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The transverse-momentum distributions of identified hadrons produced in Pb-Pb collisions at the Large Hadron
Collider (LHC) are studied in the low and intermediate range for pT < 5 GeV/c. All four spectra (π,K, p,�)
can be well reproduced in the recombination model based on a common thermal parton distribution of light and
strange quarks and on shower partons emitted in hard and semihard jets. Two essential parameters are adjusted
to fit the data, one being the inverse slope of the thermal distribution and the other revealing the degree of
momentum degradation in the medium. Various combinations of thermal and shower-parton components are
calculated, showing the dominance of minijets. The effect of minijets is to produce harder baryons than mesons,
resulting in their ratio to peak at around pT ∼ 3 GeV/c. A substantial portion of the jet energy is found to be lost
to the dense medium before the partons emerge at the surface to undergo hadronization by recombination.
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I. INTRODUCTION

Recent data from A Large Ion Collider Experiment
(ALICE) on Pb-Pb collisions at

√
sNN = 2.76 TeV provide

the first glimpse of the transverse-momentum pT distributions
of identified hadrons produced at the CERN Large Hadron
Collider (LHC) [1]. Although the pT ranges are from 0 to
3 GeV/c only for π and p and up to 5 GeV/c for K0

and �0, which are very low by LHC standards, there are
already features that are unexpected by extrapolation from the
BNL Relativistic Heavy Ion Collider (RHIC) [2]. The proton
distribution seems to be pushed harder to higher pT so that
the p/π+ ratio and the p̄/π− ratio continue to rise up to the
highest detected momentum at pT ≈ 3 GeV/c. The �/K ratio
does show a well-developed peak at pT = 3 GeV/c, and the
magnitude of the ratio increases with centrality, exceeding 1.5
at 0%–5% centrality. Since no model calculation has been
cited in Refs. [1,2] to indicate the existence of any satisfactory
explanation for the data, it is important to investigate this
problem and develop a model that can accommodate all aspects
of the pT distributions for π,K, p, and � production up
to 5 GeV/c.

The region of low and intermediate transverse momenta,
0 < pT < 5 GeV/c, is difficult for theoretical treatment that
can claim validity throughout the whole range. It is too
low for perturbative QCD and includes too high pT for
conventional hydrodynamics. In our study here we focus
only on the hadronization process for which we use the
recombination model that has been shown to be effective in
interpreting the data at intermediate pT [3]. The input involves
thermal and shower-parton distributions at late time that are
phenomenological in the sense of having some parameters not
determined from first principles. However, our approach has
the advantage of making transparent the common origin of
the various components that contribute to the spectra of the
different hadrons produced. Since the recombination model
has been successful in explaining the large baryon-meson ratio
found at RHIC [4–6], it is sensible to extend that approach

here in examining its applicability at LHC. It is generally
recognized that at high energy in the TeV regime minijets are
copiously produced from semihard scatterings. The density of
shower partons from such minijets [7,8] is therefore expected
to be much higher than at RHIC. On the other hand, thermal
partons at hadronization should not depend sensitively on
the collision energy since the hadronization of a system of
higher initial density occurs later when the thermal medium
can expand to a lower local density in order for confinement to
take place. Thus the mixture of shower and thermal partons at
late time at LHC should be very different from that at RHIC.
Since shower partons are harder than thermal partons, we
therefore expect the produced hadrons to be also harder: more
so for the baryons than mesons due to their larger number of
constituents in the recombination model. This is qualitatively
the short explanation for why the ALICE data exhibit harder
baryon spectra compared to the RHIC data. The essence of
this work is to carry out the investigation quantitatively.

The dense partonic medium created at LHC can lead to
severe attenuating effects on semihard partons that traverse
the medium. One can focus on the various mechanisms of
energy loss in QCD, as in Ref. [9], but such studies of medium
effects do not lend themselves readily to the analysis of the
hadronization process outside the medium, which is our goal.
A template for a phenomenological description of the medium
effects has been found in Ref. [10] that takes geometrical
properties of Au-Au collisions at RHIC into consideration.
We shall use the general form of that study for LHC but
not its details. With the assumption of the dominance of
gluon jets for the determination of all shower partons, the
effect of jet quenching is common to all flavors of shower
partons that undergo hadron formation outside the medium.
Thus the central issues in this work are the various ways in
which thermal and shower partons can recombine at pT <

5 GeV/c in Pb-Pb collisions at 2.76 TeV. Achieving a
satisfactory description of the spectra of all identified species
is our immediate goal so that the study of hadron production
at higher pT can follow at a later stage on a firm footing.
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II. MESON AND BARYON INCLUSIVE PT

DISTRIBUTIONS

Let us first collect here the basic equations in the recom-
bination model developed previously [8,10]. For the invariant
pT distributions of meson and baryons averaged over η and φ

at midrapidity, we may use the one-dimensional form

p0 dNM

dpT

=
∫

dp1

p1

dp2

p2
Fq1q̄2 (p1, p2)RM

q1,q̄2
(p1, p2, pT ), (1)

p0 dNB

dpT

=
∫ [

3∏
i=1

dpi

pi

]
Fq1q2q3 (p1, p2, p3)

×RB
q1,q2,q3

(p1, p2, p3, pT ), (2)

where pi is the transverse momentum (with the subscript T

omitted) of one of the recombining quarks qi , whose evolution
from a parton emitted at the medium surface to a valon (the
constituent quark of the hadron to be formed) is a dressing
process that preserves its momentum [11]. The recombination
functions (RFs) RM,B , which include the effects of dressing
and hadronic structure, have been determined previously
and will be given below. We note here that our dNh/dpT

should be identified with the experimental dN/2πdηdpT ,
which integrates over all φ, while our quantity is defined as
the average over φ and η. The parton distributions can be
partitioned into various components, represented symbolically
by

Fq1q̄2 = T T + T S + SS, (3)

Fq1q2q3 = T T T + T T S + T SS + SSS, (4)

where T and S are the invariant distributions of thermal and
shower partons, respectively. There can be many terms within
each of the components shown above.

It should be noted that the nature of time evolution of the
system is not specified in Eqs. (1)–(4). The recombination
model describes hadronization at late time. Thus T and S
distributions are model inputs at the times that are appropriate
for particular collision systems. The thermal distribution
should not depend sensitively on the collision energy since the
density of the thermal system must be reduced by expansion
to around the same level at any collision energy in order for
hadronization to occur. Thus the thermal parton distribution
that we adopt has the same form as before [8]:

T (p1) = p1
dNT

q

dp1
= Cp1e

−p1/T , (5)

where C has the dimension of inverse momentum. The pref-
actor p1 is necessary to yield the exponential behavior for the
thermal component of the hadronic distribution dNh/pT dpT ,
as we shall see after specifying the RF. [See Eq. (31) below.]
On the other hand, the properties of shower distribution do
depend strongly on the collision energy, not only because of
the increased rate of creation of hard partons but also because
of the quenching effect of the denser medium. With ξ used
as a parameter that describes an aspect of the momentum
degradation in the medium, Fi(q, ξ ) is the hard or semihard
parton distribution at the surface of the medium that will be
discussed in detail below. For now we just show the shower

distribution as

S(p2, ξ ) =
∫

dq

q

∑
i

Fi(q, ξ )Si(p2/q), (6)

where Si(z) is the shower-parton distribution (SPD) in a jet
of type i with momentum fraction z. In Refs. [7,12] SPD
is determined by regarding the fragmentation function (FF)
Di(x) as being the recombination product of two shower
partons:

xDπ
i (x)

=
∫

dx1

x1

dx2

x2

{
S

q

i (x1), Sq̄

i

(
x2

1 − x1

)}
Rπ

qq̄(x1, x2, x), (7)

where the curly brackets denote symmetrization of the leading
parton momentum fractions x1 and x2.

Using Eqs. (3)–(6) in Eq. (1), we obtain for pion production

p0 dNT T
π

dpT

= C2
∫

dp1dp2e
−(p1+p2)/T Rπ (p1, p2, pT ), (8)

p0 dNT S
π

dpT

=
∫

dξP (ξ, φ, b)
∫

dq

q

∑
i

Fi(q, ξ )T̂ S(q, pT ),

(9)

p0 dNSS
π

dpT

=
∫

dξP (ξ, φ, b)
∫

dq

q

∑
i

Fi(q, ξ )ŜS(q, pT ),

(10)

where

T̂ S(q, pT ) =
∫

dp1

p1

dp2

p2
T q̄(p1)Sq

i

(
p2

q

)
Rπ

qq̄ (p1, p2, pT ),

(11)

ŜS(q, pT ) =
∫

dp1

p1

dp2

p2

{
S

q̄

i

(
p1

q

)
, S

q

i

(
p2

q − p1

)}
×Rπ

qq̄ (p1, p2, pT ) = pT

q
Dπ

i (pT /q). (12)

P (ξ, φ, b) is the probability for the dynamical path length to
be ξ for a path at angle φ initiated at (x0, y0), weighted by
the nuclear overlap function, and integrated over all (x0, y0).
Geometrically, ξ depends on where the trajectory is between
the center and the periphery of the overlap, and dynamically, it
depends on the energy loss along the path, as will be discussed
in more detail in the next section.

For notational brevity we define

F̄i(q, ξ̄ ) =
∫

dξP (ξ, φ, b)Fi(q, ξ ), (13)

where ξ̄ depends on φ and b, and we get from Eqs. (9) and
(11)

dNT S
π

pT dpT

= 2

p2
T

∫
dp1

p1

dp2

p2
T q̄(p1)Sq(p2, ξ̄ )Rπ

qq̄(p1, p2, pT ),

(14)

where

Sq(p2, ξ̄ ) =
∫

dq

q

∑
i

F̄i(q, ξ̄ )Sq

i (p2/q), (15)
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which follows obviously from Eqs. (6) and (13), except
to emphasize that the medium effect is in F̄i(q, ξ̄ ), not
in S

q

i (p2/q). That is, the FF in Eq. (7) is for partons
outside the medium and is therefore not modified by it. The
factor of 2 in Eq. (14) arises from the two distinguishable
components of T u(1)S d̄ (2) + T d̄ (1)Su(2). Such a factor is
absent in the T T term because T u(1)T d̄ (2) and T d̄ (1)T u(2)
are indistinguishable in a thermalized medium of q and q̄. For
K+ production we have two terms of us̄ for T S, so we obtain

dNT S
K

pT dpT

= 1

p0pT

∫
dp1

p1

dp2

p2
[T q(p1)Ss(p2, ξ̄ )

+ T s(p2)Sq(p1, ξ̄ )]RK (p1, p2, pT ), (16)

where Ss is as defined in Eq. (15), but with S
q

i replaced by Ss
i .

Because of the mass difference between the two constituents
of K , RK (p1, p2, pT ) is not symmetric under the interchange
of p1 and p2; moreover, the two terms in the square brackets
are different. Since we consider only hadron production at
midrapidity here, we may approximate p0 by the transverse
mass mT , where

mT = (
m2

h + p2
T

)1/2
. (17)

For h = K,p, and �, it can be significantly different from pT

when pT is small and can cause the low-pT spectra to deviate
from the exponential behavior of the pion spectrum.

The recombination of shower partons from the same jet is
equivalent to fragmentation, so we have

dNSS
M

pT dpT

= 1

mT pT

∫
dq

q

∑
i

F̄i(q, ξ̄ )
pT

q
DM

i

(
pT

q

)
. (18)

We shall denote it as (SS)1j . It is also possible for shower
partons from adjacent minijets to recombine; we shall refer to
such processes as (SS)2j .

For baryon production the parton distribution shown in
Eq. (4) has many components that can be expressed more
explicitly, though still symbolically condensed, as

Fq1q2q3 = T T T + T T S + T (SS)1j + (SSS)
1j + T (SS)2j

+ [(SS)1jS]
2j + (SSS)3j (19)

in obvious notation, except for [(SS)1jS]2j , which means that
two shower partons are from one jet and the third one is from
a second jet. We have found that all terms from multijets are
small for pT < 5 GeV/c, so in this paper we ignore 2j and 3j

and omit the specification 1j since only one jet is considered.
If we use the simplified notation to abbreviate Eqs. (14) and
(16) as

(T S)π = 2TqSq, (T S)K = TqSs + TsSq, (20)

then in a similar way we shorten the expression for p and � to

(T T S)p = TqTq(Su + Sd ), (21)

T (SS)p = Tq(SuSd + SuSu), (22)

(SSS)p = SuSuSd, (23)

(T T S)� = Tq(TqSs + 2TsSq), (24)

T (SS)� = 2TqSqSs + TsSuSd, (25)

(SSS)� = SuSdSs. (26)

The RFs have been determined from the study of hadronic
structure [8,11,13]. They are given below in terms of yi , which
is the momentum fraction of a valon (which plays the same
role in the scattering problem as a constituent quark does in
the bound-state problem) relative to the pT of the produced
hadron; i.e., yi = pi/pT ,

Rπ (y1, y2) = y1y2δ(y1 + y2 − 1), (27)

RK (y1, y2) = B−1(a + 1, b + 1)ya+1
1 yb+1

2 δ(y1 + y2 − 1),

(28)

RB(y1, y2, y3) = gB
stNB(y1y2)α+1y

β+1
3 δ(y1 + y2 + y3 − 1),

(29)

where

NB = [B(α + 1, α + β + 2)B(α + 1, β + 1)]−1 (30)

and gB
st is a statistical factor. From previous studies it has

been determined that a = 1, b = 2 [14], α = 1.75, β = 1.05
for protons [13] and α = 1, β = 2 for � [14]. For a pion
a = b = 0 because its mass is especially low due to its being
a Goldstone boson, so tight binding of the constituent quarks
leads to broad distribution in yi .

An immediate consequence of the momentum-conserving
δ functions in the RFs is the simplification of the hadronic
distributions. We illustrate that by writing out explicitly the
pion distributions. Substituting Eq. (27) in Eqs. (8) and (14),
we get

dNT T
π

pT dpT

= C2

6
e−pT /T , (31)

dNT S
π

pT dpT

= 2C

pT
3

∫ pT

0
dp1p1e

−p1/T Sq(pT − p1, ξ̄ ), (32)

where the pion mass in p0 = mT is neglected. The SS

component can be written in terms of FF as in Eq. (18), for
which the properties of the RF are already used in relating S

to D in Eq. (7). Similar equations to the two above can be
exhibited for other hadrons, as done in Appendix A. Here we
show the thermal component of protons,

dNT T T
p

pT dpT

= N ′
pC3 pT

2

mT

e−pT /T , (33)

where N ′
p = g

p
stNBB(α + 2, β + 2)B(α + 2, α + β + 4), so

that we can emphasize, by comparing Eqs. (31) and (33),
that pions and protons have the same exponential factors;
however, the latter has a prefactor pT

2/mT that arises from
the kinematics of recombination, causing the π and p spectra
to differ at low pT . Note that the inverse slopes T for both
spectra are the same.

The objective in this section to express the hadronic spectra
in terms of the parton distributions is now accomplished. In
the following it is then only necessary for us to focus on the
latter in order to calculate the former.

III. THERMAL AND SHOWER PARTONS

As noted at the end of the preceding section, the thermal dis-
tributions of p and π have the same inverse slope T , inherited
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from the thermal partons, whose invariant distribution is given
in Eq. (5). This is the characteristic property of recombination
that deviates from the hydrodynamical description where Tslope

depends on the hadron mass due to flow effect [15]. There is
apparent disparity between the p and π spectra in the data;
nevertheless, because of the prefactor p2

T /mT for protons and
of the dominant resonance contribution to pions for pT <

1 GeV/c, it does not mean that it is impossible to have a good
description of both spectra using one value of T , as will be
shown below.

We now extend the universality of the thermal parton
distribution to include the strange sector in hadron production
at LHC. In the TeV realm of collision energies it is expected
that the light and strange quarks are fully equilibrated before
hadronization. If that is so, then the same thermal distribution
given in Eq. (5) should be valid for u, d, and s quarks, the
consequence of which can readily be checked in our model
calculation. We note that the issue is not one that concerns
hadronic masses since the system under discussion consists
only of thermal partons in local equilibrium. More specifically,
before the recombination mechanism is applied, we assume
that all gluons are converted to u, d, and s quarks and their
antiquarks, which form the initial states of specific channels
for hadronization [11]. Thermal gluons do not fragment in the
usual sense. Even fragmentation of gluon jets is treated by
conversion to q and q̄ before recombination.

For shower partons let us begin by first summarizing
the subject of momentum degradation treated in Ref. [10].
At RHIC the pT , φ, and centrality c dependencies of the
nuclear modification factor RAA(pT , φ, c) impose stringent
constraints on the dynamical process of energy loss. The
problem is complicated because of both the geometrical and
dynamical aspects of the description of the parton’s traversal
through a nonuniform medium. For a given point (x0, y0) in
the transverse plane where a hard parton is created in the
initial system in a collision at impact parameter b, one has to
calculate the geometrical path length 
(x0, y0, φ, b) of a path
at angle φ and then the medium effect along that path. As
the system expands, 
 becomes longer, but the local density
becomes lower, so those compensating effects on the net
energy loss result in a dynamical path length ξ that can be
related to 
 through an undetermined parameter but without a
time-dependent transport description. Upon averaging over all
creation points (x0, y0), one arrives at a probability distribution
on ξ , denoted by P (ξ, φ, b), that relates the average parton
distribution F̄i(q, φ, b) for momentum q at the medium surface
to the distribution, Fi(q, ξ ), with a definite ξ by a weighted
average,

F̄i(q, φ, b) =
∫

dξP (ξ, φ, b)Fi(q, ξ ). (34)

This is a general relationship with the details all contained in
P (ξ, φ, b). The parton distribution Fi(q, ξ ) is related in turn
to the distribution fi(k) at the point of creation by

Fi(q, ξ ) =
∫

dkkfi(k)G(k, q, ξ ), (35)

where fi(k) is the parton density in the phase space kdk.
G(k, q, ξ ) is the momentum degradation function from k to q:

G(k, q, ξ ) = qδ(q − ke−ξ ). (36)

In Ref. [10] the RHIC data [16] on RAA(pT , φ, c) are
used to constrain the properties of P (ξ, φ, b). It is found that
P (ξ, φ, b) can be expressed in some scaling form involving the
scaling variable z = ξ/ξ̄ , where ξ̄ (φ, b) = ∫

dξ ξP (ξ, φ, b).
For our purpose here, let us not repeat the details of that
study for Pb-Pb collisions at LHC, especially when we restrict
our attention in this work to only the data at most central
collisions. We circumvent the complications by deriving a
simple parametric form as follows. From Eqs. (13) and (34)–
(36) we have for the average parton distribution at the surface,

F̄i(q, ξ̄ ) =
∫

dξP (ξ, φ, b)q2e2ξ fi(qeξ ), (37)

which we parametrize for centrality 0 < c < 0.05 in the form

F̄i(q, κ) = k(q)2fi(k(q)), k(q) = κq. (38)

If the details of P (ξ, φ, b) discussed in Ref. [10] are used, it
can be shown that F̄i(q, ξ̄ ) in Eq. (37) for a relevant value of ξ̄

can be reproduced very closely by Eq. (38) for a corresponding
value of κ . Since in either case an unknown parameter is
needed to represent the effect of momentum degradation, we
choose the latter expression, which does not rely on the details
of P (ξ, φ, b), and treat κ as the key parameter to fit the data
of all hadronic spectra. The significance of κ is clearly the
average momentum fraction κ−1 that a parton retains upon
traversing the medium.

IV. PARAMETRIZATION

For the thermal parton distribution we use the form in
Eq. (5) and put

C = 23.2 (GeV/c)−1, (39)

which is the value determined at RHIC [8]. We shall let T

be adjustable to fit the LHC data at low pT . Since our aim
is to reproduce the pT distributions of all identified particles
(π,K, p,�), the use of one parameter T for all thermal partons
is not only economical but would also indeed be remarkable,
if achieved. Unlike in hydrodynamical studies that consider
the mass-dependent flow effect, our approach incorporates
the effects of minijets on the hadronic spectra at low pT ,
allowing the recombination processes to determine the similar
or dissimilar behaviors of different hadronic species.

The parton distributions fi(k) at creation have been deter-
mined in Ref. [17] for Au-Au collision at 0.2 TeV and for
Pb-Pb collision at 5.5 TeV. The form used is

fi(k) = K
A

(1 + k/B)n
, (40)

where K = 2.5 and A,B, and n are tabulated for various
quarks and gluon. For

√
sNN = 2.76 TeV we use logarithmic

interpolation between the two energies for 
nA,B, and n.
More specifically, for gluons we use

A = 6.2 × 104 GeV−2, B = 0.98 GeV, n = 6.22. (41)
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Other parameters can similarly be obtained. The quark
contributions are found to be significantly less than the gluon
contribution. To make our calculation transparent, we shall
assume the dominance of gluon jets and let the summation
over parton species in all hard parton terms be represented by
a factor σ times the contributions from the gluon jets only,
which we shall calculate explicitly using Eqs. (40) and (41)
for gluon creation at k > 3 GeV/c. That is, we approximate∑

i Fi by σFg and shall use σ = 1.2 in the calculation since
the quark jets amount to roughly 20% of the gluon jet.

Since the parton distribution F̄i(q, κ) is not reliable for
q < 3 GeV/c, its contribution at low q is cut off by a smooth
function, which we take to be

g(q) = [1 + e(3.5−q)/0.5]−1. (42)

With this cutoff factor we may then let the q integrals in all
equations, such as in Eqs. (6) and (15), start at q = 0. A shower
parton with momentum pj has a momentum fraction x = pj/q

that peaks at small x; consequently, even for q > 3 GeV/c,
the density of shower partons at pj < 1 GeV/c can become
very high at LHC. At low pT we know that thermal partons
are important. How to separate the shower partons from the
thermal partons at low pj is not very well defined. The energy
lost by semihard partons as they traverse the medium can
enhance the thermal motion of the soft partons in the vicinities
of their trajectories, thereby contributing to a component of the
thermal partons that is intimately related to the soft component
of the shower partons. The effective T that we shall determine
includes enhanced thermal partons due to the energy loss of
the semihard partons. Because of that effect the distributions
of shower partons that are to be determined from the FF
according to Eq. (7) must be modified at low x so that S(p1)
will not exceed T (p1). That modification is discussed in detail
in Appendix B. The phenomenological basis that supports our
approach to the problem is the success in treating the pion and
proton spectra at RHIC from a common partonic distribution
characterized by a universal T [8,18,19]. Here we apply the
same idea to the problem at LHC.

To summarize, we have two basic parameters to adjust to
fit a large collection of data from LHC. Those parameters
are T and κ , which characterize the thermal medium and its
quenching effects on minijets. Due to the copious production
of minijets at LHC, we expect that the relative magnitudes of
the parton distributions T and S will be different from those at
RHIC. They contribute to hadronic distributions in the inter-
mediate range 1 < pT < 5 GeV/c, which is hard to quantify
in other approaches. Thus our phenomenological treatment
that employs two free parameters is a worthwhile endeavor,
provided that all four hadronic spectra can be reproduced.

V. RESULTS

We calculate the four hadronic spectra using equations
given in Appendix A. In all those equations parton distributions
involving the parameter ξ̄ are replaced by the distributions in
terms of κ , as we have discussed in going from Eq. (37) to
Eq. (38). We have varied T and κ to achieve the best fits of the
data reported by ALICE for central (0%–5%) Pb-Pb collisions

0 1 2 3 4 5
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0

10
2

10
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with resonance
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TS
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π+ ALICE

p
T
 (GeV/c)

dN
π /p

T
dp

T
 [(

G
eV

/c
)−

2 ]

FIG. 1. (Color online) Transverse momentum distribution of pion
produced in Pb-Pb collision at

√
sNN = 2.76 TeV. Data are from

Ref. [1] for centrality 0–5%. The black solid curve is the sum of the
components calculated for TT (blue dashed), TS (red dash-dotted),
SS (purple dotted) recombination. The black small-circle line is a fit
to the data, whose difference from the solid is attributed to resonance
decay.

at 2.76 TeV [1]. The results are shown in Figs. 1–4. The values
of those parameters are

T = 0.38 GeV, κ = 2.6. (43)

The color code for the various lines representing the different
components are as follows: TT and TTT in blue dashed, TS
and TTS in red dash-dotted, SS in purple dotted, TSS in purple
dash-dotted, SSS in green dotted, and the total in black solid
line. The agreement between the black lines and the data
points for K,p, and � in Figs. 2–4 are evidently very good
throughout the whole region where data exist.

In the case of pions the calculated total falls below the data
for pT < 1.5 GeV/c. The dashed black line is drawn to fit that
region and represents the extra contribution from the decay of
resonances. Such a component cannot at present be calculated
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FIG. 2. (Color online) Transverse momentum distribution of K

produced in Pb-Pb collision at
√

sNN = 2.76 TeV. Data are from
Ref. [1] for centrality 0–5%. The data points in the region pT < 2
GeV/c are for K+, while those for pT > 2 are obtained from the
ratio �0/K0

s and the �0 spectrum in [1,22]. The black solid curve is
the sum of the components calculated for TT (blue dashed), TS (red
dash-dotted), SS (purple dotted) recombination.
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FIG. 3. (Color online) Transverse momentum distribution of
proton produced in Pb-Pb collision at

√
sNN = 2.76 TeV. Data are

from Ref. [1] for centrality 0–5%. The black solid curve is the
sum of the components calculated for TTT (blue dashed), TTS
(red dash-dotted), TSS (purple dash-crossed), SSS (green dotted)
recombination.

in this formalism because the RFs have been derived from
the hadronic structures of the lowest bound states. Resonances
involve orbital excitations for which the RFs have not been
investigated. The dominance of resonance production at low
pT is a known fact even for meson-proton collisions at

√
s =

53 GeV [20], where ρ and ω contributions to the π spectra
exceed 60% [21]. At LHC not only do vector and tensor mesons
decay into pions, but various baryon resonances can also
contribute to additional pions. Since resonance contribution
is also present at RHIC but not considered in Ref. [8], we
put aside the region at pT < 1 GeV/c so as to emphasize the
difference between what we can calculate at LHC and RHIC
for pT > 1 GeV/c.

What is notable in these spectra is the important role that
the shower parton S plays throughout the pT range shown.
In all of them T S and T T S components are of the same
magnitudes as T T and T T T or higher. In fact, for pT >

0.5 GeV/c, T S is larger than T T , and T T S is larger than
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FIG. 4. (Color online) Transverse momentum distribution of �

produced in a Pb-Pb collision at
√

sNN = 2.76 TeV. Data are from
Ref. [1] for centrality 0%–5%. The lines are color coded as in Fig. 3.
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FIG. 5. (Color online) Shower and thermal parton distributions at
LHC and RHIC.

T T T for all hadrons produced. This means that at LHC
minijets are pervasive and their effects dominate the spectra
throughout the low and intermediate pT regions. For pT <

5 GeV/c, the SS, T SS, and SSS components are all negligible.
Thus the traditional fragmentation of jets can be ignored. In
the recombination approach to hadronization the T S and T T S

components represent the medium effect on semihard partons,
which lose energy to the medium and then regain some of the
momenta back by coalescing with enhanced thermal partons
to form hadrons. That they are important for pT > 3 GeV/c is
expected, as has been found in the study of RHIC physics [8],
but to see them as being so important for pT > 1 GeV/c is a
revelation at LHC.

To help understand more clearly how hadron production at
LHC differs from that at RHIC, we show in Fig. 5 the shower
and thermal parton distributions at LHC and RHIC. S and T
are as defined in Eq. (B6) for a gluon jet and in Eq. (5) and
are shown by the red lines with crosses for S and the blue
lines without crosses for T . Appendix B contains the details
about S at LHC, which is more than an order of magnitude
higher than S for RHIC. On the other hand, T is the same
at low p1 for both energies, but the exponential decrease at
intermediate p1 is steeper at RHIC (T = 0.32 GeV) than at
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FIG. 6. (Color online) Transverse momentum distributions of π

at LHC and RHIC.
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FIG. 7. Particle ratios of (a) p/π and (b) �/K . The data are from Refs. [1,22] for centrality 0%–5%.

LHC (T = 0.38 GeV). As a consequence, T at RHIC is much
larger than S at p1 < 2 GeV/c, and they cross over at around
p1 = 3 GeV/c, whereas S and T at LHC are approximately
the same for p1 < 2 GeV/c. These differences have significant
effects on the pion spectra. In Fig. 6 we compare the pT

distributions of pions arising from TS and TT recombination
at the two energies. Evidently, TT dominates over TS at pT <

3 GeV/c at RHIC, but TS at LHC is larger at all pT . It is then
clear how minijets are so important at LHC that the pion spectra
become much harder than at RHIC, and it is not because of
enhanced flow.

As shown in Appendix A, there are many terms in our
calculation. To get a good fit of all four spectra with the
adjustment of essentially only two parameters, T and κ , is
a significant achievement that provides a transparent picture
of the relative importance of the various thermal and shower
partons at pT < 5 GeV/c. The quality of our fits can be seen
from Figs. 7(a) and 7(b), where the particle ratios p/π and
�/K are shown. For the former the excellent agreement with
data is partially due to the capability of our formalism to
reproduce the p and π spectra accurately and separately for
pT > 1.5 GeV/c and partially because we have included the
resonance contribution to the pions at pT < 1.5 GeV/c that we
did not calculate. Since the reliable portion of our calculation is
in the intermediate pT region above 1.5 GeV/c, the peaking of
the p/π ratio at pT ≈ 3 GeV/c and the gentle falloff above that
are our prediction. The �/K ratio in Fig. 7(b) does not show
perfect agreement, but it is in linear scale, which amplifies the
deviations of the calculated spectra from the data, which are
seen in Figs. 2 and 4 to be well reproduced in log scale. From
that more tolerant point of view the general agreement of the
calculated ratio with data may be regarded as remarkably good.
The qualitative notion gained from the data that baryons are
produced with more transverse momentum [2] is now given a
quantitative interpretation that shower partons from minijets
harden the pT spectra because of the larger phase space opened
up at higher pT when three quarks recombine, one of which
is the harder shower parton (as can be seen in Fig. 10 in
Appendix B).

ALICE also has data on the pT distribution of all charged
particles [23]. If we regard �0 as representative of �+, then
adding our result of π,K, p, and � should come close to

all charges. In Fig. 8 we show the sum of those four by the
black line, which almost saturates the data, leaving very little
room for baryons, which are not included. The plot ends at
pT ∼ 5 GeV/c, where our calculation ends, but the data go
on to pT ∼ 15 GeV/c. The mismatch will be large for pT >

5 GeV/c due to aspects of jet physics that we have not taken
into account in the present study but that will be examined in
the future.

The value of T at 0.38 GeV is slightly larger than the
value of 0.32 GeV that was determined for thermal partons at
RHIC [8]. That is eminently reasonable for the hotter plasma
created at LHC. Since the thermal partons that participate in
hadronization are at late time, T is not the temperature of
the system at initial equilibration time, which would be much
higher. After expansion and cooling, the value at LHC is,
nevertheless, still higher than at RHIC because there are many
more minijets produced, which lose energy to the medium and
raise the ambient T .

The value of κ of 2.6 implies that on average roughly 1 −
κ−1 = 60% of the initial parton energy is lost to the medium.
Thus the momenta of the hard and semihard partons created
at LHC suffer severe degradation as they traverse the dense
medium. The precise value of κ may change at higher pT
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FIG. 8. (Color online) Charged particle pT distribution in black
solid line that is the sum of the four components π (blue dashed),
p (red dash-dotted), K (purple dash-crossed), and � (green dotted).
The data in solid squares are from Ref. [23] for centrality 0–5%.
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since the degree of momentum degradation can depend on the
initial parton momentum.

VI. CONCLUSION

We have studied the properties of hadron production in
the difficult intermediate pT region, which is too low for
reliable calculation in pQCD and too high for hydrodynamical
description. Although we have been successful in reproducing
the data, our main point is, however, not so much the accuracy
of the fits of the data but learning about the physics at
LHC. Since our treatment of the problem is focused only on
hadronization at the final stage of the evolution of the partonic
system, we cannot address issues related to the dynamical
development in time. Nevertheless, the investigation provides
quantitative information about minijets that is crucial in
understanding the nature of hadronic spectra. A distinctive
feature of our approach is that the production of mesons and
baryons with widely different masses can be described on the
basis of a common system of partons without any specific
reference to flow. In the intermediate pT region between 2 and
5 GeV/c, the nonflow part of the hydrodynamical description
can presumably be related to the thermal-shower component
of recombination. Hadron masses do not enter explicitly in
our calculation, although they are implicitly involved in the
determination of the recombination functions. The relative
magnitudes of the TT, TS, and SS components for mesons
(and of TTT, TTS, TSS, and SSS components for baryons)
provide a clear picture of the smooth transition throughout that
pT region and unify the very different hadronic sectors. That
picture offers an illuminating complement to the conventional
hydrodynamical description without contradicting it.

While the shower partons from minijets play the important
role in hadronization in the intermediate pT region, harder
jets will, of course, become more important at higher pT .
We do not expect our description to change significantly
when we extend our consideration to that region, except
for the need to study also multijet recombination. Before
doing that, we still have to examine the centrality dependence
in the intermediate region. That subject is interesting not
only because of the data on the second harmonic v2(pT ),
which is usually interpreted as elliptic flow, but especially
because the dominance of minijets implies the importance
of nonflow. The φ dependence of momentum degradation at
RHIC has been considered in our approach previously [10]
and can be adapted for collisions at LHC. That will provide
another test of the validity of our finding here about the
minijets.
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APPENDIX A: HADRONIC DISTRIBUTIONS
FOR π, K, p, AND �

We summarize in this Appendix the formulas for all the
hadronic distributions. They follow from the general equations
described in Sec. II and the specific recombination functions
for the four hadrons. We shall leave out the multijet (2j and
3j ) contributions because they are small and negligible for
pT < 5 GeV/c, but we exhibit explicitly the various T and
S combinations. As explained in Sec. IV, we approximate
the sum over all hard parton species by the dominant gluon
jet contribution multiplied by a constant factor σ (set to
σ = 1.2) that roughly accounts for the combined contribution
of all other quark-jet terms. That significantly simplifies the
calculation without compromising the general features of the
results.

1. Pion

dNT T
π

pT dpT

= C2

6
e−pT /T , (A1)

dNT S
π

pT dpT

= 2C

pT
3

∫ pT

0
dp1p1e

−p1/T Sq(pT − p1, ξ̄ ), (A2)

dNSS
π

pT dpT

= 1

pT

∫
dq

q2
σ F̄g(q, ξ̄ )D′π

g (pT , q), (A3)

where

Sq(p2, ξ̄ ) =
∫

dq

q
σ F̄g(q, ξ̄ )S ′q

g(p2, q). (A4)

The variable q is the momentum of the gluon jet at the
medium surface, while the index q refers to light quarks,
which should be distinguished from an s quark, whose
role in the RF of kaons is different. The SPD S ′q

g and FF
D′π

g are modified at low momentum in ways discussed in
Appendix B.

2. Kaon

dNT T
K

pT dpT

= NKB(a + 2, b + 2)
C2pT

mK
T

e−pT /T , (A5)

dNT S
K

pT dpT

= NKC

mK
T pT

a+b+2

∫ pT

0
dp1p

a
1 (pT − p1)b

× [p1e
−p1/T Ss(pT − p1, ξ̄ ) + (pT − p1)

× e−(pT −p1)/T Sq(p1, ξ̄ )], (A6)

dNSS
K

pT dpT

= 1

mK
T

∫
dq

q2
σ F̄g(q, ξ̄ )D′K

g (pT , q), (A7)

where Ss(p2, ξ̄ ) is as defined in Eq. (A4), except for that
S ′s

g(p2, q) replaces S ′q
g(p2, q). The RF for kaons is found in

Ref. [14] to be for a = 1 and b = 2.
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3. Proton

dNT T T
p

pT dpT

= g
p
stNpB(α + 2, β + 2)B(α + 2, α + β + 4)

C3pT
2

m
p

T

e−pT /T , (A8)

dNT T S
p

pT dpT

= g
p
stNp2C2

m
p

T pT
2α+β+3

∫ pT

0
dp1

∫ pT −p1

0
dp2(p1p2)α+1(pT − p1 − p2)βe−(p1+p2)/T Sq(pT − p1 − p2, ξ̄ ), (A9)

dNT SS
p

pT dpT

= g
p
stNp2C

m
p

T pT
2α+β+3

∫ pT

0
dp1

∫ pT −p1

0
dp2(p1p2)α(pT − p1 − p2)βp1e

−p1/T Sqq(p2, pT − p1 − p2, ξ̄ ), (A10)

dNSSS
p

pT dpT

= 1

m
p

T

∫
dq

q2
σ F̄g(q, ξ̄ )D′p

g (pT , q), (A11)

where

Sqq(p2, p3, ξ̄ ) =
∫

dq

q
σ F̄g(q, ξ̄ )S ′q

g(p2, q)S ′q
g(p3, q − p2). (A12)

The factor g
p
st is 1/12 when feed down from � is excluded [4]. The RF parameters for protons are α = 1.75 and β = 1.05 [13].

4. �

dNT T T
�

pT dpT

= g�
stN�B(α + 2, β + 2)B(α + 2, α + β + 4)

C3pT
2

m�
T

e−pT /T , (A13)

dNT T S
�

pT dpT

= g�
stN�C2

m�
T pT

2α+β+3

∫ pT

0
dp1

∫ pT −p1

0
dp2(p1p2)α+1(pT − p1 − p2)βe−(p1+p2)/T [2Sq(pT − p1 − p2, ξ̄ )

+Ss(pT − p1 − p2, ξ̄ )], (A14)

dNT SS
�

pT dpT

= g�
stN�C

m�
T pT

2α+β+3

∫ pT

0
dp1

∫ pT −p1

0
dp2(p1p2)α(pT − p1 − p2)βp1e

−p1/T [2Sqq(p2, pT − p1 − p2, ξ̄ )

+Sqs(p2, pT − p1 − p2, ξ̄ )], (A15)

dNSSS
�

pT dpT

= 1

m�
T

∫
dq

q2
σ F̄g(q, ξ̄ )D′�

g (pT , q), (A16)

where g�
st = 1/8 (1/2 for �0 or �0 and 2/8 from spin

consideration). The RF parameters for � are α = 1, β = 2
[14].Sqs(p2, p3, ξ̄ ) is as defined in Eq. (A12), but with S ′s

g(p3)
replacing S ′q

g(p3).

APPENDIX B: SHOWER-PARTON DISTRIBUTION

We derive in this Appendix the shower-parton distribution
we use for studying hadron production at LHC. The basic idea
is already described in Refs. [7,12]; only the parametrization
is now different. FF at high Q2 in deep inelastic scattering
gives the hadron distribution in a quark or gluon jet. It does
not specify the way in which hadrons are formed. In the
recombination model FF is described as a two-step process,
first the development of shower partons in a jet and then the
coalescence of the shower partons to form a hadron. For pion
production it is as expressed in Eq. (7), which should be
augmented by the dependence of Dπ

i (x, μ2) and S
j

i (x, μ2)
on the energy scale μ. Since the evolution of Dπ

i (x, μ2) in

μ2 can be tracked experimentally and theoretically [24], the
μ2 dependence of S

j

i (x, μ2) can be determined accordingly
by use of Eq. (7). However, to include that dependence in
the application of S

j

i (x) in Eq. (12) for heavy-ion collisions
is too complicated and more meticulous than necessary in
view of the many other unavoidable approximations. Thus
a fixed μ2 is used in practice. For RHIC we have used
μ = 10 GeV [7,12]. Now, for LHC we continue to use the
same μ since the hadronization scale at late time is the
same. However, we improve the determination of the SPD
and include scale-breaking effects due to a cutoff at low p1.

The gluon FF Dπ
g (x, μ2) for μ = 10 GeV is shown by the

square points in Fig. 9, following the parametrization given in
Ref. [24]. To reproduce that x dependence, we use the SPD
from gluon to light quark q,

Sq
g (x) = axb(1 − x)c(1 + dxe), (B1)

where a = 0.739, b = −0.28, c = 4.387, d = 4.502, and e =
10.469. The solid line in Fig. 9 shows the result of our
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FIG. 9. Fit of Kniehl, Krammer, Pötter (KKP) fragmentation
function Dπ

g (x, μ2) [24] (squares) by Eq. (B1) using the recombi-
nation formulas Eqs. (7) and (27), as shown by the solid line.

calculation based on Eqs. (7) and (B1). The fit is evidently
very good.

In the application of S
q
g (x) to hadronization processes

in heavy-ion collisions, we have discussed in Sec. IV how
the shower partons at very low momenta pi are merged
into the region dominated by thermal partons. The semihard
partons lose energy to the medium, whose thermal partons are
enhanced in such a way as to make the distinction between
thermal and shower partons meaningless. The peaking of the
SPD at very low pi is therefore unrealistic. Since the inverse
slope of the thermal parton distribution is to be determined
phenomenologically, which includes the effect of energy loss
of the semihard partons, we require that the SPD should not
exceed the exponential behavior of the thermal partons. The
scale-invariant thermal distribution T (p1) given in Eq. (5) is
shown in Fig. 10 by the solid red line; it dips at small p1 because
of the prefactor Cp1. The integrated shower distribution
Sq

g (pi), defined as in Eq. (15) but for a gluon jet (i = g) only
and with ξ̄ replaced by κ in F̄g(q, κ) given in Eq. (38), is
shown as a function of p1 by the dashed line in Fig. 10. We see
that Sq

g (p1) exhibits a power-law behavior for p1 > 1 GeV/c

that is expected and is larger than the exponential behavior of
T (p1). However, the peaking at low p1 for p1 < 0.5 GeV/c

is due to the unreliability of the method of determining S
q
g (x)

at low x. Since, for physical reasons, we want the thermal
partons to dominate at low p1, we introduce a cutoff factor on
the SPD. A cutoff with a particular scale implies breaking of
scale invariance described by x. Such breaking is reasonable
in low-q processes. If we write x = pT /q in Dπ

g (x), but now
in the nonscaling form Dπ

g (pT , q), we introduce the low-pT

cutoff as follows:

D′π
g (pT , q)=Dπ

g (pT , q)γ1(pT ), γ1(pT ) = 1 − e−p2
T . (B2)
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FIG. 10. (Color online) Thermal distribution T (p1) is depicted
by the blue solid line for T = 0.38 GeV. Shower-parton distributions
are shown by Sq

g (p1) (red dashed line) and S ′q
g(p1) (red dash-dotted

line); the latter includes the low-p1 cut-off.

The shower-parton distribution must therefore also be modified
in accordance to

pT

q
D′π

g (pT , q)

= 1

pT

∫ pT

0
dp1S

′q
g(p1, q)S ′q

g(pT − p1, q − p1), (B3)

where Eq. (27) is used in Eq. (7) with x1 = p1/q. The modified
S ′q

g(p1, q) is now

S ′q
g(p1, q) = Sq

g (p1/q)γ2(p1), (B4)

where the corresponding cutoff in p1 is

γ2(p1) = 1 − e−(p1/0.3)2
. (B5)

It can be demonstrated that the two damping factors γ1(pT )
and γ2(p1) are coordinated to satisfy Eq. (B3) for all pT in the
range of 1 < pT < 15 GeV/c.

The consequence of this cutoff on the integrated shower
distribution

S ′q
g(p1, κ) =

∫
dq

q
F̄g(q, κ)S ′q

g(p1, q) (B6)

is shown by the red dash-dotted line in Fig. 10. Note
that it is now just lower than the solid blue line of the
thermal distribution T (p1) for p1 < 0.5 GeV/c, which is
the criterion for this cutoff. In actual computation of the
hadronic spectra this modified distribution S ′ is used in all
shower distributions generically expressed as S in Sec. II and
Appendix A.
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[5] V. Greco, C. M. Ko, and P. Lévai, Phys. Rev. Lett. 90, 202302

(2003); Phys. Rev. C 68, 034904 (2003).
[6] R. J. Fries, B. Müller, C. Nonaka, and S. A. Bass, Phys. Rev.

Lett. 90, 202303 (2003); Phys. Rev. C 68, 044902 (2003).

064914-10

http://dx.doi.org/10.1088/0954-3899/38/12/124025
http://dx.doi.org/10.1088/0954-3899/38/12/124038
http://dx.doi.org/10.1103/PhysRevC.67.034902
http://dx.doi.org/10.1103/PhysRevLett.90.202302
http://dx.doi.org/10.1103/PhysRevLett.90.202302
http://dx.doi.org/10.1103/PhysRevC.68.034904
http://dx.doi.org/10.1103/PhysRevLett.90.202303
http://dx.doi.org/10.1103/PhysRevLett.90.202303
http://dx.doi.org/10.1103/PhysRevC.68.044902


SPECTRA OF IDENTIFIED HADRONS IN Pb-Pb . . . PHYSICAL REVIEW C 84, 064914 (2011)

[7] R. C. Hwa and C. B. Yang, Phys. Rev. C 70, 024904 (2004).
[8] R. C. Hwa and C. B. Yang, Phys. Rev. C 70, 024905 (2004).
[9] D. K. Srivastava, J. Phys. G 38, 055003 (2011).

[10] R. C. Hwa and C. B. Yang, Phys. Rev. C 81, 024908 (2010).
[11] R. C. Hwa, Phys. Rev. D 22, 1593 (1980).
[12] R. C. Hwa and C. B. Yang, Phys. Rev. C 73, 064904 (2006).
[13] R. C. Hwa and C. B. Yang, Phys. Rev. C 66, 025204 (2002).
[14] R. C. Hwa and C. B. Yang, Phys. Rev. C 66, 025205 (2002);

75, 054904 (2007).
[15] P. Huovinen, in Quark-Gluon Plasma 3, edited by R. C. Hwa

and X. N. Wang (World Scientific, Singapore, 2004), p. 600.
[16] S. Afanasiev et al. (PHENIX Collaboration), Phys. Rev. C 80,

054907 (2009).

[17] D. K. Srivastava, C. Gale, and R. J. Fries, Phys. Rev. C 67,
034903 (2003).

[18] R. C. Hwa and L. Zhu, arXiv:1101.1334.
[19] S. S. Adler et al. (PHENIX Collaboration), Phys. Rev. C 69,

034910 (2004).
[20] G. Jancso et al., Nucl. Phys. B 124, 1 (1977).
[21] W. Kittel and E. A. De Wolf, Soft Multihadron Dynamics (World

Scientific, Singapore, 2005), p. 176.
[22] I. Belikov (ALICE Collaboration), J. Phys. G 38, 124078 (2011).
[23] K. Aamodt et al. (ALICE Collaboration), Phys. Lett. B 696, 30

(2011).
[24] B. A. Kniehl, G. Kramer, and B. Pötter, Nucl. Phys. B 597, 337

(2001).

064914-11

http://dx.doi.org/10.1103/PhysRevC.70.024904
http://dx.doi.org/10.1103/PhysRevC.70.024905
http://dx.doi.org/10.1088/0954-3899/38/5/055003
http://dx.doi.org/10.1103/PhysRevC.81.024908
http://dx.doi.org/10.1103/PhysRevD.22.1593
http://dx.doi.org/10.1103/PhysRevC.73.064904
http://dx.doi.org/10.1103/PhysRevC.66.025204
http://dx.doi.org/10.1103/PhysRevC.66.025205
http://dx.doi.org/10.1103/PhysRevC.75.054904
http://dx.doi.org/10.1103/PhysRevC.75.054904
http://dx.doi.org/10.1103/PhysRevC.80.054907
http://dx.doi.org/10.1103/PhysRevC.80.054907
http://dx.doi.org/10.1103/PhysRevC.67.034903
http://dx.doi.org/10.1103/PhysRevC.67.034903
http://arXiv.org/abs/arXiv:1101.1334
http://dx.doi.org/10.1103/PhysRevC.69.034910
http://dx.doi.org/10.1103/PhysRevC.69.034910
http://dx.doi.org/10.1016/0550-3213(77)90271-1
http://dx.doi.org/10.1088/0954-3899/38/12/124078
http://dx.doi.org/10.1016/j.physletb.2010.12.020
http://dx.doi.org/10.1016/j.physletb.2010.12.020
http://dx.doi.org/10.1016/S0550-3213(00)00744-6
http://dx.doi.org/10.1016/S0550-3213(00)00744-6

