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To develop a dinuclear system conception, dynamical deformation and nucleon transfer in the heavy ion fusion
reaction process are viewed simultaneously as a diffusion process and are treated by solving a set of master
equations with the variables of the quadrupole deformation of each nucleus and the mass asymmetry variable in
the potential energy surface (PES) of the system. The PES is determined by these three variables (two deformation
coordinates and the mass asymmetry coordinate) and further governs the variation of the three variables by the
master equations. The nucleon transfer and dynamical deformations of nuclei are correlated in the reactions. So
the energy surface of the system for nucleon transfer is dependent on deformations and, thus, is time dependent.
The calculated results for the quasifission mass yields and the excitation function of the evaporation residue cross
sections to form elements 114 and 116 are shown to be agreeable with the measured data.
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I. INTRODUCTION

Producing superheavy elements (SHEs) is one of the
major aims of modern nuclear heavy ion physics. Search-
ing for the superheavy nuclear island of stability which
is predicted theoretically has received much experimental
attention with fusion-evaporation reactions [1–9]. However,
up to now this island of stability has not been localized
in experiments, and further synthesis becomes more and
more difficult. A better understanding is needed. In the
dinuclear system (DNS) conception the formation of super-
heavy nuclei (SHN) is discussed as a competition between
quasifission (QF) and complete fusion, and the cross sections
are calculated including nuclear structure effects. This model
not only reproduces the experimental data quite well but
also predicts the optimal projectile-target combinations as
well as the optimal bombarding energies to form certain
SHEs [10–16].

In the DNS conception it is assumed that each of the
two touching nuclei always keeps its own identity with its
ground-state deformation [10]. However, in the touching
configuration, there are nuclear and Coulomb interactions
between the nuclei. Nuclei get deformed gradually due to the
strong nuclear and Coulomb interactions. This deformation
is not negligible and will influence the further evolution of
the system, so that the DNS conception has to be improved.
However, this dynamical deformation is difficult to describe,
and no theory has succeeded in describing it so far, since
thorough coupling between the collective and the intrinsic
variables is impossible to achieve for heavy ion reactions
presently. We take quadrupole deformations of nuclei in the
DNS as dynamical variables in addition to the mass asymmetry
variable and construct a new three-variable master equation
(ME) so that the deformations as well as the nucleon transfer
are viewed as a diffusion process consistently governed by
MEs in the potential energy surface (PES) of the system. The

PES is determined by these three variables. It also governs
the variation of the three variables via the MEs. The nucleon
transfer and the dynamical deformations of the nuclei are
correlated in the reactions. So the PES of the system depends
on deformations and is time dependent. The coupling between
the deformations, which are the collective variables, and the
intrinsic properties of the fragments, such as the shell, pairing,
isospin symmetry, and excitation, are not treated explicitly,
however, they are correlated via the masses of the fragments
as a whole in the PES. On this basis, the competition between
fusion leading to SHN and QF is studied, which sheds some
interesting light on the reaction mechanism.

The paper is organized as follows. First, we introduce the
formalism of our new MEs in Sec. II, and we discuss the trend
of the evolution of deformations to equilibrium in Sec. III.
The time-relevant potential surface is described in Sec. IV.
The calculated mass yields and fusion probabilities are given
in Sec. V. In Sec. VI we present our summary.

II. DESCRIPTIONS OF THE MODEL

A. The model

The presently developed DNS starts from a molecular
configuration of two touching nuclei. The nuclei gradually get
deformed due to the strong nuclear and Coulomb interactions
between them. Here only the axially symmetric quadrupole
deformations of the nuclei are considered, and we always take
the tip-to-tip orientation. Such a system also evolves along two
main degrees of freedom: the transfer of nucleons in the mass
asymmetry coordinate η = (A1 − A2)/(A1 + A2) between the
nuclei in the excited system, leading to compound nuclear
formation; and the variation of the internuclear distance r

of the nuclei in the interaction potential leading to QF.
The evolution of the system is described by the following
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where P (A1, β1, β2, t) denotes the probability distribution
function to find fragment 1 with A1 nucleons, the quadrupole
deformations of fragments being β1 and β2, with the
corresponding local excitation energy EA1,β1,β2 (J ) at time
t and with the incident angular momentum J . β1 and β2

are taken as two discrete variables, corresponding to the
projectile-like and target-like fragments, respectively. They
are taken as continuous variables in the second line of Eq. (1),
however, ρ(β ′

i) = 1
hi

is the density of the discrete dots with
the step length hi (i = 1, 2). The local excitation energy
is determined by the dissipated energy from the relative
motion and the PES of the corresponding DNS [this is shown
in Eqs. (7) and (8)]. The dissipation energy is described
by the parametrization method of the classical deflection
function [17,18]. WA1,β1,β2;A′

1,β1,β2 (t) = WA′
1,β1,β2;A1,β1,β2 (t)

[also WA1,β1,β2;A1,β
′
1,β2 (t) = WA1,β
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1,β2;A1,β1,β2 (t) and

WA1,β1,β2;A1,β1,β
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′
2;A1,β1,β2 (t)] is the mean

transition probability from channel (A1, β1, β2) to channel
(A′

1, β1, β2) [also from (A1, β1, β2) to (A1, β
′
1, β2) and

to (A1, β1, β
′
2)]. Simultaneous variable transitions are not

considered. The details of the calculation of the transition
probability are presented in the Appendix. dA1,β1,β2 denotes
the microscopic dimension corresponding to the macroscopic
state (A1, β1, β2). The sum is taken over all possible mass
numbers that a fragment A′

1 may take, but only one-nucleon
transfer is considered. To solve the three-variable partial
differential equations numerically, a three-step difference
scheme is adopted. The lower limit of deformations is
β10,20 = 0 if the initial deformations βP,T > 0; otherwise,
β10,20 = −0.6.

In principle, the relative internuclear distance and orienta-
tion could also be taken as dynamical variables in the ME [21],
but presently the computation time is much too long. So a
tip-to-tip relative orientation is assumed and the nuclei stay
in the bottom of the pocket to keep the lowest potential,
which determines the relative distance of nuclei. We keep the
conditions for this relative orientation and the relative distance
of nuclei throughout the current calculations. In this DNS,
the fusion process to form a compound nucleus is competing
with QF, which can be described by incorporating Kramer’s
formula (KF) into the ME, Eq. (1) [22–24]. It is proved that
KF works well in the mass asymmetry region where the QF
barriers are high [25]. The QF rate �

qf
A1,β1,β2

[�(t)] is estimated

with KF [23,26]:

�
qf
A1,β1,β2
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Here the QF barrier Bqf is the depth of the pocket of the
interaction potential. The local temperature is given by the
Fermi-gas expression � = √

ε�/a, with the level density
parameter a = A/12 MeV−1 and the local excitation energy
ε�. The frequency ωBqf is the frequency of the inverted
harmonic oscillator approximating the interaction potential of
two nuclei along the internuclear distance around the top of the
QF barrier, and ω is the frequency of the harmonic oscillator
approximating the potential along the internuclear distance
around the bottom of the pocket. The quantity 	 denotes the
double-average width of the contributing single-particle states.
Here constant values 	 = 2.8 MeV, h̄ωBqf = 2.0 MeV, and
h̄ω = 3.0 MeV were used. The QF yield is finally obtained
with

Y
qf
A1

(J ) =
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∫ ∞

β10

∫ ∞

β20

�
qf
A1,β1,β2
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×P (A1, β1, β2, t)ρ(β1)ρ(β2)dβ1dβ2dt. (3)

The fusion probability is

PCN(J )

=
ABG∑
A1=1

∫ ∞

β10

∫ ∞

β20

P (A1, β1, β2, τint)ρ(β1)ρ(β2)dβ1dβ2.

(4)

The initial condition is P (AP , βP , βT , t = 0) = 1, where AP

is the mass number of the projectile. The interaction time τint in
the dissipative process of two colliding nuclei is dependent on
the incident energy Ec.m. and the incident angular momentum
J , which is determined by using the deflection function method
[25], and τint has the value of the magnitude from a few to
several hundred 10−22 s.

B. Potential energy of the DNS

In the relaxation process of relative motion, the DNS will
be excited by the dissipation of the relative kinetic energy.
The local excitation energy is determined by this transferred
excitation energy of the composite system and the PES of the
DNS. The PES is given by

U (A1, A2, R, β1, β2, J )

= E(A1, β1)+E(A2, β2) − [
E(ACN, βCN)+V CN

rot (J )
]

+VCN(A1, A2, R, β1, β2, J ), (5)

where ACN = A1 + A2 is the mass number of the compound
nucleus and βi represent the quadrupole deformation of the
two fragments. Nucleon transfer begins from the injection
point channel by losing or gaining one nucleon, and whether it
should be a neutron or a proton depends on which of them
would make the potential energy lower. R is the distance
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between nuclei at which the interaction potential between the
two nuclei VCN(A1, A2, R, β1, β2, J ) has the minimum value.
E(Ai, βi) (i = 1, 2) and E(ACN, βCN) are the total energies
of the ith nucleus and the compound nucleus, respectively, in
which the shell and the pairing corrections are included. They
can be calculated as a sum of the liquid drop energy and the
Strutinsky shell correction. We use the formula and parameters
from Ref. [27]:

E(Ai, βi2) = ELD(Ai)
∏

k=2 and 4

(
1 + bikβ

2
ik

)
+ c1Eshell(Ai, βik), (6)

where only axially deformed cases βi2 and βi4 are considered
and, in this context, the notation βi ≡ βi2. The energy of a
nucleus with respect to the axial deformations is calculated
with a Skyrme energy-density functional together with the
extended Thomas-Fermi approximation, which gives the min-
imum total energies of the ith nucleus with the optimal values
βi2, βi4(the βi4 is not of further using here). The binding energy
and the deformation of the ground state (DGS) obtained with
this formula are very close to the results in Möller’s table [28].

The V CN
rot is the rotation energy of the compound nu-

cleus. The interaction potential between the two nuclei
VCN(A1, A2, R, β1, β2, J ) includes the nuclear, Coulomb in-
teraction, and centrifugal parts; the details are given in
Ref. [29].

In the relaxation process of the relative motion, the DNS
will be excited by the dissipation of the relative kinetic energy.
The excited system opens a valence space εK in each
fragment K (K = 1, 2), which has a symmetrical distribution
around the Fermi surface. Only the particles in the states within
this valence space are actively involved in the excitation and
transfer.

εK =
√

4ε∗
K

gK

, ε∗
K = ε∗ AK

A
, gK = AK

12
, (7)

where ε∗ is the local excitation energy of the DNS, which
provides the excitation energy for the mean transition proba-
bility. There are NK = gKεK valence states and mK = NK/2
valence nucleons in the valence space εK , which gives the
dimension d(m1,m2) = ( N1

m1
)( N2

m2
). The local excitation energy

is defined as

ε∗ = Ex − U (A1, A2, R, β1, β2, J ). (8)

The excitation energy Ex of the composite system is converted
from the relative kinetic energy loss, which is related to the
Coulomb barrier [29] and is determined for each initial relative
angular momentum J by the parametrization method of the
classical deflection function [17,30]. So Ex is coupled with
the relative angular momentum.

III. EVOLUTION OF THE DEFORMATIONS

In Fig. 1 we show the interaction PES as a function of
the quadrupole deformations for the reaction 48Ca + 244Pu
at entrance channel A1 = 48. The relative distance between
nuclei is taken to be the value which gives the the minimum

FIG. 1. PES for the reaction 48Ca + 244Pu as a func-
tion of quadrupole deformations in the entrance channel
(A1 = 48).

PES, and the same for later cases. We find that the lowest
potential region sits in the range βi2 > 0. The deformations of
the entrance channel are β12 = 0.0 and β22 = 0.215. So the
nuclear shapes trend toward keeping prolate ellipsoidal shapes
in the fusion process. This condition also exists at other mass
asymmetries.

For a different mass asymmetry channel, the shape of
the PES is quite different. The part of the PES in the
positive deformation region of the reaction 48Ca + 244Pu
for A1 = 48 and A1 = 86 is shown in Figs. 2(a) and 2(b),
respectively. Point I in Fig. 2(a) is the incident channel. Values
in parentheses are the deformations of projectile-like and
target-like nuclei, respectively.

For A1 = 48 the lowest minimum is at position A in a
region with a small deformation (β12 = 0.1, β22 = 0.25) near
the incident point. The second minimum is at point B, where
the heavy fragment has a large deformation (β12 = 0.1, β22 =
0.6). While for A1 = 86 the system is more symmetric, heavier
nuclei can have a larger deformation due to the larger Coulomb
repulsion. The two minimum potential energies are located at
β12 = 0.2, β22 = 0.05 (point C) and β12 = 0.2, β22 = 0.45
(point D).

In order to present an overview about deformation and how
it evolves with time during the dynamical reaction process,
we should check how the distribution function is distributed
with respect to the corresponding deformations. We show the
time evolution of the probability function P (A1, β1, β2, t)
as a function of deformations in Fig. 3 for the entrance
channel A1 = 48. From the beginning of the reaction up
to t = 2 × 10−22 s, the probability function is distributed
around the injection point (point A), with β12 = 0.0 and
β22 = 0.215. With increasing time it diffuses, to be distributed
over a wider area with wider nuclear deformations. At t =
50 × 10−22 s, an appreciable probability is accumulated at the
second potential minimum (point B). For the configuration
A1 = 86 (see Fig. 4) at t = 10 × 10−22 s, the maximum
probability of the distribution function is already located at the
minimum position of the potential [point D in Fig. 2(b)]. With
increasing time, the probability is continuously accumulated
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FIG. 2. Part of the PES in the positive deformation region of the reaction 48Ca + 244Pu at A1 = 48 (a) and A1 = 86 (b). Point I is the
incident channel. Values in parentheses are the deformations of projectile-like and target-like nuclei, respectively.

at point D and diffuses widely to other deformations. At
t = 100 × 10−22 s, besides at point D, there is also a small
peak at the second minimum of the potential [point C
in Fig. 2(b)].

The variation ratio of the distribution probability function
at points A and B in Fig. 2, i.e., (P(B)/P(A)), as well as that at
points C and D, (P(C)/P(D)), is shown in Fig. 5 as a function
of the interaction time (solid line and dotted line, respectively).

For each value of η, the distribution probability finally
reaches equilibrium. For the entrance channel A1 = 48, the

distribution probability reaches equilibrium with respect to
deformations at about t = 60 × 10−22 s; and for A1 = 86, at
about t = 100 × 10−22 s. The longer equilibrium time for the
latter case is due to the sequential nucleon transition to reach
the considered channel, i.e., a 38-nucleon transfer is needed
to reach the channel first. For the channel A1 = 86, until
t = 50 × 10−22 s, the distribution probability P (D) increases
to 2.2 × 10−3, and only then do other deformations appear.
However, nucleon transfer is not the only factor that influences
the shape relaxation. Naturally, the PES plays a very important

FIG. 3. Probability distribution as a function of deformations of the reaction 48Ca + 244Pu at different interaction times for A1 = 48.
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FIG. 4. Probability distribution as a function of deformations of the reaction 48Ca + 244Pu at different interaction times for A1 = 86.

role. An example is the channel A1 = 58. Its PES is shown in
Fig. 6(a), with two minima in the PES, indicated by E and
F. The ratio of the probability distribution between E and F
is shown as a function of the reaction time in Fig. 6(b). The
ratio reaches its equilibrium around t = 20 × 10−22 s, which is
shorter than that for the entrance channel, although a nucleon
transfer is not needed there. The reason can be drawn from

FIG. 5. The solid line denotes the variation of the probability ratio
(P(B)/P(A)) with the interaction time of peaks B and A in Fig. 3; the
dotted line denotes the ratio (P(C)/P(D)) of peaks C and D in Fig. 4.

Fig. 7, where the probability distributions for A1 = 58 as a
function of the deformations for the reaction 48Ca + 244Pu
at different interaction times are shown. We find that the
probability is first distributed at point E, then gradually at
other places, and finally, two peaks are formed. The peak at
F is higher than that at E. From Fig. 6(a) it can be seen that
from point E to point F, there is a barrier BEF = 0.78 MeV.
In the entrance channel A1 = 48 the barrier from A to B is
4.97 MeV, and in the channel A1 = 86 the barrier from D to C
is 8.54 MeV. The barrier in Fig. 6(a) is much lower than those
in the channels with A1 = 48 and 86. This is the very reason
that the equilibrium time for the channel A1 = 58 is shorter,
although 10 nucleons must first be transferred to reach this
channel.

IV. THE TIME-RELEVANT POTENTIAL
ENERGY SURFACE

The variation of the distribution probability P (A1, β1, β2, t)
at time t is the distribution probability which is transferred
from the neighboring configurations to the considered config-
uration minus the distribution probability transferred from the
considered configuration to the neighboring configurations.
Therefore, the rate depends on the transition probability,
which is determined by the PES, and on the magnitude of
the corresponding distribution probability. So the transition
probability and the magnitude of the distribution probability
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FIG. 6. (a) Part of the PES in the positive deformation region of the reaction 48Ca + 244Pu at A1 = 58 with the nuclei at
the bottom of the potential pocket. (b) Variation of the probability ratio (P(E)/P(F)) with the interaction time of points E and
F in (a).

are both important. For each mass asymmetry A1, the distri-
bution probability is distributed corresponding to the nuclear
deformations, which determine the corresponding PES. The
configuration which has the maximum distribution probability
has the greatest possibility of transferring a nucleon to its
neighboring configuration in the mass asymmetry variable.
The PES with the maximum distribution probability for
different evolution times is shown in Fig. 8 for the reaction
48Ca + 244Pu as a function of A1. The upper line is the PES
with ground-state deformations (at t = 0 × 10−22 s). With

increasing time, as indicated in the figure, the PES gets lower,
but the rate of decrease gets smaller and smaller. And the
more the mass asymmetry decreases, the lowering of the PES
is due to the larger Coulomb interaction between the nuclei,
which lead to nuclear deformations. This argues in favor of the
distribution probability’s being distributed in the symmetric
region. The QF barrier is usually lower for the symmetric
DNS. So the QF of the system is affected. However, the PES
in the very mass asymmetric region is not distinctly affected,
which gives less support for fusion.

FIG. 7. Probability distribution as a function of deformations of the reaction 48Ca + 244Pu at different interaction times for A1 = 58.
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FIG. 8. (Color online) The PES with the maximum distribution
probability for different evolution times for the reaction 48Ca +
244Pu. GS, 0.5, 2, 8, and 20 indicate the interaction times t = 0,
0.5, 2, 8, and 20 × 10−22 s, respectively.

In order to determine the time evolution of the deformations,
we define the mean value of a deformation as

βi2(A1, t) = 1

C

∫ ∞

β10

∫ ∞

β20

P (A1, β12, β22, t)βi2dβ12dβ22,

(9)

C =
∫ ∞

β10

∫ ∞

β20

P (A1, β12, β22, t)dβ12dβ22,

where β10 and β10 are defined after Eq. (1). For the same
reaction channel and for each mass asymmetry, the mean value
of the quadrupole deformation parameters of fragments A1

and A2 at different reaction times are presented in Fig. 9,
respectively. Note that the abscissa is the mass number of
fragment 1. With increasing time, the mean deformation
generally increases. The increasing magnitude decreases with
increasing time. In the symmetric region, with increasing
time, the deformation gets quite different from that in the
ground state, while in the asymmetric region there is not much
difference.

V. THE QF YIELD AND FUSION PROBABILITY

In the reaction process, the variation along the relative
distance between the nuclei leads to QF is described by Eq. (2).
Actually in heavy ion induced reactions, some experiments
show that the deep inelastic and QF processes are the dominant
reaction channels [31,32]. The QF mass yields often indicate
some details of reaction dynamics.

For the entrance channel of 48Ca + 244Pu, the QF barrier
Bqf is shown in Fig. 10(a) as a function of the relative distance
of the nuclei, and in Fig. 10(b) the barriers are shown as
function of the deformations of fragments. We see smaller QF
barriers at larger deformations, which are favorable for QF.

The QF mass yields of the reaction 48Ca + 244Pu with
E∗ = 33 MeV are shown by solid lines in Figs. 11(c) and
11(d), obtained by using the one-variable ME [15,16] with the
deformation at ground state (DGS) and by using the current

FIG. 9. (Color online) Mean values of the deformations of
fragments A1 and A2 at different reaction times for the reaction
48Ca + 244Pu. GS, 0.5, 2, 8, and 20 indicate the times t = 0, 0.5,
2, 8, and 20 × 10−22 s, respectively.

ME with deformations evolving with time (DET), respectively.
In Fig. 11(c), there are two high peaks at mass numbers 61 and
106, corresponding to two minima of the PES in Fig. 11(a).
This is not consistent with the experimental data. Furthermore,
the QF yield falls down about three orders of magnitude at
mass number 113 because a high peak appears in the PES
in Fig. 11(a) for this mass asymmetry. The reason is that the
ground-state deformation of the light nucleus abruptly changes
from 0.328 (at A1 = 112) to −0.258 (at A1 = 113) [25].
By considering the deformations of the nuclei as dynamical
variables, the variation of the deformations is governed by
Eq. (1) in the PES of the system, and the PES is dependent on
the deformations. Thus we get reasonable deformations. For
the case where the deformations reached equilibrium, the PES
and QF yields obtained with the current method are shown in
Figs. 11(b) and 11(d), respectively. In Fig. 11(d) it is shown that
the highest peak is at mass number 86, with the heavy fragment
close to 208Pb, reflecting the shell effects. It corresponds to a
minimum of the PES in Fig. 11(b) and agrees rather well
with the experimental data, although the peak is a little lower
than the experimental one. However, in the range of the
rectangle, the mass intervals of the experimental points are
about 2, and those of our calculated ones are equal to 1. On the
other hand, the error bars of the data are greater than 2 [3,32].
One should note that the total yields of the measured data and
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FIG. 10. (a) Interaction potential between colliding nuclei in the entrance channel along the internuclear distance for the reaction 48Ca +
244Pu. (b) QF barrier related to quadrupole deformations with the entrance channel A1.

of our calculation in the rectangular area (mass numbers 67
to 104) are 0.612 and 0.656, respectively. The two values are
very close.

We also calculated the QF yields of the reactions 48Ca +
248Cm and 48Ca + 238U with E∗ = 33 MeV, which are dis-
played by filled squares in Figs. 12(a) and 12(b), respectively.
The highest peaks of the two distributions are at mass numbers
A1 = 90 and A1 = 84, respectively, and fit the data quite
well. It is worth mentioning that the authors of Ref. [23]
found a sharp QF yield peak at A1 = 43 for each of the
above-mentioned three reactions. This phenomenon does not
exist in our results. The dynamical treatment of the system
populates the considered dynamical variables correctly. The
treatment of the dynamical deformations of the nuclei of the
DNS can describe the distribution of the QF yields better
than the treatment considering only the deformations of their

FIG. 11. (a, c) PES and QF yields for 48Ca + 244Pu at E∗ =
33 MeV along the mass asymmetry degrees of freedom using the
DGS obtained from Möller’s table [28]. (b) PES with equilibrium
deformations (at a large interaction time when the deformations in
each mass asymmetry channel have already reached equilibrium).
(d) QF yield with the method of DET. In (c) and (d), experimental
data are denoted by circles.

ground states. This demonstrates the necessity of considering
the time-dependent deformation.

Figure 8 indicates that the more the mass asymmetry
decreases, the more the PES decreases. In the region of
large mass asymmetry, the PES does not change much. The
consequence is that this variation of the potential influences
QF greatly, but not fusion.

The fusion probability for collisions of 48Ca + 244Pu with
J = 0 is shown in Fig. 13(c) as a function of the excitation en-
ergy. The filled squares, P DET

CN , are from the current calculation
(called the DET case), and the results calculated with P DGS

CN
using the ground-state deformations (called the DGS case,
obtained with a one-variable ME) are indicated by open circles.
It is found that in the low-energy region, E∗ < 40 MeV, the
difference in the two results is not very large. At E∗ > 37 MeV,
P DET

CN < P DGS
CN , and at lower excitation energies, P DET

CN > P DGS
CN

[see Fig. 13(c)]. The PESs for the two cases are shown in
Fig. 13(a). The difference between the PESs in the very
asymmetric region is small. However, a small variation in
the shape of the PES changes the inner fusion barrier from

FIG. 12. Mass yields of the reactions 48Ca + 248Cm (a) and
48Ca + 238U (b) at E∗ = 33 MeV compared with the experimental
data.
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FIG. 13. (Color online) (a) Comparison of
the inner fusion barrier using DGS vs DET. One
of the arrows indicates the entrance channel.
(b) An enlargement of the upper part of (a).
(c) Fusion probabilities related to the excitation
energy at zero incident angular momentum using
DGS vs DET.

BDGS
In. = 9.8 MeV to BDET

In. = 11.4 MeV. Nevertheless, the
highest point for the case of DET is lower than that for
DGS. So at a low excitation energy the fusion probability
for the DET case is higher. With increasing excitation energy,
a large proportion of the distribution probability goes down the
potential to the mass symmetrical region and to the QF channel.
Then the fusion probability becomes lower. A comparison of
the excitation function of the evaporation residue cross sections
among the results using DGS (dotted lines), DET (solid lines),
and available data [33,34] for the reactions 48Ca + 244Pu and
48Ca + 248Cm is shown in Figs. 14(a) and 14(b), respectively.
In Fig. 14(a) the maximum values of the two methods for the
2n, 3n, and 4n channels are similar, because in this energy
region, the fusion probability is similar for the two cases.
Only the DGS predicts higher optimum excitation energies,
except for the 5n channel, where the two methods predict
the same optimum excitation energy. Since in this higher
energy region, at about E∗ > 45 MeV, the fusion probability
for DET is lower than that for DGS, the experimental data

for the 5n channel [3] are closer to the line calculated with
DET. The other experimental data for the 3n and 4n channels
from Dubna [33] and TASCA [34] are distributed among the
corresponding lines calculated with the two methods. For the
channel 48Ca + 248Cm, the theoretical investigation shows
that the results of the two methods show the same behavior
with excitation energy.

VI. SUMMARY AND DISCUSSION

This work basically starts with the conception of the
DNS . However, the strong nuclear and Coulomb interac-
tions between the nuclei of the DNS make the nuclei be-
come gradually deformed. These deformations will influence
the further evolution of the DNS and are not negligible. So
the nuclei of the DNS cannot always keep their ground-state
deformations. In addition to the mass asymmetry variable, we
treat the quadrupole deformations of the nuclei in the DNS as

30 35 40 45 50 55
10-2

10-1

100

101

102

3n(Dubna)
4n(Dubna)

5n(Dubna)

3n(TASCA)

4n(TASCA)

er
(p

b)

E*(MeV)

2n

3n

4n

5n

(a)

30 35 40 45 50
10 -2

10-1

100

101

2n

5n

er
(p

b)

E*(MeV)

 3n(Dubna)

4n(Dubna)

3n

4n
(b)

FIG. 14. Comparison of the evaporation residue cross sections among the results using DGS (dotted lines), DET (solid lines), and available
data of Dubna [33] and of TASCA [34] for the reactions (a) 48Ca + 244Pu and (b) 48Ca + 248Cm.
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dynamical variables and have constructed a new three-variable
ME so that the deformations as well as the nucleon transfer are
viewed as diffusion processes consistently governed by MEs
in the PES. Due to the dynamical treatment the distribution
probability of the system is populated reasonably with respect
to the variables considered. For each mass asymmetry, the
PES is obtained as a function of the fragment deformations.
The deformations which give the minimum PES are deter-
mined, and the time for the system to reach deformation
equilibrium is estimated and found to be different for different
mass asymmetries. The PES with the maximum distribution
probability at different evolution times reveals the effect of the
dynamical deformation: the PES has changed, and therefore,
the diffusion dynamics has also changed. The calculated QF
yield distribution is greatly improved to fit the data, and
the evaporation residue cross sections for 48Ca + 244Pu to
produce element 114 and 48Ca + 248Cm to produce element
116 are also reasonably well described. However, we used the
approximation of the constant parameters k,k′ and γk,k′ in the
single-particle interaction matrix element (see the Appendix),
independent of the deformations, which is very crude from
the physical point of view. We will study this effect in further
work.
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APPENDIX: THE TRANSITION PROBABILITY W

The single-particle Hamiltonian to describe the nucleon’s
motion reads

H (t) = H0(t) + V (t), (A1)

H0(t) =
∑

k

∑
νk

ενk
(t)a†

νk
(t)aνk

(t), (A2)

V (t) =
∑
k,k′

∑
αk,βk′

uαk,βk
′ (t)a

†
αk

(t)aβk′ (t)

=
∑
k,k′

Vk,k′(t), k, k′ = 1, 2, (A3)

where k, k′ (k, k′ = 1, 2) denote fragment 1 or 2. εν(t) and
uνμ(t) are the single-particle energy level and interaction ma-
trix element, respectively [14,15,20]. The single-particle states
are defined with respect to the centers of the interacting nuclei
and are assumed to be orthogonalized in the overlap region.
So the annihilation and creation operators are dependent on
time. The single-particle matrix elements are parameterized

by

uαK,βK′ (t)

= UK,K ′ (t)

{
exp

[
− 1

2

(
εαK

(t) − εβK′ (t)

K,K ′ (t)

)2]
− δαK,βK′

}
,

(A4)

which contains five fixed independent parameters U11(t) and
U22(t) for exciting a nucleon in fragments 1 and 2, respectively,
and U12(t) = U21(t) for transferring a nucleon between the
fragments, and the corresponding width parameters 11(t) =
22(t) and 12(t) = 21(t). The detailed calculation of these
parameters is described in Refs. [37] and [38]. The strength
parameters are given by

Ukk′ = g
1
3
1 g

1
3
2

g
1
3
1 + g

1
3
2

1

g
1
3
k g

1
3
k′

2γkk′ , (A5)

with gk = Ak/12, and the reduced strength parameters γ11 =
γ22 = γ12 = γ21 = γ = 3 [14,19,37,38].

The transition probability from the initial configuration
ξ{A1, β1, β2} to the final configuration ξ{A′

1, β
′
1, β

′
2} reads

Wξ,ξ ′ (t) = τmem(ξ, ξ ′)
h̄2dξdξ ′

∑
ii ′

|〈ξ ′, i ′|V |ξ, i〉|2, (A6)

where i denotes all remaining quantum numbers. The memory
time is

τmem(ξ, ξ ′) = (2π )1/2h̄{〈V 2(t)〉 ξ + 〈V 2(t)〉 ξ ′ }−1/2, (A7)

where 〈 〉ξ stands for the average expectation value with ξ

fixed.
The averages in Eqs. (A7) and (A6) are carried out using

the method of spectral distributions [35–37]. We obtain

〈Vkk′V
†
kk′ 〉 = 1

4U 2
kk′gkgk′kk′εkεk′

× [
2

kk′ + 1
6

(
ε2

k + ε2
k′
)]−1/2

, (A8)

FIG. 15. (Color online) QF yield with different, but constant
parameters of k,k′ and γk,k′ for the reaction 48Ca + 244Pu.
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εK =
√

4ε∗
K

gK

, ε∗
K = ε∗ AK

A
, gK = AK

12
. (A9)

The local excitation energy is defined as ε∗ = Ex −
U (A1, A2, R, β1, β2, J ) [see Eq. (2.2)].

In principle, the parameters k,k′ in Eq. (A4) and γk,k′ in
Eq. (A5) are deformation dependent. Here, we have used the

approximation that these parameters are constants, indepen-
dent of deformations, which is very crude from the physical
point of view. In Fig. 15, we demonstrate QF yields with
different, but constant parameters. No essentially significant
differences arise. However, it is clear that the deformation
dependence of these parameters has to be considered in greater
detail in our future work.
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