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Viscous photons in relativistic heavy ion collisions
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Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic
Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using
MUSIC, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive
spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different
photon sources are highlighted. It is shown that the photon v2 coefficient is especially sensitive to the details of
the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to
the morphology of the initial state.
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I. INTRODUCTION

The study of relativistic collisions of nuclei constitutes a
vibrant branch of subatomic physics that straddles nuclear and
particle physics. It offers a privileged window on the physics
of hot and dense strongly interacting matter and as such,
it complements astrophysical studies. There, the hadronic
equation of state is an ingredient of paramount importance that
enters the evaluation of the bulk properties of neutron stars, for
example. In comparison, relativistic nuclear collisions do offer
the considerable practical advantage of providing laboratory
control over the projectile and target characteristics, together
with the beam energy. This physics currently defines a large
experimental effort being pursued at the Relativistic Heavy
Ion Collider (RHIC), at Brookhaven National Laboratory and,
more recently, at the Large Hadron Collider (LHC), at CERN.
One of the remarkable results that emerged from the RHIC
program so far is the fact that the hot and dense hadronic
matter produced there [1–4] could be described using almost
ideal hydrodynamics, that is with a small shear viscosity
coefficient η [5], compared to the entropy density s. The first
LHC flow results for heavy ion collisions [6] also suggest
similar conclusions: a recent overview of flow results can be
found in Ref. [7]. In fact, the progress in both theoretical
and in experimental analyses has been such that the goal of a
quantitative extraction of the shear viscosity coefficient of hot
and dense strongly interacting matter from relativistic nuclear
collision data now appears closer than ever [8–13].

In heavy-ion collisions, the flow has been characterized by
considering a Fourier expansion of the the triple differential
cross section, with the variable being the azimuthal angle with
respect to the reaction plane [14]:

E
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d3p
= 1

2π
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(
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2vn cos[n(φ − ψr )]

)
,

(1)

where ψr is the reaction plane angle. The expansion co-
efficients, vn, will then quantify the degree of azimuthal
anisotropy. In the progress toward a precise and quantita-
tive characterization of the hydrodynamical state of nuclear

collisions, a recent development consisted of linking the
odd-numbered coefficients to fluctuations in the initial state
[15]. Indeed, up to this point the flow observables in nuclear
collisions had been analyzed by considering the coefficients
of the Fourier expansion of the azimuthal angle distribution of
the particle spectra, together with smooth initial conditions for
which the odd values of the Fourier coefficients vanish [14].
It is fair to write that a rich and quantitative picture of nuclear
flow is now emerging.1

In general, the measured hadronic observables give a
dynamical snapshot of the conditions that existed on the
freeze-out hypersurface. In contrast, electromagnetic radiation
is emitted throughout the space-time evolution and suffers
negligible final-state interactions, owing mainly to the small-
ness of α, the electromagnetic coupling constant. Real and
virtual photons are thus penetrating probes, and as such can
carry information about the different stages of the high energy
collisions. A consequence of this statement is that accurate
and meaningful calculations of photon spectra in relativistic
nuclear collisions will need realistic electromagnetic emissiv-
ities and precise modeling of the space-time dynamics. The
goal in this paper is to extend the calculations of real photon
production to situations which incorporate the developments
made on the purely hadronic front. Cases where the emitting
source is no longer in local thermal equilibrium will be
considered, together with cases where the initial states of
the nucleus-nucleus collisions are no longer smooth but are
allowed to fluctuate event-by-event. The paper is organized
as follows. Section II contains a brief description of MUSIC,
our implementation of 3+1 viscous hydrodynamics which is
used to calculate the evolution of the background medium. In
Sec. III, we give a short explanation of viscous corrections
to the local momentum distribution function and the photon
emission rates used in this study. Our main results are presented
in Sec. IV and we conclude in Sec. V.

1A discussion on how to calculate the elliptic flow, v2, in the
presence of fluctuating initial conditions appears later in this paper.
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II. HYDRODYNAMICAL EVOLUTION

As mentioned earlier, photons are penetrating probes that
are emitted throughout the heavy ion collision. It is thus
imperative to evaluate their observed properties with a time-
evolution scenario that is both realistic and consistent with
a large number of empirical observables. One such approach
is MUSIC, a three-dimensional simulation of relativistic hy-
drodynamic systems [16]. The general features of MUSIC are
described below, first in the ideal limit, and then incorporating
a finite coefficient of shear viscosity.

The solution of the conservation laws for the stress-energy
tensor and the net baryon current, T μν and J

μ

B , respectively,
dictate the evolution in time of an ideal hydrodynamical
system. More specifically,

∂μT
μν

ideal = 0 , ∂μJ
μ

B,ideal = 0, (2)

and

T
μν

ideal = (ε + P )uμuν − Pgμν, J
μ

B,ideal = ρBuμ. (3)

Note that P is the local pressure, ε is the local energy
density, ρB is the local net baryon density, uμ = (γ, γ v) is
the local flow velocity with respect to some fixed frame, and
gμν = diag(1,−1,−1,−1). This represents a set of five scalar
equations, with six unknowns. The set is closed by specifying
an equation of state, P (ε, ρB). MUSIC is implemented in τ − ηs

coordinates, where τ is the proper time, and ηs the space-time
rapidity. The transformations to real time and longitudinal
coordinate variables, {t, z}, are

t = τ cosh ηs, z = τ sinh ηs. (4)

The solution of Eqs. (2) in τ − ηs coordinates is obtained with
the Kurganov-Tadmor method [17], and an equation of state
extracted from lattice QCD calculations [18] is used in this
work. Importantly, MUSIC is a three-dimensional simulation,
and is therefore capable of following the time evolution
of the rapidity profile. It has been used for the successful
calculation of flow variables, including elliptic flow and
higher flow harmonics [16]. A discussion of results with ideal
hydrodynamics is postponed, turning now to the inclusion of
viscous effects.

The first-order—or Navier-Stokes—formalism for viscous
hydrodynamics is known to introduce unphysical superluminal
signals that spoil the theory’s stability. Various formulations
of second-order hydrodynamics [19–23] address this problem,
and a variant [24] of the Israel-Stewart formalism is used here.
In this approach, the stress-energy tensor is T μν = T

μν

ideal +
πμν , and the evolution equation are

∂μT μν = 0 ,
(5)

μ
αν

βuσ ∂σπαβ = − 1

τπ

(πμν − Sμν) − 4

3
πμν(∂αuα),

where μν = gμν − uμuν , and τπ is usually interpreted as a
relaxation time. The first-order (in velocity gradients) viscous
part of the stress-energy tensor appears here and is

Sμν = η
(
μuν + νuμ − 2

3μν∇αuα
)
, (6)

with the coefficient of shear viscosity η, and ∇μ =
μν∂ν . The viscous stress-energy tensor πμν is clearly

a complicated object that is evaluated dynamically. Fi-
nally, vorticity and numerically small terms have been
neglected.

Hydrodynamic calculations require their initial states to be
defined. In this work, smooth or averaged initial conditions
(AIC) will be considered, as well as cases where these initial
states are allowed to fluctuate (FIC) about that average. The
procedure for implementing AICs in MUSIC is described in
detail in Ref. [16], and that for FICs, in Ref. [9]; those
descriptions will not be repeated here. The initial time
for the hydro to start is defined by τ0, in this work this
value is set to τ0 = 0.2 fm/c, and the freeze-out energy
density is 0.12 GeV/fm3, which approximately corresponds to
T = 137 MeV.

Considering first AICs, it is instructive to study how
the inclusion of shear viscosity affects the bulk evolution.
The physical case being considered is that of Au + Au, at√

s = 200 GeV, at an impact parameter of b = 4.47 fm, which
represents a 0–20 % centrality class. As mentioned earlier, the
equation of state used here is the parametrization “s95p-v1”
from Ref. [18]. In this parametrization, the fit to the lattice
QCD data is made above T = 250 MeV with the constraint
that at T = 800 MeV, the energy density reaches 95% of
the Stefan-Boltzmann value. It is also worth noting that this
parametrization correctly reproduces the trace anomaly around
the transition temperature: see Ref. [18] for more details.

Figure 1 shows the evolution of temperature for a fixed cell
at x = y = 2.5 fm and z = 0. In the case with a nonzero shear
viscosity, a value of η/s (the shear viscosity divided by the
entropy density) =1/4π has been used. This value has been
suggested as a lower universal bound [25], a statement which
has raised some controversy and thus needed to be qualified
[26–28]. Furthermore, η/s will also depend on the local
temperature of the medium, but a constant value will suffice for
the study in this work. Note that the finite viscosity calculation
has a smaller initial temperature than the ideal one, as entropy
will grow in the viscous case, affecting the observed final
particle multiplicity: it is important to compare calculations
consistent with a given set of hadronic observables.

III. PHOTON EMISSION FROM IDEAL AND
VISCOUS MEDIA

Viscous corrections on microscopic processes involving
particles have been included by writing the in-medium distri-
bution functions with an out-of-equilibrium correction, f0 →
f0 + δf , where f0 is an ideal Bose-Einstein/Fermi-Dirac
distribution function. This is most easily seen by considering
the particle spectra being generated from the Cooper-Frye
formalism [29], and requiring that the energy momentum
tensor be continuous across the freeze-out hypersurface. In
a multispecies ensemble, a popular ansatz that satisfies the
continuity requirements is

δfi = f0i(1 ± f0i)p
αpβπαβ

1

2(ε + P )T 2
(7)

for the distribution function of species i. This form is used in
this work. In general, there can be an overall constant, different
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FIG. 1. (Color online) (a) The evolution of temperature in a fixed cell, as a function of time. Results for ideal and viscous hydrodynamics
(with η/s = 1/4π ) are shown. (b) A closer view of the early time temperature evolution.

for each species, that multiplies Eq. (7) [30]. It is implicit in
this treatment that δf should represent a small correction. In
the calculation of pions and of other hadronic observables,
one simply needs to verify this statement on the freeze-
out hypersurface. This is not the case for electromagnetic
emission which occurs at all time-scales of the hydro evolution.
Therefore, photon calculations in viscous media will represent
a stringent test of the validity of the viscous dynamics, as shall
be seen later.

A. Photon emission from the QGP

Rates, complete at leading order in αs , for the emission of
photons from a thermal ensemble of partons have now been
available for a decade [31]. The extension of these results
to viscous media necessitates revisiting the resummation
procedure in Ref. [31] with out-of-equilibrium distributions: a
process we shall not perform here. We rather concentrate on
a subset of the diagrams: the Compton and quark-antiquark
annihilation processes shown in Fig. 2. It is instructive
to compare the photon rate obtained through the approach
described above with the complete result at leading order in
αs : this is done in Fig. 3. At low pT , the full leading order rates
are an order of magnitude larger than the naive leading order
rates owing to additional processes. For examples, the former
receive a large contribution of bremsstrahlung from quarks of
all momenta in this range. For pT > 1 GeV, the full leading
order rates are only larger by about a factor of two (there is
however some temperature dependence to the position of this
transition window).

FIG. 2. The Compton and quark-antiquark annihilation contribu-
tions to photon production.

The net photon emission rate R, summing these individual
processes of the type 1 + 2 → 3 + γ , is obtained by evaluating

E
d3R

d3p

=
∑

i

N
(2π )7

1

16E

∫
dsdt |Mi |2

∫
dE1dE2f1(E1)f2(E2)

× [1 ± f3(E1 + E2 − E)]
θ (E1 + E2 − E)√(
aE2

1 + bE1 + c
) , (8)

where the coefficients a, b, c are defined in Eq. (A11), and
where |Mi |2 = 16πs2dσi/dt , with

dσannihil.

dt
= 8πααs

9s2

u2 + t2

ut
,

(9)
dσCompt.

dt
= −πααs

3s2

u2 + s2

us
.
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FIG. 3. (Color online) A comparison of the equilibrium photon
rate from the processes shown in Fig. 2 (dashed lines) with that
obtained tallying all channels contributing at leading order in αs (full
lines), for Nf = 3. The lower set of curves are for T = 250 MeV, and
the upper ones are for T = 350 MeV.
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FIG. 4. (Color online) (a) The time evolution of different components of the local πμν tensor, divided by η. (b) The time evolution of the
diagonal elements of πij (scaled by η), and also that of the trace of the viscous tensor. The calculations are done for a fluid cell at x = y =
2.5 fm, and z = 0, and the impact parameter is b = 4.47 fm.

Note also the degeneracy factors Nannihil. = 20, and NCompt. =
320/3, for Nf = 2. In the case of Nf = 3, those numbers
become Nannihil. = 24, and NCompt. = 384/3. Calculations of
the photon production rate from these channels were done in
Ref. [32], an evaluation with general anisotropic distribution
functions (not limited to small deviations from equilibrium)
appeared in Ref. [33], and a viscosity-corrected rate (to first
order in δf ) was obtained recently in Ref. [34], assuming
forward-scattering dominance of the photon-producing reac-
tion. The rates reported here are obtained through a numerical
integration of Eq. (8) with out-of-equilibrium distribution
functions [Eq. (7)]. The integrations span the entire accessible
phase space, carefully avoiding divergences as prescribed in
Ref. [32]. Appropriate quantum statistics have been used.

B. Photon emission from the hadronic gas

As the ensemble of partons thermalizes (totally or partially)
and then expands and cools, it hadronizes into an ensemble of
colorless hadrons called here the hadronic gas (HG) which
continues to expand and to cool even more. The HG thermal
electromagnetic emissivity has been characterized in Ref. [35].
Following that reference, a Massive Yang-Mills (MYM) model
is used to model the interactions between light pseudoscalars,
vector, and axial vector mesons. The set we consider con-
tains the elements {π,K, ρ,K∗, a1}, and the most important
photon-producing rates are π + ρ → π + γ , π + π → ρ +
γ , π + K∗ → K + γ , π + K → K∗ + γ , ρ + K → K + γ ,
K∗ + K → π + γ . Two-body photon-production processes
dominate the phase space for photon transverse momenta
above 0.5 GeV [35]. All isospin-allowed channels are
considered.

The viscous corrections also demand a complete recal-
culation of the HG photon rates, by including the corrected
distribution functions—see Eq. (7)—in all the relevant rate
equations. Note that corrections of order δf 2 are neglected
for consistency, as are corrections to Pauli-blocking or Bose-
enhancement effects. These corrections are found to be small.
The Appendix outlines the procedure for correcting the

electromagnetic emissivities, allowing for viscous effects in
the hadronic distribution functions.

IV. RESULTS

A. Viscous corrections: Generalities

For both cases discussed in the previous section (QGP and
HG), rates for “viscous photons” were not shown. In fact, those
require detailed dynamical information as they depend on the
details of πμν and of its time evolution as specified by Eqs. (7)
and (5). It is thus appropriate to examine this quantity here,
and this is done in Fig. 4, in the rest frame of a fluid cell; note
that there πtt is 0. At the initial time, the viscous corrections
are nonexistent, as we initialize the viscous pressure tensor
to zero. They build up quickly, and then decay back to zero.
Right after the initial time, the magnitude of the zz component
is larger than the other two diagonal ones by roughly a factor of
2, and this fact persists up to late times. The relative sign of πzz

can be understood from the fact that πij should be traceless
in the fluid rest frame [c.f. Eqs. (5) and (6)]. Note that this
requirement was not enforced explicitly at each step of the
calculation. The preservation of this trace then reflects the
stability of the numerics: see Fig. 4(b). The slight difference
between πxx and πyy is to be expected because of the elliptic
shape of the system: the x − y symmetry is broken by the finite
impact parameter.

To get a qualitative picture and develop some intuition
for the importance of the viscous corrections, the following
procedure was implemented. In the nucleus-nucleus center-
of-mass frame, one picks a photon momentum in the x − y

plane, at an angle of π/4. The z axis is the beam axis. Lorentz-
transforming to the rest-frame of each fluid cell, the local
value of the photon momentum is obtained. Since photons are
formed in 2 → 2 processes, the magnitude of this momentum
is then roughly equal to the magnitude of the momentum
of one of the interacting particles. Finally, posing that this
particle is a massless fermion will enable a determination of
the viscous correction to its distribution function. This study is
restricted to a slice in space-time rapidity, ηs , centered around
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FIG. 5. (Color online) The fraction of ηs ≈ 0 fluid cells with a certain value of δf/f0, for different values of the photon momentum in the
nucleus-nucleus center of mass frame: 2 GeV (a), and 3 GeV (b). The range of temperature T > 250 MeV corresponds to τ − τ0 � 2 fm/c.

0. This procedure is clearly approximate—not all particles are
massless and not all are fermions—but should nevertheless
produce a result indicative of the physics at play. Defining
bins of size 0.1 in the relative variable δf/f0, the fraction of
ηs ≈ 0 cells with a certain value of this relative variable is
plotted in Fig. 5. In addition, in this study we concentrate
on two ranges of temperature: one corresponding to “early
times,” and another corresponding to “late times” according
to Fig. 1. The photon energies chosen are typical values of
the photon spectrum, see the next subsection. For a photon
energy of 2 GeV, one sees that ≈20% of the fluid cells have
a δf/f0 � 1, at early times, and that the distribution around
this value is fairly narrow. For a higher photon energy of 3
GeV, this distribution has grown in width, now with 80% of the
high-temperature cells with δf/f0 � 1 and ≈30% of them with
δf/f0 � 2: a clear violation of the perturbative nature of the
approximation. In a given panel of Fig. 5, the amount of larger
viscous corrections at higher temperatures can be understood:
those cases correspond to situations at early times where the
elements of the πμν tensor are large (see Fig. 4). Higher
momenta will command larger viscous corrections, see Eq. (7),
and hence the broadening of the distributions for a given range
in T when going from (a) to (b) of Fig. 5. Note that repeating
the lower temperature part of this analysis by assuming that
the corrected particles are massive π ’s or even massive ρ’s do

not change its conclusions. A negligible but nonzero number
of high-momentum cells have δf/f0 � −1. For those cells
the photon emission probability has been set to zero. What
emerges here is an explicit message of caution. In contrast
to hadron calculations where only properties at the freeze-out
surface are required, the evaluation of electromagnetic signals
requires the entire time evolution to be monitored. In the
case of the analysis shown here, one should also keep in
mind that thermal photons with an energy equal to, or greater
than, 3 GeV will lie below those from other sources like the
direct photons from primordial nucleon-nucleon collisions, for
example [36,37].

One now proceeds to the evaluation of photon character-
istics, and of the influence of viscous effects on them. All of
the calculation results shown in the next sections will rely on
the use of averaged initial conditions (AICs). A discussion of
the effects of fluctuating initial conditions (FICs) on real
photons first appears in Sec. IV D.

B. Photon spectrum

As mentioned previously, the measured photon spectrum
receives contributions from all times and all phases spanned
by the collision dynamics. They are treated in turn here, for
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FIG. 6. (Color online) (a) The photon yield originating from the phase with parton degrees of freedom only. The contribution from ideal
hydro is shown (solid curve), together with the result of using a time evolution associated with viscous hydrodynamics (dotted line), and using a
viscous time evolution and corrected microscopic distribution functions (dash-dotted line). (b) The photon yield originating from the hadronic
gas only. The meaning of the different curves is the same as that in (a).
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FIG. 7. (Color online) The net thermal photon yield, from QGP
and HG sources. The ideal spectrum (i.e., using an ideal hydro-
dynamics background), and the viscous spectrum (using a viscous
hydrodynamics background and corrected microscopic distribution
functions) are shown as a solid and dotted line, respectively.

pedagogical purposes. The photons originating solely from the
QGP phase are first shown in Fig. 6, and they are obtained by
integrating the rate in Eqs. (8) and (A26) throughout the time
evolution dictated by MUSIC.

As compared to an ideal hydrodynamical evolution, the
viscous evolution starts with a lower initial temperature when
the system is entirely in its QGP phase (see Fig. 1). Therefore,
integrating the QGP photon rates with a viscous hydrodynamic
evolution alone produces a photon spectrum slightly lower at
high values of pT than that generated by the ideal hydro.
This is the dotted line in Fig. 6. Then, using the corrected
distribution functions make the photon spectrum harder, as the
correction grows as a function of momentum. This is the upper
curve in the same figure. The hardening of the QGP photon
spectra owing to shear viscous effects had also been noticed
in previous work [34,38,39].

Turning now to photons originating solely from the HG
sector, the relevant spectrum is shown in the right panel of
Fig. 6. Interestingly, the spectrum with the viscous correc-
tions (viscous hydro and corrected distribution functions) is
essentially undistinguishable from that obtained using ideal
rates integrated with a viscous time evolution. This can be
understood by considering the fact that photons from the HG
are emitted later in time, essentially when πμν ∼ 0, as is
made clear in Fig. 4. The effect of viscosity are manifested
in a slightly harder spectrum: in part a consequence of
the temperature in the viscous evolution remaining higher
than that in the ideal evolution for intermediate and late
times, as shown in Fig. 1. The yield of real photons from
all thermal sources (QGP + HG) is shown in Fig. 7, for
an ideal hydrodynamic evolution and also for a viscous
evolution (viscous hydro and corrected distribution functions).
The difference between the two scenarios is actually small
at intermediate values of the photon transverse momentum,
growing to being approximately 100% at pT = 4 GeV. At that
energy however, the purely thermal photons will lie below
other sources and will be subdominant, as mentioned already.
One may thus conclude here that extracting information about
the shear viscosity from photon spectra alone will be an
arduous task. More work is needed however to include all
the photon sources in a theoretically consistent way, with all
the viscous corrections.

C. Photon elliptic flow

The flow characteristics of hadrons have contributed con-
siderably to quantify the details of the underlying hydrody-
namics, and this fact has been hailed as one of the major
milestones of the RHIC program. As for photons, their elliptic
flow holds the potential of providing more insight into the
dynamics of heavy ion collisions, and into the phase structure
of QCD. Indeed, the shape of the real photon v2 coefficient
is directly sensitive to the nature of the underlying degrees of
freedom [40], unlike the single-photon spectra of the previous
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FIG. 8. (Color online) (a) The thermal photon elliptic flow, considering only the photons originating from the QGP. As in previous figures,
the results of using ideal hydrodynamics (solid line), viscous hydrodynamics with equilibrium rates (dotted line), and viscous hydrodynamics
with δf corrections (dash-dotted line) are shown separately. (b) The thermal photon elliptic flow, considering only the photons originating from
the HG. The lines have the same meaning as those in (a).
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FIG. 9. (Color online) The net thermal photon elliptic flow. The
curves have the same meaning as in Fig. 7.

section. The elliptic flow of photons originating solely from
the QGP is shown in Fig. 8.

If one neglects the correction to the distribution functions,
the elliptic flow from the viscous evolution appears slightly
larger than in the ideal case, reflecting an increase in the
azimuthal asymmetry of the fluid flow pattern due to viscosity,
consistent with the large gradients at early times implied by
Fig. 4. However, the corrections to the distribution functions
dominate, and make the net anisotropy even smaller than in
the ideal case. This behavior is consistent with the results of
Ref. [39]. It is also worthwhile to point out that the apparently
negative values of v2 at very low momenta for photons in
the QGP are obtained only using the photon-production rates
corresponding to Fig. 2. The complete rates of Ref. [31] do not
yield negative photon elliptic flow in ideal hydrodynamics. The
negative values also appear in earlier calculations [34,39]. The
HG v2 is shown in Fig. 8(b) and there, all viscous corrections
make the elliptic flow smaller, unlike the case for the QGP. This
is again a reflection of the richness of the dynamics contained
in the time-dependence of πμν . Further note that the small

structure at low momenta signals a crossover between two
different hadronic channels [40]. The net photon v2 is then
calculated and shown in Fig. 9.

Importantly, the total v2 is a weighted average of the
individual (QGP, and HG) coefficients, the weight being the
value of the appropriate single-photon distribution. Hence,
in the computation of the final v2, the small QGP v2 will
get multiplied by a large emission rate, whereas the smaller
emission rate of the HG phase gets partially compensated by
the larger flows. Both phases therefore contribute to the final
profiles shown in Fig. 9.

D. Fluctuating initial conditions (FIC)

Recent years have witnessed a paradigm-shift in the
analysis of heavy ion collision data. Up until recently, smooth
initial state distributions were mostly used in hydrodynamics
analyses of relativistic nuclear collisions. These, together
with conservation laws, imply that odd-numbered expansion
coefficients in Eq. (1) vanish identically. As discussed in
the Introduction, this situation has changed with the work
of Ref. [15] linking odd-numbered flow harmonics to initial
state fluctuations. The hydrodynamic simulation MUSIC with
viscous corrections has recently been modified to include
FICs [8]. This has been used to make a prediction for size
and momentum dependence of the hadronic v3 at RHIC. This
prediction has been recently confirmed [41]. Here we seek to
assess the importance of the event-by-event fluctuations on
photon observables.

For initial conditions that are not smooth, it is important to
specify how the reaction plane is determined. The “participant
plane” [42] is used here. Namely, one calculates event-by-
event the angle ψ2 with respect to the reaction plane defined
by the impact parameter:

ψ2 = 1

2
arctan

( 〈r2 sin(2φ)〉
〈r2 cos(2φ)〉

)
, (10)

where the averages are over wounded nucleon positions, (r, φ),
in the transverse plane. The angle ψ2 then goes into the
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FIG. 10. (Color online) The thermal photon yield, showing the effect of FICs. (a) shows the contribution from the QGP, (b) that of the HG.
Note that the curve labeled “FIC” also includes all viscous corrections (time evolution and δf )
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FIG. 11. (Color online) The thermal photon v2, showing the effect of FICs. (a) shows the contribution from the QGP, and (b) that of the
HG. Note that the curve labeled “FIC” also includes all viscous corrections (time evolution and δf ).

evaluation of v2, with ψ2 replacing ψr in Eq. (1). Note that
the initial eccentricity is maximized by the choice of this
participant plane. The studies performed here used ensembles
of 50 events, leading to uncertainties of the order of 5% on
thermal photon spectra, and of the order of 15% on thermal
photon v2. The precise value of these variations is of course
pT -dependent, but we find that elliptic flow does depend
more strongly on the initial structure of the energy density
distribution than the momentum spectrum.

As already observed for hadrons [43] and more recently
for photons [44], the lumpy initial states lead to a yield
enhancement. Again, the QGP and HG contributions are
calculated separately. They are shown in the two panels of
Fig. 10, and the quantitative importance of the enhancement
can be judged there.

As done previously, only this time with FICs, we plot the
thermal photon v2 for QGP and HG. This is shown in Fig. 11.
Finally, the net photon spectrum and v2 are shown in Fig. 12.
Clearly, in the centrality range studies in this work, the hot
spots and large gradients generated by the fluctuating initial
conditions lead to a harder photon spectrum and to a larger
elliptic flow, and this remains true with the inclusion of a finite
shear viscosity to entropy density ratio.

V. CONCLUSION

In this work we have sought to establish the quantitative
importance of a finite shear viscosity coefficient and of
fluctuating initial conditions on two real photon observables:
the one-body spectrum and the transverse momentum de-
pendence of the elliptic flow coefficient. This was done
using MUSIC, a realistic 3+1D relativistic hydrodynamical
simulation. Importantly, comparisons between cases with and
without viscous corrections were done using conditions tuned
to hadronic experimental data, and this was the case also for
studies involving FICs. Results obtained here show that the
combined effects of the viscosity and of the FICs are large
enough to make their inclusion mandatory in any attempt to
quantitatively extract transport coefficients of the hot and dense
matter from thermal photon data. It was not the point of this
work to explicitly compare with experimental measurements
just yet. Firstly, 3+1D relativistic viscous hydrodynamics
models are in their infancy, and systematic studies of all
parameter dependences, in the spirit of that in Ref. [45] for
example, will be useful to establish a more precise quantitative
link between observables and the underlying hydrodynamics.
Secondly, in what concerns the photon sources, an inclusive
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FIG. 12. (Color online) The net thermal photon yield (a) and v2 (b), showing the effect of FICs. Note that the curve labeled “FIC” also
includes all viscous corrections (time evolution and δf ).
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and consistent treatment of all of them (pQCD photons,
photons from jets interacting and fragmenting while losing
energy, etc.) with and without viscosity is still to be done.
Finally, exploring the consequences of what has been found
here on electromagnetic observables at the LHC should prove
interesting and relevant.

In closing, it is worth mentioning that recently the PHENIX
collaboration at RHIC has extracted a direct photon v2 from
measured data [46]. Interestingly, this analysis concludes that
the direct photon elliptic flow is comparable in magnitude to
that of the π0. This large photon elliptic flow is a challenge
to most approaches, but may contain some clues about
early dynamics prior to hadronic freeze-out [47]. However,
a complete theoretical analysis including all that is known
in the literature about the production of direct photons in

relativistic heavy ion collisions (viscous effects, FICs, the
effect of realistic 3+1D hydrodynamical modeling, hadronic
chemical potentials, primordial flow) is needed before a more
precise assessment can be obtained.
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APPENDIX: VISCOUS PHOTON RATES

Our starting point for the photon emission rate of a (1 + 2 → 3 + γ ) process is the expression leading to
Eq. (8):

E
d3R

d3p
=
∫

d3p1

2E1(2π )3

d3p2

2E2(2π )3

d3p3

2E3(2π )3

2π

2
|M|2δ4(p1 + p2 − p3 − p)f (p1)f (p2)[1 + f (p3)]. (A1)

The subscripts 1, 2, and 3 refer to the two incoming particles and the outgoing particle (not the photon), respectively. Notice that
the momentum distribution functions depend on the four-momentum and not only on the zero component (the energy). This can
be written as [with s = (p1 + p2)2, t = (p2 − p)2, u = −s − t + m2

1 + m2
2 + m2

3]

E
d3R

d3p
= 1

25(2π )8E2

∫ ∞

smin
ds

∫ tmax

tmin
dt

∫ ∞

Emin
1

dE1

∫ Emax
2

Emin
2

dE2

∫ 2π

0
dφ1

∫ 2π

0
dφ2|M|2

× δ
(
s − m2

1 − m2
2 − 2E1E2 + 2|p1||p2| cos θ

)
f (p1)f (p2)[1 + f (p1 + p2 − p)], (A2)

where

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos (φ2 − φ1), cos θ1 = −t − s + m2
2 + m2

3 + 2EE1

2E| �p1| , cos θ2 = −t − m2
2 + 2EE2

2E| �p2| .

(A3)

The θ angles represent the angle between a particle’s three-momentum and the photon’s. In other words,

�pa · �pγ = | �pa|| �pγ | cos θa. (A4)

The φ angles represent the azimuthal angles of the incoming particle’s direction around the photon’s direction. The integration
boundaries are given by

smin � (m1 + m2)2, smin � m2
3, (A5)

tmin(max) = m2
1 + m2

3 − 1

2

(
s + m2

1 − m2
2√

s

)(
s + m2

3√
s

)
− (+)

√(
s + m2

1 − m2
2

)2 − 4sm2
1

s

(
s − m2

3

2
√

s

)
, (A6)

Emin
1 = Em2

1

m2
1 − u

+ m2
1 − u

4E
, (A7)

−b + √
b2 − ac

a
� E2 � −b − √

b2 − ac

a
(a is negative). (A8)

The a, b, and c coefficients are given below. Now, we can take care of the φ2 integration with the Dirac δ. Its roots are

φ± = φ1 ± cos−1

(−s + m2
1 + m2

2 + 2E1E2 − 2| �p1|| �p2| cos θ1 cos θ2

2| �p1|| �p2| sin θ1 sin θ2

)
. (A9)

064901-9



DION, PAQUET, SCHENKE, YOUNG, JEON, AND GALE PHYSICAL REVIEW C 84, 064901 (2011)

However, now we need to keep in mind that where we had f (E2) for the ideal (no viscous corrections) case, we now have
f (E2, θ2, φ2), so the φ2 integration goes like∫ 2π

0
dφ2δ

(
s − m2

1 − m2
2 − 2E1E2 + 2|p1||p2| cos θ

)
f (E2, θ2, φ2)

=
∫ 2π

0
dφ2

∑
j=±

δ(φ2 − φj )f (E2, θ2, φ2)

2| �p1|| �p2| sin θ1 sin θ2 sin (φj − φ1)

= 1

2| �p1|| �p2| sin θ1 sin θ2

(
f (E2, θ2, φ+)√

1 − cos2 (φ+ − φ1)
+ f (E2, θ2, φ−)√

1 − cos2 (φ− − φ1)

)

= 1

2| �p1|| �p2| sin θ1 sin θ2

1√
1 − cos2 (φ+ − φ1)

[f (E2, θ2, φ+) + f (E2, θ2, φ−)]

= E√
aE2

2 + 2bE2 + c

[f (E2, θ2, φ+) + f (E2, θ2, φ−)], (A10)

where the a, b, and c coefficients are given by

a = −(s + t − m2
2 − m3

2

)2
, b=E

[(
s + t − m2

2 − m3
2

)(
s − m2

1 − m − 22
)− 2m2

1

(
m2

2 − t
)]+ E1

(
m2

2 − t
)(

s + t − m2
2 − m3

2

)
,

c = c2E
2
1 + c1E1 + c0, c2 = −(t − m2

2

)2
, c1 = −2E

[
2m2

2

(
s + t − m2

1 − m2
2

)− (m2
2 − t

)(
s − m2

1 − m2
2

)]
,

c0 = 4E2m2
1m

2
2 + m2

2

(
s + t − m2

2 − m3
2

)+ m2
1

(
m2

2 − t
)2 − E2

(
s − m2

1 − m2
2

)2 + (s − m2
1 − m2

2

)(
t − m2

2

)(
s + t − m2

2 − m3
2

)
.

(A11)

So at this point, the rate is given by

E
d3R

d3p
= 1

32(2π )8E

∫ ∞

smin
ds

∫ tmax

tmin
dt

∫ ∞

Emin
1

dE1

∫ Emax
2

Emin
2

dE2

∫ 2π

0
dφ1|M|2f (E1, θ1, φ1)

× [f (E2, θ2, φ+) + f (E2, θ2, φ−)][1 + f (E1 + E2 − E)]
1√

aE2
2 + 2bE2 + c

. (A12)

We have not corrected the distribution functions for the outgoing particle (Pauli blocking or Bose enhancement). At this point,
we look more carefully at the form of the correction (choosing Bose enhancement for illustrative purposes):

f (pa) = f0(Ea) + δf (pa) = f0(Ea) +
(

η

s

1

2T 3
f0(Ea)[1 + f0(Ea)]pα

a pβ
a

παβ

η

)
. (A13)

One needs to properly express pα in terms of integration variables. Because the incoming particles angles are given with respect
to the photon’s direction, the angles of the photon (in the fluid frame) will explicitly appear in the expressions for the particles
four-momentum. The zero component of pα is just the energy, so the interesting parts are the 1, 2, and 3 components. In what
follows, the subscript a will refer to the incoming particles (1 or 2), and the subscript γ will denote angles for the photon. The
photon angles are given with respect to the local frame of each fluid cell. Note that even if we use the φa notation, φ2 is still given
by Eq. (A9). Also, all three-vectors in the following expressions are unitary vectors. The photon’s direction is given by

�pγ = (sin θγ cos φγ , sin θγ sin φγ , cos θγ ). (A14)

We need to specify the origin for φa (φa = 0). Since the φa integration is over 2π , the origin is arbitrary. Let us choose the origin
to be in the z-pγ plane. Then,

�pa(φa = 0) = [sin (θγ − θa) cos φγ , sin (θγ − θa) sin φγ , cos (θγ − θa)]

= [(sin θγ cos θa − cos θγ sin θa) cos φγ , (sin θγ cos θa − cos θγ sin θa) sin φγ , cos θγ cos θa + sin θγ sin θa]. (A15)

To have an expression for �pa , we need to rotate �pa(φa = 0) by an angle of φa around �pγ . The rotation matrix is then given by

R =

⎛
⎜⎝

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎞
⎟⎠ , (A16)

r11 = cos φa + sin2 θγ cos2 φγ (1 − cos φa), r12 = sin2 θγ cos φγ sin φγ (1 − cos φa) − cos θγ sin φa,

r13 = sin θγ cos θγ cos φγ (1 − cos φa) + sin θγ sin φγ sin φa, r21 = sin2 θγ cos φγ sin φγ (1 − cos φa) + cos θγ sin φa,
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r22 = cos φa + sin2 θγ sin2 φγ (1 − cos φa), r23 = sin θγ cos θγ sin φγ (1 − cos φa) − sin θγ cos φγ sin φa, (A17)

r31 = sin θγ cos θγ cos φγ (1 − cos φa) − sin θγ sin φγ sin φa, r32 = sin θγ cos θγ sin φγ (1 − cos φa) + sin θγ cos φγ sin φa,

r33 = cos φa + cos2 θγ (1 − cos φa).

So our expression for �pa is finally ⎡
⎢⎣

px
a

p
y
a

pz
a

⎤
⎥⎦ = R

⎡
⎢⎣

(sin θγ cos θa − cos θγ sin θa) cos φγ

(sin θγ cos θa − cos θγ sin θa) sin φγ

cos θγ cos θa + sin θγ sin θa

⎤
⎥⎦ . (A18)

Note that all the components of pa are proportional to either one or no power of cos θa , sin θa , cos φa , and sin φa , so we can
rewrite, for instance, the x component as (with the A, B, and C coefficients that only depend on photon angles)

px
a = cos θa

{
cos φaA

c
x + sin φaB

c
x + Cc

x

}+ sin θa

{
cos φaA

s
x + sin φaB

s
x + Cs

x

}
(A19)

and in a similar way we have

py
a = cos θa

{
cos φaA

c
y + sin φaB

c
y + Cc

y

}+ sin θa

{
cos φaA

s
y + sin φaB

s
y + Cs

y

}
, (A20)

pz
a = cos θa

{
cos φaA

c
z + sin φaB

c
z + Cc

z

}+ sin θa

{
cos φaA

s
z + sin φaB

s
z + Cs

z

}
. (A21)

Now, going back to the expression for the rate, only the viscous corrected momentum distribution functions actually depend on
φ1 so let us look at the φ1 integration of the viscous corrections∫ 2π

0
dφ1[f0(E1) + δf (p1)][f0(E2) + δf (p2)] ≈

∫ 2π

0
dφ1f0(E1)f0(E2) + f0(E1)δf (p2) + f0(E2)δf (p1), (A22)

where the term proportional to δf (p1)δf (p2) has been neglected. Since f0(Ea) is independent of φa , what we really need to look
at is ∫ 2π

0
dφ1δf (pa) ∝

∫ 2π

0
dφ1p

α
a pβ

a

παβ

η
. (A23)

It should be pointed out that φ2 (which is given by φ+ or φ−) differs from φ1 by a term which, as far as the integration over φ1 is
concerned, is a constant. Because the only dependance on φ2 comes from sine or cosine terms, and because the φ1 integration is
over a full cycle (from 0 to 2π ), φ2 is actually the same as φ1. Or, more precisely,∫ 2π

0
dφ1f (cos φ1, sin φ1) =

∫ 2π

0
dφ1f (cos φ2, sin φ2) =

∫ 2π

0
dφ1f (cos φ+, sin φ+) =

∫ 2π

0
dφ1f (cos φ−, sin φ−). (A24)

One can replace the [f (E2, θ2, φ+) + f (E2, θ2, φ−)] term in Eq. (A10) by 2f (E2, θ2, φ1). Furthermore, the φ1 integration will
then be treated the same way regardless of the particle being considered (1 or 2). Considering, for instance, the px

1p
y

1 term and
carrying out the φ1 integration, one obtains∫ 2π

0
dφ1p

x
1p

y

1 =
∫ 2π

0
dφ1
(

cos θ1
{

cos φ1A
c
x + sin φaB

c
x + Cc

x

}+ sin θ1
{

cos φ1A
s
x + sin φ1B

s
x + Cs

x

})
× ( cos θ1

{
cos φ1A

c
y + sin φ1B

c
y + Cc

y

}+ sin θ1
{

cos φ1A
s
y + sin φ1B

s
y + Cs

y

})
= π

[
cos2 θ1

(
Ac

xA
c
y + Bc

xB
c
y + 2Cc

xC
c
y

)+ sin2 θ1
(
As

xA
s
y + Bs

xB
s
y + 2Cs

xC
s
y

)
+ cos θ1 sin θ1

(
Ac

xA
s
y + Bc

xB
s
y + 2Cc

xC
s
y + As

xA
c
y + Bs

xB
c
y + 2Cs

xC
c
y

)]
. (A25)

If we were dealing with particle 2, the θ1’s would be θ2’s, and if we were looking at other x-y-z combinations the A, B, and
C coefficients would be different, but the general form is always the same. The important thing is that, after the φ1 integration,
the pα

a p
β
a terms can easily be split into a part that depends only on E and T , the photon energy and the local temperature (via

the cos θa and sin θa), and one that depends only on the photon angles (the A, B, and C coefficients). So in the end, the photon
production rate, including momentum distribution function modifications from viscosity, is given by

E
d3R

d3p
= 1

16(2π )8E

∫ ∞

smin
ds

∫ tmax

tmin
dt

∫ ∞

Emin
1

dE1

∫ Emax
2

Emin
2

dE2|M|2[1 + f0(E1 + E2 − E)]

× 1√
aE2

2 + 2bE2 + c

(
f0(E1)f0(E2) + η

s

1

2T 3

[
f0(E2)f0(E1)

(
1 + f0(E1)

)
pα

1 p
β

1

+ f0(E1)f0(E2)(1 + f0(E2))pα
2 p

β

2

]παβ

η

)
, (A26)
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where it is understood that the pα
a p

β
a terms have been integrated over φ1, from 0 to 2π . Now if we substitute Eq. (A25) (and

similar expressions for other pα
a p

β
a combinations) into the above expression, the result can be expressed in terms of four-integrals

for which the result depends only on E and T , multiplied by a combination of terms that depend only on θγ and φγ . The integrals
that need to be computed are then of the type∫ ∞

smin
ds

∫ tmax

tmin
dt

∫ ∞

Emin
1

dE1

∫ Emax
2

Emin
2

dE2|M|2(1 + f0(E1 + E2 − E))
1√

aE2
2 + 2bE2 + c

[· · ·], (A27)

where [· · ·] is one of

[· · ·] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f0(E1)
(
E2

2 − m2
2

)
cos2 θ2f0(E2)[1 + f0(E2)]

f0(E1)
(
E2

2 − m2
2

)
sin2 θ2f0(E2)[1 + f0(E2)]

f0(E1)
(
E2

2 − m2
2

)
cos θ2 sin θ2f0(E2)[1 + f0(E2)]

f0(E2)
(
E2

1 − m2
1

)
cos2 θ1f0(E1)[1 + f0(E1)]

f0(E2)
(
E2

1 − m2
1

)
sin2 θ1f0(E1)[1 + f0(E1)]

f0(E2)
(
E2

1 − m2
1

)
cos θ1 sin θ1f0(E1)[1 + f0(E1)]

, (A28)

where (E2
a − m2

a) is just | �pa|2, which we have omitted in the derivations above. For instance, to compute the contribution to the
correction from the px

1p
y

1 term, one would need the last three terms in Eq. (A28) (the ones corresponding to cos2 θ1, sin2 θ1,
cos θ1 sin θ1). Each of these terms, would then be multiplied by some combination of the A, B, and C terms. In this example, the
cos2 θ1 gets multiplied by (Ac

xA
c
y + Bc

xB
c
y + 2Cc

xC
c
y), as in Eq. (A25).
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