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Net-proton probability distribution in heavy ion collisions
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We compute net-proton probability distributions in heavy ion collisions within the hadron resonance gas
model. The model results are compared with data taken by the STAR Collaboration in Au-Au collisions at√

sNN = 200 GeV for different centralities and for the central energy bin at
√

sNN = 39 GeV. We show that, in
central Au-Au collisions at

√
sNN = 39 GeV, the measured distribution is consistent with the hadron resonance

gas model but differs from the predictions of the model at
√

sNN = 200 GeV. At the highest energy, deviations
from model results are smaller for peripheral collisions. We argue that such properties of probability distributions
are expected if the freeze-out conditions probed by fluctuations are located close to the QCD crossover transition.
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I. INTRODUCTION

One of the objectives of heavy ion experiments at CERN
and BNL is to probe properties of the QCD phase diagram
related to deconfinement and chiral symmetry restoration.
Modifications in the magnitude of fluctuations and in the
corresponding susceptibilities of conserved charges have been
suggested as possible signals for chiral symmetry restoration
and deconfinement [1–6].

Fluctuations of baryon number and electric charge diverge
at the hypothetical critical endpoint in the QCD phase diagram
at nonzero temperature and baryon chemical potential, while
they remain finite along the crossover boundary. Consequently,
large fluctuations of baryon number and electric charge as
well as a nonmonotonic behavior of these fluctuations as a
function of the collision energy in heavy ion collisions have
been proposed as a signature for the QCD critical endpoint
(CEP) [1,3,6].

It was argued that, even in the absence of a CEP, fluctuations
of conserved charges and their higher order cumulants can
be used to identify the phase boundary. It is expected that
the fluctuations are modified if the chemical freeze-out (i.e.,
the generation of the observed hadrons and their fluctuations)
occurs shortly after the system passed through a region where
quarks were deconfined and chiral symmetry was partially
restored [5,7,8].

The critical region characterizing the crossover transition
in the QCD phase diagram is expected to be located close
to the freeze-out curve extracted from heavy ion experi-
ments [9]. On this curve all particle yields achieve their
measured values [10–13]. Thermodynamics at freeze-out
is, to a first approximation, well described by the hadron
resonance gas (HRG) model, which was also shown to be very
successful in describing the thermodynamics of a strongly
interacting medium at low temperature as computed in lattice
QCD [2,14–18].

If chemical freeze-out occurs near or at the QCD phase
boundary, this should be reflected in the higher-order cumu-
lants of charge fluctuations since the sensitivity to critical
dynamics grows with increasing order [7]. Consequently,
the values of higher-order cumulants can differ significantly
from the results of the HRG along the freeze-out curve even
if lower-order cumulants agree. In particular, at vanishing
chemical potential, the sixth- and higher-order cumulants can
even be negative in the hadronic phase while the HRG yields
positive values everywhere [7]. In fact, the results of the HRG
model on cumulants of charge fluctuations can serve as a
theoretical baseline for the analysis of heavy ion collisions
[2,7,14]. In equilibrium, any deviation from the HRG model
would reflect genuine QCD properties not accounted for by the
model and could constitute evidence for critical phenomena at
the time of hadronization.

Recently, first data on charge fluctuations and higher order
cumulants, identified through net-proton fluctuations, were
obtained by the STAR Collaboration in Au-Au collisions at
several collision energies [19,20]. To explore possible signs
of criticality, the STAR data on the first four cumulants were
compared to HRG [7,20] and lattice QCD [21,22] results.
The basic properties of the measured fluctuations and ratios
of cumulants are consistent with expectations based on HRG
as well as on lattice QCD calculations. This indicates that
cumulants probe an equilibrated medium at chemical freeze-
out in the same way as particle yields do. In addition, this
medium seems to be well described by a grand canonical
ensemble; there seems to be no need to correct for finite-size
effects in order to quantify the net-baryon number fluctuations.
However, a more detailed comparison of the HRG model with
STAR data reveals that deviations cannot be excluded [7,20].

All moments of net-proton fluctuations as well as the related
cumulants can be calculated once the underlying probability
distribution is known. Therefore, it is interesting to confront
the distributions obtained for the HRG with those measured in
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heavy ion collisions. Since the probability distributions contain
information on all cumulants, such a comparison may provide
useful insights into the origin of possible deviations from the
HRG baseline and may also provide additional information
on the relationship between chemical freeze-out and the QCD
crossover transition or even on the existence of a CEP.

In the following we calculate the net-proton probability
distributions in the HRG model. We show that, in this model,
the net-proton distribution can be expressed solely in terms of
the measurable yields of protons and antiprotons. The HRG
model results are compared with data taken by the STAR
Collaboration in Au-Au collisions at the BNL Relativistic
Heavy Ion Collider (RHIC) at

√
sNN = 200 GeV and

√
sNN =

39 GeV. For central collisions at
√

sNN = 200 GeV, the HRG
model yields a distribution which is broader than that seen
experimentally, while results at the lower energy are consistent
with model predictions. We discuss the possible origin of the
deviations and point out that they are in qualitative agreement
with the differences between HRG model calculations and
(lattice) QCD results in the vicinity of the QCD phase
boundary and above.

II. PROBABILITY DISTRIBUTION OF CONSERVED
CHARGES

Consider a subvolume V of a thermodynamic system
described by the grand canonical ensemble consisting of
charged particles q and antiparticles q̄ at a given temperature T

and chemical potential μ. The latter is related to the conserved
net charge N = Nq − Nq̄ . The probability distribution P (N )
for finding a net charge number N in the volume V is given
in terms of the canonical Z(T , V,N) and grand canonical
Z(T , V,μ) partition functions [10,23,24]:

P (N ) = Z(T , V,N)eμ̂N−Vβp(T ,μ). (1)

Here we have introduced the pressure, lnZ = Vβ p(T ,μ), as
well as the shorthand notation μ̂ = βμ and β = 1/T .

The canonical partition function Z(T , V,N) can be ob-
tained from the thermodynamic pressure through the Fourier
transform

Z(T , V,N) = 1

2π

∫ 2π

0
dφ e−iφNeβVp(T ,iφ/β), (2)

where the chemical potential was Wick rotated by the substi-
tution μ̂ → iφ. Equations (1) and (2) define the probability
distribution of a conserved charge in a subvolume V of a
thermal system described by the thermodynamic pressure
p(T ,μ).

In the following we focus on fluctuations of the net-baryon
number and consider the corresponding probability distribu-
tion in a strongly interacting medium. We model the thermo-
dynamics of this system using the HRG partition function,
which contains all relevant degrees of freedom in the hadronic
phase and implicitly includes the interactions responsible
for resonance formation. In this model the thermodynamic
pressure is a sum of meson and baryon contributions; only the
latter determines the probability distribution of the net-baryon
number. In the HRG model, pB consists of contributions from

all baryons and baryonic resonances [10]. In the Boltzmann ap-
proximation, βVpB(T ,μ) = b(T , V,μ) + b̄(T , V,μ), where
b and b̄ are the mean number of baryons and antibaryons,
respectively. Furthermore, b = Vf (T ) exp(μ̂) with

f (T ) = T

2π2

∑
i∈baryons

gim
2
i K2(βmi)e

β �qi · �μ. (3)

Here, �qi = (Si,Qi) is a two-component vector composed of
the strangeness and electric charge carried by particle i, �μq =
(μS,μQ) is the corresponding chemical potential vector, gi is
the spin-isospin degeneracy factor, and K2 is a modified Bessel
function. The mean number of antibaryons b̄ is obtained by
the substitution μ → −μ for all relevant chemical potentials.

In the HRG model, the canonical partition function
Z(T , V,N ) is computed directly from Eq. (2) by using the
thermodynamic pressure discussed above [10]. The resulting
probability of net-baryon number can be expressed solely in
terms of the mean number of baryons and antibaryons through
the Skellam distribution,

P (N ) =
(

b

b̄

)N/2

IN (2
√

bb̄)exp[−(b + b̄)], (4)

where IN (x) is a modified Bessel function.
We note that the above arguments remain valid also for

subsystems which are limited not only in position space, but
more generally in phase space. In particular, the introduction of
cuts in momentum space leave Eqs. (1), (2), and (4) unchanged
after an appropriate redefinition of the partition functions and
densities. Moreover, the restriction to one particle species (e.g.,
protons with proper account for resonance decays) is easily
accommodated. Indeed, the introduction of cuts in momentum
space leaves Eqs. (1) and (2) unchanged because they are
a direct consequence of an internal U(1) symmetry of the
system [24,25]. In addition, Eq. (4) is obtained from Eq.
(2) as the dependence of the baryonic pressure on cos (μ̂)
factorizes in the Boltzmann approximation. Consequently,
any cuts in momentum space or in the number of baryons
will influence only the phase space factor Vf (T ) in Eq. (3),
leaving the final form of the probability distribution [Eq. (4)]
unchanged. Modifications of the phase space can be effectively
accounted for by adjusting the volume parameter such that the
experimental data are reproduced [7].

III. PROBABILITY DISTRIBUTION OF NET-PROTON
NUMBER

In this section we confront the HRG model results for the
probability distribution of the net-proton number with data
of the STAR Collaboration [19,20]. The data are obtained at
midrapidity in a restricted range of transverse momentum,
0.4 GeV � pT � 0.8 GeV. The probability distribution for
protons is readily obtained from Eq. (4) by replacing the mean
number of baryons b and antibaryons b̄ by that of protons 〈Np〉
and antiprotons 〈Np〉, respectively.

Using Eq. (4) we can compute the net-proton distribution
provided we have access to the mean values 〈Np〉 and 〈Np̄〉
measured in the same kinematic window. For Au-Au collisions
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FIG. 1. (Color online) Net-proton distributions calculated in the hadron resonance gas using Eq. (4) and compared with STAR data for
Au-Au collisions at

√
sNN = 200 GeV for different centralities [19] (left) and for the central energy bin at

√
sNN = 39 GeV (middle). Right:

Mean (M), variance (σ ), skewness (S), and kurtosis (κ) calculated from the probability distributions shown in the left panel (
√

sNN = 200 GeV).
Data are from the STAR Collaboration [19,20]. The full lines are obtained with experimental input for proton 〈Np〉 and antiproton 〈Np̄〉 yields,
while the broken-lines are obtained with 〈Np〉 and 〈Np̄〉 computed in the thermal model with (T , μ) parameters at chemical freeze-out in
units of MeV. For

√
sNN = 39 GeV these are given in the figure [12] and, for

√
sNN = 200 GeV, they are (157.9, 14.1), (156.5, 18.6), and

(159.3, 21.9) for 70%–80%, 30%–40%, and 0%–5% centrality bins, respectively [13].

at
√

sNN = 200 GeV, STAR data on the pt distribution of pro-
tons and antiprotons are available at several centralities [13].
By integrating the pt spectra of antiprotons in the pt window
where the net-proton number was obtained, we find: 〈Np̄〉 =
5.233 (95), 〈Np̄〉 = 1.838 (7), and 〈Np̄〉 = 0.2844 (98) for
(0%–5%) central, (30%–40%) midcentral, and (70%–80%)
peripheral collisions, respectively. Since the proton data were
measured in a slightly larger pt window, we avoid systematic
errors that may arise from an extrapolation by computing 〈Np〉
from the net-proton yields (M = 〈Np〉 − 〈Np̄〉), with M �
1.715, M � 0.597, and M � 0.08 for central, midcentral, and
peripheral collisions [19], respectively.

In Fig. 1 (left), we compare the STAR data on the
net-proton multiplicity distribution in Au-Au collisions at√

sNN =200 GeV [19,20] with the probability distributions
obtained in the HRG model [Eq. (4)], using the experimental
data on M and 〈Np̄〉 as input. The data correspond to
several centrality bins in the rapidity window |y| < 0.5. The
distribution in Eq. (4) is normalized to unity. In order to
confront the HRG model with data on an absolute scale, we
adjust the normalization to that of the experimental data in
each centrality bin.

Figure 1 (left) shows that, in peripheral collisions at√
sNN = 200 GeV, the HRG model reproduces the shape of

the measured distribution. However, with increasing centrality
obvious deviations develop; in central collisions the hadron
resonance gas yields a distribution, which is broader than the
experimental one. Below we argue that such deviations are
expected if the freeze-out conditions probed by fluctuations
are located close to the QCD crossover temperature. Conse-
quently, the deviations observed in Fig. 1 (left) could be an
indication of critical behavior.

To quantify possible changes of criticality at the time of
freeze-out with centrality of the collision, we show in Fig. 2
the ratio of the net-proton number probability distribution,

obtained in Au-Au collisions at
√

sNN = 200 GeV for two
different centralities, to model predictions. With decreasing
centrality there is a clear decrease of deviations of the HRG
model results from data. Such a behavior can be attributed to
variations in thermal parameters. With decreasing centrality
the chemical freeze-out temperature stays approximately
constant whereas the chemical potential decreases [13]. Con-
sequently, with decreasing centrality freeze-out is shifted away
from the chiral crossover line.

FIG. 2. (Color online) Ratios of net-proton distributions obtained
for Au-Au collisions at

√
sNN = 200 GeV [19] to the hadron

resonance gas model results obtained from the Skellam distribution,
Eq. (4). Results are shown for central and peripheral Au-Au collisions.
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We note, however, that the event-by-event data from the
STAR Collaboration [19] are not corrected for efficiency,
which may introduce an asymmetry between the distributions
for protons and antiprotons due to different absorption cross
sections in detector material. Thus, before final conclusions
on critical behavior in the data can be drawn, efficiency
corrections need to be accounted for.

We have also calculated the number of protons and antipro-
tons with chemical freeze-out parameters adjusted to the mul-
tiplicities measured in Au-Au collisions at

√
sNN = 200 GeV.

The centrality dependence of the freeze-out parameters were
determined in Ref. [13]. In this approach an additional input
parameter is required, the effective volume V , which we
fix by requiring that the measured net-proton number M at
chemical freeze-out is reproduced by the HRG model. As
shown in Fig. 1 (left) the probability distributions obtained
in this way are consistent with those computed directly
from the measured yields of protons and antiprotons using
Eq. (4). The consistency of the two approaches strengthens
our conclusion that the HRG model does not describe the
net-proton probability distribution P (N ) for central Au-Au
collision at

√
sNN = 200 GeV.

Recently, the STAR Collaboration also presented prelimi-
nary data on the net-proton distribution in Au-Au collisions
at

√
sNN = 39 GeV for various centralities [20]. In this case,

however, the corresponding data on pt distributions, which
would allow one to determine 〈Np〉 and 〈Np̄〉 directly from
the experiment, are not available. Thus, here we can only
follow the second approach; namely, employ the measured
net-proton number M and the chemical freeze-out parameters
from Ref. [12] to determine 〈Np〉 and 〈Np̄〉 for the most central
collisions, which are then used as input for the calculation of
P (N ) based on Eq. (4).

A comparison of the HRG model calculation with the
probability distribution obtained for central Au-Au collisions
at

√
sNN = 39 GeV is shown in the middle panel of Fig. 1.

At this energy, the shape and magnitude of the measured net-
proton distribution are described well by the HRG model. This
suggests that, in central Au-Au collisions at

√
sNN = 39 GeV,

the fluctuations as well as the particle yields are characterized
by the thermodynamic freeze-out conditions corresponding to
the statistical operator of the hadron resonance gas model.
Clearly, this result needs to be confirmed by the final STAR
data at this lower energy.

The observed deviations in the probability distribution in
Au-Au collisions at

√
sNN = 200 GeV are also manifested

in differences between calculated and measured cumulants of
the net-proton fluctuations. In Fig. 1 (right) we show the mean,
variance, skewness, and kurtosis obtained from the probability
distributions shown in Fig. 1 (left). The HRG model, with
experimental input for proton and antiproton, yields a slightly
better description of all four moments.

The fact that the HRG model yields a distribution which is
broader than the experimental one at the highest RHIC beam
energy implies that deviations arise already on the level of
the second-order cumulant (variance), which has the smallest
experimental error. This is expected if the particle freeze-out
occurs near the QCD crossover transition. In the crossover
region the baryon number susceptibility (χB

2 ), that is, the

second-order cumulant σ 2 = V T 3χB
2 [7], keeps rising steeply

with T in the HRG model, while in QCD calculations it
bends over and eventually approaches a finite value at high
temperatures. In the Gaussian approximation (the leading-
order cumulant expansion) to the probability distribution,
P (N ) ∼ exp[−N2/(2σ 2)], this implies that the distribution
in QCD is narrower than in the HRG model.

A possible interpretation of this effect may be related
to the proximity of the freeze-out and crossover regions
probed at the highest beam energy. Lattice calculations suggest
that, at large μ, the hadronic chemical freeze-out curve and
the crossover transition separate [4,26]. Hence, one could
expect, that fluctuations reflect the critical dynamics at the
crossover transition predominantly at higher energies (i.e.,
for

√
sNN > 39 GeV), where the freeze-out may overlap

with the crossover transition. To strengthen the case for
this possibility, one will also need to take into account
efficiency corrections and examine possible other sources for
the observed deviations (e.g., finite volume or nonequilibrium
effects).

IV. CONCLUSIONS

To conclude, we have analyzed properties of the net-proton
probability distributions in heavy ion collisions within the
hadron resonance gas model. In this model, these distributions
can be expressed solely in terms of the mean numbers of
protons and antiprotons in a thermal system. This provides a
direct and unambiguous way to compare experimental data
with model predictions.

We have shown that the HRG model describes the net-
proton probability distribution obtained by the STAR Collab-
oration in Au-Au collisions at

√
sNN = 39 GeV. It also repro-

duces the shape of the distribution and values of cumulants
measured in peripheral events at

√
sNN = 200 GeV. However,

the HRG model results clearly differ from the data for the most
central events. We note that these findings are consistent with
the observation [7] that HRG model results for the net-proton
fluctuations deviate from experimental data already on the
level of the first two moments. Thus the ratio of cumulants
σ 2/M shows a clear deviation, in particular at the top RHIC
energy. Since this ratio is insensitive to efficiency corrections,
this gives further confidence in the results presented here.
Thus, we do not expect that the net-proton distributions will
be qualitatively altered by efficiency corrections.

We suggest that the systematic effects discussed here could
be due to the proximity of freeze-out and crossover regions
at the highest beam energy. In order to substantiate this
interpretation, data are needed on the net-proton distribution
at lower RHIC energies and at energies of the CERN Large
Hadron Collider (LHC).
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