t4(1 − x4)�β

+ t2(1 + x2) + t5(1 + x5)�γ ]. (28)

In the constraint (27), the effective mass mn of a neutron in
nonpolarized neutron matter is given by [54]

h̄2

2mn

= h̄2

2m0
+ �

8
[t1(1 − x1) + t4(1 − x4)�β

+ 3t2(1 + x2) + 3t5(1 + x5)�γ ]. (29)

After the self-consistent determination of the spin-
polarization parameter, one can check whether inequality (27)
is satisfied at the corresponding densities and temperatures.
Figure 5 shows the left-hand side D of the constraint (27) for
the branch �(�, T ) of spontaneous polarization as a function of
the density at the temperatures T = 37 MeV and T = 40 MeV,
where the accuracy of the approximation T/εFσ � 1 is
satisfactory. It is seen that inequality (27) is violated, implying
that the entropy of a spontaneously polarized state is larger than
the entropy of the nonpolarized state at the respective densities
and temperatures. Hence, the unusual behavior of the entropy
of a spontaneously polarized state mentioned above can be
related to the peculiarities of its dependence on the effective
masses of neutrons with spin up and spin down. A nontrivial
character of the density dependence of the effective masses
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FIG. 6. Ratio of effective mass of a neutron with spin up
(upper dashed curves) and spin down (lower dotted curves) in a
spontaneously polarized state to bare neutron mass as a function of
density at T = 37 MeV and T = 40 MeV for the BSk20 Skyrme
force.

mn↑ and mn↓ in neutron matter with spontaneous polarization
at different temperatures is clearly seen from Fig. 6.

In the subsequent analysis, following the scenario according
to which spontaneous polarization should be avoided at the
relevant densities and temperatures, we will confine our
analysis to temperatures up to 30 MeV which are definitely less
than the critical temperature Tc � 35 MeV. Such a choice of
the relevant temperature interval is consistent with the results
of completely independent research [52] of hybrid stars in the
context of relativistic mean-field theory, according to which
the maximum temperature attainable in their interior does not
exceed 35 MeV.

IV. LONGITUDINAL AND TRANSVERSE PRESSURES AT
FINITE TEMPERATURE. ANISOTROPIC EoS

In this section, we will study the influence of finite
temperatures on thermodynamic quantities of spin-polarized
neutron matter in an ultrastrong magnetic field. We will take
into account the effects of the pressure anisotropy, and, in
particular, will clarify to which extent the critical magnetic
field, at which the longitudinal instability in magnetized
neutron matter occurs, will increase due to the impact of finite
temperatures.

First, we present the results of the numerical solution of the
self-consistent equations. Figure 7 shows the spin-polarization
parameter of neutron matter as a function of the magnetic field
H at two different temperatures, T = 0 and T = 30 MeV,
and at two different values of the neutron matter density,
� = 3�0 and � = 4�0, which can be relevant for the central
regions of a magnetar. Under increasing the density, the effect
produced by the magnetic field on spin polarization of neutron
matter becomes smaller. It is seen that the impact of the
magnetic field remains insignificant up to the field strength
H ∼ 1017 G. At the magnetic field H = 1018 G, usually
considered to be the maximum magnetic field strength in
the core a magnetar (according to a scalar virial theorem

FIG. 7. Neutron spin-polarization parameter as a function of the
magnetic field strength for the BSk20 Skyrme force at T = 0 and
T = 30 MeV, and at two fixed densities, � = 3�0 and � = 4�0. The
vertical arrows indicate the maximum magnitude of spin polarization
attainable at the given temperature and density; see further details in
the text.

[33]), the magnitude of the spin-polarization parameter does
not exceed 45% at � = 3�0 and 19% at � = 4�0 (for the
temperatures under consideration). However, the situation
changes if larger magnetic fields are allowable: Upon further
increasing the magnetic field strength, the magnitude of the
spin-polarization parameter increases and spin polarization
approaches its limiting value � = −1, corresponding to a fully
spin-polarized state. For example, a fully polarized state is
formed at H ≈ 1.3 × 1019 G for the temperature T = 0 MeV
and at H ≈ 2.3 × 1019 G for T = 30 MeV at � = 3�0 (i.e.,
certainly for magnetic fields H � 1019 G). Note that we speak
about a fully polarized state at finite temperature although
some quantity of neutrons with spin up are always present
at T �= 0. Nevertheless, this quantity may be made arbitrarily
small by further increasing the magnetic field, and we consider
that a fully polarized state is formed if the deviation from the
limiting value � = −1 is less than 10−4. Upon increasing
the temperature, the value of the magnetic field, at which a
fully polarized state occurs, increases, as one could expect.
However, practically up to magnetic fields of about 1019

G, spin polarization demonstrates the unusual behavior and
increases with temperature. Furthermore, it will be shown
that this behavior is thermodynamically supported by the
corresponding balance of the Helmholtz free energies. The
meaning of the vertical arrows in Fig. 7 is explained later in
the text.

Now, we should check whether a fully spin-polarized state
of neutrons in a strong magnetic field can indeed be formed by
calculating the anisotropic pressure in dense neutron matter.
Figure 8(a) shows the pressures (longitudinal and transverse)
in neutron matter as functions of the magnetic field H at the
same fixed temperatures and densities as considered above.
The upper branches in the branching curves correspond to the
transverse pressure, the lower ones to the longitudinal pressure.
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FIG. 8. Same as in Fig. 7 but for (a) the pressures, longitudinal
(descending branches) and transverse (ascending branches). (b) Same
as in the top panel but for the normalized difference between the
transverse and longitudinal pressures. The vertical arrows in the lower
panel indicate the points corresponding to the onset of the longitudinal
instability in neutron matter.

First of all, it is clearly seen that, up to some threshold magnetic
field, the difference between the transverse and longitudinal
pressures is unessential that corresponds to the isotropic
regime. Beyond this threshold magnetic field strength, the
anisotropic regime holds for which the transverse pressure
increases with H while the longitudinal pressure decreases.
The increase in temperature leads to the increase in the pres-
sures transverse pt and longitudinal pl . Also, the increase in
density has the same effect on the pressures pt and pl as the
increase in temperature. The most important feature is that the
longitudinal pressure vanishes at some critical magnetic field
Hc marking the onset of the longitudinal instability in neutron
matter. For example, Hc ≈ 1.56 × 1018 G for T = 0 MeV
and Hc ≈ 1.64 × 1018 G for T = 30 MeV at � = 3�0, and
Hc ≈ 2.42 × 1018 G for T = 0 MeV and Hc ≈ 2.48 × 1018 G
for T = 30 MeV at � = 4�0. Hence, at the finite temperatures
relevant for protoneutron stars, the critical magnetic field is
increased compared to the zero-temperature case but this
increase is, in fact, insignificant. Even accounting for the
finite-temperature effects, the critical field does not exceed
1019 G for the density range under consideration.

The magnitude of the spin-polarization parameter � also
cannot exceed some limiting value corresponding to the critical
field Hc. These maximum values of the magnitude of � are
shown in Fig. 7 by the vertical arrows. In particular, �c ≈
−0.46 for T = 0 MeV and �c ≈ −0.58 for T = 30 MeV at
� = 3�0, and �c ≈ −0.38 for T = 0 MeV and �c ≈ −0.41
for T = 30 MeV at � = 4�0. As can be inferred from these
values, the appearance of negative longitudinal pressure in an
ultrastrong magnetic field prevents the formation of a fully
polarized spin state in the core of a magnetar. Therefore, only
the onset of a field-induced ferromagnetic phase transition,
or its near vicinity, can be caught under increasing magnetic
field strength in dense neutron matter at finite temperature. A
complete spin polarization in the magnetar core is not allowed
by the appearance of negative pressure along the direction
of the magnetic field, contrary to the conclusion of Ref. [38]
where the pressure anisotropy in a strong magnetic field was
disregarded.

Figure 8(b) shows the difference between the transverse and
longitudinal pressures normalized to the value of the pressure
p0 in the isotropic regime (which corresponds to the weak field
limit with pl = pt = p0):

δ = pt − pl

p0
.

Applying the criterion δ � 1 for the transition from the
isotropic regime to the anisotropic regime, the transition
occurs at the threshold field Hth ≈ 1.15 × 1018 G for T = 0
MeV and Hth ≈ 1.22 × 1018 G for T = 30 MeV at � = 3�0,
and at Hth ≈ 1.83 × 1018 G for T = 0 MeV and Hth ≈
1.86 × 1018 G for T = 30 MeV at � = 4�0. In all cases under
consideration, the threshold field Hth is greater than 1018 G
and, hence, the isotropic regime holds for the fields up to
1018 G. For comparison, the threshold field for a relativistic
dense gas of free charged fermions at zero temperature
was found to be about 1017 G [36] (without including the
anomalous magnetic moments of fermions). For a degenerate
gas of free neutrons at zero temperature the model-dependent
estimate gives Hth � 4.5 × 1018 G [39] (including the neutron
anomalous magnetic moment). The normalized splitting of
the transverse and longitudinal pressures increases more
rapidly with magnetic field at smaller density and/or at lower
temperature. The vertical arrows in Fig. 8(b) indicate the
points corresponding to the onset of the longitudinal instability
in neutron matter. Since the threshold field Hth is less than
the critical field Hc for the appearance of the longitudinal
instability, the anisotropic regime can be relevant for the core
of a magnetar. The maximum allowable normalized splitting
of the pressures corresponding to the critical field Hc is δ ∼ 2.
If the anisotropic regime sets in, a neutron star has the oblate
form. Thus, as follows from the preceding discussions, in the
anisotropic regime the pressure anisotropy plays an important
role in determining the spin structure and configuration of a
neutron star.

At the given thermodynamic variables �, T , and H , the
Helmholtz free energy is a relevant thermodynamic func-
tion whose minimum determines a state of thermodynamic
equilibrium. Figure 9(a) shows the Helmholtz free energy
density of the system as a function of the magnetic field
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FIG. 9. (a) Same as in Fig. 7 but for the Helmholtz free energy
density of the system. (b) Same as in Fig. 7 but for the ratio of the
magnetic field energy density to the Helmholtz free energy density
of the system. The meaning of the vertical arrows is the same as in
Fig. 8(b).

H at two fixed temperatures, T = 0 and T = 30 MeV, and
at two different densities, � = 3�0 and � = 4�0. It is seen
that magnetic fields up to H ∼ 1018 G have practically small
effects on the Helmholtz free energy density fH , but beyond
this field strength the contribution of the magnetic field energy
to the free energy fH rapidly increases with H . However,
this increase is limited by the values of the critical magnetic
field corresponding to the onset of the longitudinal instability
in neutron matter. The respective points on the curves are
indicated by the vertical arrows.

Figure 9(b) shows the ratio of magnetic field energy density
ef = H 2

8π
to Helmholtz free energy density under the same

assumptions as for Fig. 9(a). The intersection points of the
respective curves in this panel with the line ef /fH = 0.5
correspond to the magnetic fields at which the matter and
field contributions to the Helmholtz free energy density are
equal. This happens at H ≈ 1.18 × 1018 G for T = 0 MeV
and H ≈ 1.08 × 1018 G for T = 30 MeV at � = 3�0, and at
H ≈ 1.81 × 1018 G for T = 0 MeV and H ≈ 1.76 × 1018 G
for T = 30 MeV at � = 4�0. These values are quite close to
the respective values of the threshold field Hth and, hence,
the transition to the anisotropic regime occurs at the magnetic

FIG. 10. Helmholtz free energy density of the system as a
function of (a) the transverse pressure pt , (b) the longitudinal pressure
pl at T = 0 (solid lines) and T = 30 MeV (dashed lines), and at two
fixed densities, � = 3�0 and � = 4�0. The meaning of the vertical
arrows in the top panel is the same as in Fig. 8(b). In the bottom
panel, the physical region corresponds to pl > 0.

field strength at which the field and matter contributions to the
Helmholtz free energy density become equally important. It is
also seen from Fig. 9(b) that, in all cases when the longitudinal
instability occurs in the magnetic field Hc the contribution of
the magnetic field energy density to the Helmholtz free energy
density of the system dominates over the matter contribution.

Because of the pressure anisotropy, the EoS of neutron
matter in a strong magnetic field is also anisotropic. Figure 10
shows the dependence of the Helmholtz free energy density fH

on the transverse pressure (top panel) and on the longitudinal
pressure (bottom panel) after excluding the dependence on H

in these quantities. Since the dominant Maxwell term enters
the pressure pt and free energy density fH with a positive sign,
and enters the pressure pl with a negative sign, the free energy
density fH is the increasing function of pt and decreasing
function of pl . In the case of fH (pt ) dependence, at the given
density, the same pt corresponds to the larger magnetic field H

at the temperature T = 0 MeV compared to the T = 30 MeV
case [see Fig. 8(a)]. The overall effect of the two factors
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(temperature and magnetic field) will be the larger value of
the free energy density fH at the given pt and density for
the temperature T = 0 MeV compared with the T = 30 MeV
case [see Fig. 10(a)]. The analogous arguments show that,
at the given temperature and pt , the Helmholtz free energy
density is larger for the smaller density. In the case of fH (pl)
dependence, at the given density, the same pl corresponds to
the smaller magnetic field H for the temperature T = 0 MeV
compared to the T = 30 MeV case [see Fig. 8(a)]. Hence, the
free energy density fH at the given pl and density is larger for
the temperature T = 30 MeV than that for the T = 0 MeV
case [see Fig. 10(b)]. Analogously, at the given temperature
and pl , the free energy density fH is larger for the larger
density. In the bottom panel, the physical region corresponds
to the positive values of the longitudinal pressure.

It is worth noting at this point that, since the EoS of neutron
matter becomes highly anisotropic in an ultrastrong magnetic
field, the usual scheme for finding the mass-radius relationship
based on the Tolman-Oppenheimer-Volkoff (TOV) equations
[58] for a spherically symmetric and static neutron star should
be revised. Instead of this, the corresponding relationship
should be found by the self-consistent treatment of the
anisotropic EoS and axisymmetric TOV equations substituting
the conventional TOV equations in the case of an axisymmetric
neutron star.

V. UNUSUAL BEHAVIOR OF ENTROPY at H �= 0

As was discussed in the previous section, the magnitude
of the spin-polarization parameter increases with temperature
in fields up to about 1019 G. The Helmholtz free energy
density fH , whose minimum at the given �, T , H determines
the state of a thermodynamic equilibrium, decreases with
temperature [cf. Fig. 9(a)] and, hence, such an unusual
behavior of spin polarization with temperature is supported
thermodynamically. The Helmholtz free energy density fH

can be decomposed into the matter and field contributions,

fH = fHm + ef ,

FIG. 11. Same as in Fig. 7 but for the matter part FHm/A of
the Helmholtz free energy per neutron. The meaning of the vertical
arrows is the same as in Fig. 8(b).

FIG. 12. Difference between entropies per neutron of magnetized
neutron matter and nonpolarized neutron matter (with � = 0 at H =
0) as a function of the magnetic field strength for the BSk20 Skyrme
force at T = 15 and T = 30 MeV and at two fixed densities � = 3�0

and � = 4�0. The meaning of the vertical arrows is the same as in
Fig. 8(b).

with the matter contribution being fHm = 1
V (Em − T S) −

HM . The decrease of the Helmholtz free energy with
temperature is, therefore, to be attributed to its matter part.
Figure 11 explicitly shows this point.

An unexpected moment appears if we consider separately
the behavior of the entropy of neutron matter with a generalized
Skyrme interaction in a strong magnetic field. In Fig. 12, the
difference between the entropy per neutron of magnetized
neutron matter and that of the nonpolarized state (with � = 0
at H = 0) is presented as a function of magnetic field at the
temperatures T = 15 MeV and T = 30 MeV, and at the same
densities as regarded above. It is seen that this difference is
positive for all relevant magnetic field strengths. It looks like
a spin-polarized state is less ordered than a nonpolarized state,
contrary to intuitive assumption. In Sec. III, we showed that the
unusual behavior of the entropy of a spontaneously polarized
state is related to its dependence on the effective masses of
neutrons with spin up and spin down and to the violation of
the criterion (27). The entropy of magnetized neutron matter is
given by the same general expression (17) and, after providing
the low-temperature expansion, we would arrive at the same
constraint (27) on the effective masses in a spin-polarized
state guaranteeing that its entropy is less than that of the
nonpolarized state. Figure 13 shows the left side D of the
constraint (27) as a function of the magnetic field strength at the
temperature T = 15 MeV, and densities � = 3�0 and � = 4�0,
at which the accuracy of the approximation T/εFσ � 1 is
acceptable. It is seen that the criterion (27) is violated and this
explains the unusual behavior of the entropy of dense neutron
matter in a strong magnetic field that is shown in Fig. 12.

Note that the unconventional behavior of the entropy of
magnetized neutron matter with the Skyrme interaction was
found earlier in Ref. [50]. The difference is that, for the
SLy7 Skyrme interaction used in that work, a spontaneously
polarized state appears already at zero temperature, while in the
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FIG. 13. Difference D in constraint (27) as a function of the
magnetic field strength for BSk20 Skyrme force at temperature T =
15 MeV and densities � = 3�0 and � = 4�0. The meaning of the
vertical arrows is the same as in Fig. 8(b).

given research with a newly developed BSk20 Skyrme force,
spontaneous polarization appears only at temperatures above
the critical temperature. We have checked that the last feature
is also characteristic for the BSk19 and BSk21 Skyrme forces.
If to consider the appearance of a spontaneously polarized
state as a weak point of a certain Skyrme parametrization
(just this argument was used in Ref. [44] as the motivation
for developing a new series of Skyrme forces), then this
underlines the necessity to further concentrate the efforts on
building a new generation of Skyrme forces being free of
such kind of spin instabilities. Such an attempt was made in
the recent article [59] by attracting ideas from nuclear energy
density functional theory. However, the constraints obtained
in this study on the Skyrme force parameters lead to the
unrealistic consequence that the effective masses of nucleons
with spin up and spin down in a polarized state should be
equal, contrary to the results of calculations with realistic NN
interactions [29,31]. On the other hand, the observational data
still do not rule out the existence of a ferromagnetic hadronic
core inside a neutron star caused by spontaneous ordering of
hadron spins (in this respect, see, e.g., Refs. [60,61]). In any
case, developed recently generalized Skyrme parametrizations
BSk19–BSk21 are, currently, among the most competitive
Skyrme forces for providing neutron star calculations and,
certainly, are suitable for getting a qualitative estimate of the
effects of pressure anisotropy in strongly magnetized neutron
matter at finite temperature.

In summary, we have considered spin-polarized states in
dense neutron matter in a model with the recently developed
BSk20 Skyrme interaction at finite temperature under the

presence of strong magnetic fields up to 1020 G. Although
the BSk20 Skyrme force was thought up with the aim to avoid
spontaneous spin instability at zero temperature, it has been
shown that spontaneous instability appears at temperatures
above the critical temperature, which is at least larger than
35 MeV. By this reason, we limited our consideration by the
temperatures up to 30 MeV. For a spontaneously polarized state
at finite temperature, the entropy demonstrates the unusual
behavior being larger than that of the nonpolarized state. This
feature has been related to the dependence of the entropy of
a spin-polarized state on the effective masses of spin-up and
spin-down neutrons and to the violation of some constraint
on them at the corresponding densities and temperatures.
In the strong magnetic fields considered in this study the
total pressure in neutron matter becomes anisotropic. It has
been shown that, for magnetic fields H > Hth ∼ 1018 G, the
pressure anisotropy has a significant impact on thermodynamic
properties of neutron matter. In particular, vanishing of the
pressure along the direction of the magnetic field in the critical
field Hc > Hth leads to the appearance of the longitudinal
instability of neutron matter. With increasing density and
temperature of neutron matter, the threshold Hth and critical Hc

magnetic fields also increase. In the limiting case considered
in this study and corresponding to the density of about four
times the nuclear saturation density and the temperature of
about a few tens of MeV, the critical field Hc does not
exceed 1019 G. This value can be considered as the upper
bound on the magnetic field strength inside a magnetar. Our
calculations show that the appearance of the longitudinal
instability prevents the formation of a fully spin-polarized
state in neutron matter, and only the states with moderate
spin polarization can be developed. In the anisotropic regime,
the field contribution to the Helmholtz free energy density
becomes comparable and even dominates over the matter
contribution. The longitudinal and transverse pressures and
anisotropic EoS of neutron matter in a strong magnetic
field have been determined at the densities and temperatures
relevant to the interior of a magnetar. It has been clarified
that the entropy of strongly magnetized neutron matter with
the Skyrme BSk20 force demonstrates the unusual behavior
similar to that of the entropy of spontaneously polarized state.
In both cases, the same reason, discussed above, is responsible
for such a behavior. The obtained results can be of importance
in studies of cooling history and of the structure of strongly
magnetized neutron stars.
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