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Effects of mutual excitations in the fusion of carbon isotopes
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Fusion data for 13C+13C, 12C+13C, and 12C+12C are analyzed by coupled-channels calculations that are
based on the M3Y+repulsion, double-folding potential. The fusion is determined by ingoing-wave-boundary
conditions (IWBC) that are imposed at the minimum of the pocket in the entrance channel potential. Quadrupole
and octupole transitions to low-lying states in projectile and target are included in the calculations, as well as
mutual excitations of these states. The effect of one-neutron transfer is also considered but the effect is small in
the measured energy regime. It is shown that mutual excitations to high-lying states play a very important role in
developing a comprehensive and consistent description of the measurements. Thus, the shapes of the calculated
cross sections for 12C+13C and 13C+13C are in good agreement with the data. The fusion cross sections for
12C+12C determined by the IWBC are generally larger than the measured cross sections but they are consistent
with the maxima of some of the observed peak cross sections. They are therefore expected to provide an upper
limit for the extrapolation into the low-energy regime of interest to astrophysics.
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I. INTRODUCTION

The fusion of carbon nuclei is an important reaction in
the description of type Ia supernovae and other astronomical
events in the cosmos like the superburst of an accreting neutron
star. There is, unfortunately, a very large uncertainty in the
predicted fusion cross sections for 12C+12C that are needed
in a stellar environment [1], partly because the cross sections
are difficult to measure down to the low energies that are of
interest and partly because the data contain strong resonance
structures that make it difficult to extrapolate the measured
cross sections to low energy. In order to get some constraints
on the extrapolation it is instructive to analyze the existing
fusion data for 13C+13C by Trentalange et al. [2] and Charvet
et al. [3], and also of the 12C+13C data by Dayras et al. [4]
and Notani et al. [5], because these data do not exhibit strong
resonance features.

The 13C+13C fusion data [2] are analyzed by coupled-
channels calculations that include couplings to the one-phonon
quadrupole and octupole excitations in projectile and target,
as well as mutual excitations of these states. The effect of
one-neutron transfer, which can proceed to the 12C+14C mass
partition with positive Q value, is also studied, as is the effect of
the neutron exchange with zero Q value in 12C+13C reactions.

The fusion cross sections are determined by ingoing-wave-
boundary conditions (IWBC) that are imposed at the minimum
of the pocket in the entrance channel potential. The calculated
cross sections defined this way are fairly smooth as functions of
the center-of-mass energy and they are well suited to analyze
the fusion data for 13C+13C [2,3] and 12C+13C [4,5]. The
12C+12C fusion data, on the other hand, contain a lot of
structures or resonances, and it is beyond the scope of this
investigation to try to reproduce these data in detail. It is,
however, of great interest to see how the calculated cross
sections, obtained from the IWBC, compare to the data and
how they possibly can be used to put constraints on the
extrapolation to very low energies.

The coupled equations are solved using either a standard
Woods-Saxon [6] or the M3Y+repulsion, double-folding
potentials [7]. The coupled-channels effects on the calculated
fusion cross sections are relatively modest compared to the
large enhancement of several orders of magnitude that are
commonly seen in calculations of heavy-ion fusion reactions.
For the carbon systems, the enhancement of fusion compared
to the no-coupling limit is typically a factor of 2 at energies
far below the Coulomb barrier. However, it is a challenge
to explain the data in detail because the coupled-channels
calculations are sensitive to channels that have rather high
excitation energies. One problem is that these channels are
closed at low beam energies but that problem can be solved
by imposing the correct, decaying-state boundary conditions
at large distances between the reacting nuclei [8]. Another
problem is that the nuclear structure of high-lying states is
sometimes very uncertain.

The M3Y+repulsion potential was introduced in Ref. [7]
to explain the hindrance that has been observed in the fusion
of many heavy-ion systems at very low energies [9]. The
hindrance phenomenon was first observed as a suppression
at very low energies of 60Ni+89Y fusion data compared to
calculations that were based on a standard Woods-Saxon
potential [10]. A simple explanation of the phenomenon is
the existence of a shallow pocket in the entrance channel
potential which forces the fusion cross section to vanish as
the center-of-mass energy approaches the minimum energy
of the pocket [7]. Important issues have been whether the
fusion hindrance also occurs in light-ion systems, and how
it will affect the extrapolation of measured cross section to
the low energies that are of interest to astrophysics [11].
The evidence for quasimolecular resonances, observed in the
elastic scattering [12] and fusion reactions [13,14] of 12C+12C
are usually explained as resonances in a shallow two-body
potential between the reacting nuclei. We will show that the
analysis of the 13C+13C and 12C+13C fusion data supports
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the idea of a fusion hindrance and the existence of a shallow
pocket in the entrance channel potential.

The fusion cross sections reported in Refs. [2–4] are based
on measurements of the characteristic γ rays emitted from
some of the evaporation residues that are produced, mostly
those associated with the proton, neutron, and α decay. The
total fusion cross sections were obtained with the aid of
statistical model calculations which is a major source of the
systematic uncertainty. The systematic error is difficult to
estimate but it can be quite large. For example, the systematic
error of the absolute cross sections quoted in Ref. [2] is
±15%. Since some of the systematic error concerns the overall
normalization of the measured cross sections and not so much
the shape (i.e., the energy dependence of the cross section), it
is of interest to adopt an adjustable overall normalization when
analyzing the data.

The ingredients of the coupled-channels calculations are
presented in the next section. The analysis of the 13C+13C
fusion data is discussed in Sec. III, where the optimum
parameters of the M3Y+repulsion potential, such as the radius
parameter of 13C and the diffuseness associated with the
repulsive term, are determined. These parameters are used
together with a parametrization of the experimental density
of 12C as input to the coupled-channels calculations of the
fusion cross sections for 12C+13C and 12C+12C which are
presented in Secs. IV and V, respectively. The systematics of
the low-energy fusion cross sections for the three systems of
carbon isotopes is discussed in Sec. VI. Finally, the conclusions
of this work are presented in Sec. VII.

II. DETAILS OF THE CALCULATIONS

The ingredients in the coupled-channels calculations in-
clude the ion-ion potential, the nuclear structure input, the
strength and Q value of the transfer reactions, and the
definition of the fusion cross section. The coupled-channels
technique that is used has been applied previously and is
described, for example, in Refs. [7,8,15,16]. Therefore, all
of the details will not be repeated here. It is emphasized
that the calculations are performed in the rotating-frame
approximation [15] which makes it feasible to include the
most important reaction channels in the calculations. In this
approximation, the magnetic quantum number M of the
entrance channel is conserved. In reactions between nuclei
with 0+ ground states, this implies that the M quantum number
remains zero. In reactions with odd nuclei one would have
to repeat the calculations for each initial value of M and
the average fusion cross section should be compared to the
measurements. In the fusion of 12C+13C, for example, the
ground state of 12C is a 0+ state and 13C has a 1/2− ground
state. However, the cross sections for M = −1/2 and +1/2
are identical so it is sufficient to calculate the cross section
once.

A. Densities and ion-ion potentials

In addition to the commonly used Woods-Saxon potential,
the ion-ion potential that will be used in this paper is the
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FIG. 1. (Color online) Experimental point-proton density of 12C
[18] is compared to the symmetrized Fermi function distribution with
diffuseness a = 0.44 fm and radius R = 2.155 fm.

so-called M3Y+repulsion potential [7]. It consists of the
conventional M3Y potential and a repulsive term which is
discussed below. The M3Y double-folding potential is defined
as

Un(r) =
∫

dr1 dr2 ρ1(r1) ρ2(r2)vM3Y(r + r2 − r1), (1)

where vM3Y(r) is the M3Y effective nucleon-nucleon inter-
action derived from the Reid potential [17]. The densities
ρi(r) of the 12C and 13C carbon isotopes are parametrized in
terms of the symmetrized Fermi functions defined in the
appendix of Ref. [16]. One advantage of this parametrization is
that the mean-square radius is given by the simple expression,

〈r2〉 = 3
5

[
R2 + 7

3 (πa)2
]
, (2)

in terms of the radius R and the diffuseness a.
The diffuseness of the densities for both nuclei is set equal

to 0.44 fm so the only parameters that need to be specified
are the matter radii of the reacting nuclei. This choice of the
diffuseness is in good agreement with the tail of the measured
point-proton density of 12C [18] which is illustrated in Fig. 1.
The calculated point-proton distribution has the radius R =
2.155 fm, consistent with the measured rms charge radius.
The radii that reproduce the point-proton (pp) rms radii of 12C
and 13C, extracted from the measured rms charge radii [19],
are shown in the last few lines of Table I. The quoted radius for
12C is expected to be a realistic estimate of the matter radius of
12C and, therefore, it will be used in calculations of the M3Y
double-folding potentials.

The matter radius of 13C is possibly larger than the radius
of 12C because of the valence neutron. That is what one would
expect by adding a neutron to an inert 12C core nucleus.
A simple estimate based on a single-particle, Woods-Saxon
potential gives a mean-square radius of 〈r2

n〉 = 8.655 fm2 for
the p1/2 valence neutron. Combined with the point-proton rms
radius of 12C, 〈r2〉12 = 5.462(9) fm2, one can now estimate
the mean-square matter radius 〈r2〉13 of 13C by

13〈r2〉13 = 12

(
〈r2〉12 +

〈
r2
n

〉
13

)
. (3)
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TABLE I. Parameters of the densities that are used in calculating
the M3Y+repulsion potential. The second column shows the radius R

(the diffuseness was kept fixed at a = 0.44 fm) and the third column
is the calculated rms radius. Also shown is the diffuseness ar that is
used in calculating the repulsive part of the potential, the value of
scaling factor Sc that optimizes the fit to the 13C+13C fusion data [2],
and the χ 2/N . The last three lines show the radii that are consistent
with the rms radii of the point-proton (pp) and matter distributions of
12C and 13C.

Nucleus R (fm) rms (fm) ar (fm) Sc χ 2/N

13C 2.17 2.345 0.33 1 2.75
13C 2.28 2.407 0.31 0.843 1.00
12C (pp) 2.155 2.337(2)
13C (pp) 2.146 2.332(3)
13C, Eq. (3) 2.228 2.378

The result is a rms matter radius of 2.378 fm. The associated
radius of a Fermi-function distribution with diffuseness a =
0.44 fm is 2.228 fm according to the last line of Table I. This
is a useful reference value for the discussion below.

A critical part of the M3Y+repulsion, double-folding
potential is the repulsive part [7], which is generated by
a contact interaction, vrδ(r). The densities that are used in
calculating the repulsive, double-folding potential have the
same radius as those that are used in the calculation of
the M3Y double-folding potential but the diffuseness ar is
chosen differently (usually smaller). The strength vr of the
repulsion, on the other hand, is adjusted for a given value of
ar so the nuclear incompressibility K = 234 MeV is produced
(see Ref. [7] for details.) With this constraint there are three
parameters that must be specified before the M3Y+repulsion
potential can be calculated, namely the matter radii of the two
reacting nuclei and the diffuseness parameter ar associated
with the repulsion.

The parameters that give the best fit to Trentalange’s
13C+13C fusion data are the 13C radius R = 2.28 fm and
the diffuseness ar = 0.31 fm. How these parameters were

determined is described in detail in Sec. III B. The radius
R = 2.28 fm is slightly larger than the 2.228 fm that was
estimated from Eq. (3). That may not be unreasonable as
discussed in Ref. [20] because using a larger radius in a
coupled-channels calculation is a way to compensate for the
dynamic polarization of states that are not included explicitly
in the calculation. The discrepancy between the estimated rms
radius, Eq. (3), and the value extracted from the fit to the fusion
data is only 1.2%.

The entrance channel potential determined by the best fit
parameters is shown by the solid curve in Fig. 2(a). Also
shown in Fig. 2 are the potentials that will be applied in
calculating the fusion of 12C+13C and 12C+12C. They were
obtained by setting the radius of 12C equal to the radius
R = 2.155 fm of the point-proton distribution of 12C (see
Table I), and the diffuseness associated with the repulsion
was set to ar = 0.31 fm.

The pure M3Y double-folding potentials shown in Fig. 2
are unphysical because they are much deeper for overlapping
nuclei than the ground-state energy of the compound nucleus.
The (blue) dashed curve in Fig. 2(a) is the entrance channel
potential for a standard Woods-Saxon (WS) potential with
the depth V0 = −39.31 MeV, radius RWS = 5.268 fm, and
diffuseness a = 0.63 fm. Here the radius was adjusted to
optimize the fit to Trentalange’s fusion data as discussed in
Sec. III A. This potential is deeper than the M3Y+repulsion
potential and has a minimum that is close to the energy of the
compound nucleus 26Mg.

The three entrance channel potentials shown in Fig. 2(a),
which are based on the M3Y, the M3Y+repulsion, and
the Woods-Saxon potential, produce essentially the same
Coulomb barrier height, VCB ≈ 6 MeV. The most important
features of the M3Y+repulsion potential are that it produces
a shallow pocket and a relatively thick barrier. These features
were utilized in Ref. [7] to explain the hindrance of fusion that
has been observed in the fusion of many medium mass systems
at extreme subbarrier energies. The analysis of the 13C+13C
fusion data discussed in the next section confirms that a shallow
pocket in the entrance channel is a general feature that helps
explain the energy dependence of fusion data.
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FIG. 2. (Color online) The M3Y+repulsion double-folding potentials for different combinations of carbon isotopes. They are based on the
parameter ar = 0.31 fm and the radius R = 2.28 fm for 13C and R = 2.155 fm for 12C. The black dashed cures are the pure M3Y potentials.
Also shown are the WS potentials discussed in the text and the ground-state energies of the compound nuclei.
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B. Nuclear couplings

The nuclear couplings that excite the low-lying states
of projectile and target are derived from the macroscopic
description of surface excitations [6]. In this description, the
surface of nucleus i is parametrized as

Ri(r̂) = R
(0)
i

[
1 +

∑
α

(i)
λμY ∗

λμ(r̂)

]
, (4)

where α
(i)
λμ are the (static or dynamic) deformation amplitudes

of the nucleus, and r̂ specifies a spatial direction. The distortion
of the nuclear surface,

δRi = R
(0)
i

∑
α

(i)
λμY ∗

λμ(r̂), (5)

is an operator that can excite and deexcite the nucleus (see
chapter II.4 of Ref. [6]). The excitation can be vibrational, in
which case the intrinsic Hamiltonian is a harmonic oscillator,
or it can be rotational, in which case αλμ = βλD

λ
μ0(ê), where

βλ is the static deformation parameter and ê is the direction of
the symmetry axis of the deformed nucleus.

In the macroscopic description of heavy-ion reactions
[6], the nuclear potential between two colliding nuclei is
parametrized in terms of the surface distortions δRi as follows

VN

[
r − R

(0)
1 − R

(0)
2 − δR1(r̂) − δR2(−r̂)

]
, (6)

where r̂ is the direction of the center-of-mass distance between
projectile and target. In the rotating frame approximation,
which is a simplification that is commonly used and which
will be used in coupled-channels calculations, the direction of
r̂ defines the z axis, so

δR1(r̂) = R
(0)
1

∑
λ

α
(1)
λ0

√
2λ + 1

4π
. (7)

In the model of heavy-ion fusion reactions described in
Ref. [15], the nuclear potential is expanded up to second order
in the surface distortions,

UN (r, δR1, δR2) = VN − dVN

dr
(δR1 + δR2) + 1

2

d2VN

dr2

× [(δR1 + δR2)2 − 〈0|(δR1 + δR2)2|0〉],
(8)

where the argument of VN and its derivatives is r − R
(0)
1 −

R
(0)
2 . The second-order term in this expression has been

renormalized so the ground-state expectation value of that term
is zero. The ground-state expectation value of the first-order
term (proportional to δR1+δR2) will also vanish if the ground
states of the two reacting nuclei are 0+ states. The ground-state
expectation of the entire expression, Eq. (8), is therefore
identical to the “bare” interaction, i.e.,

〈0|UN (r, δR1, δR2)|0〉 = VN

(
r − R

(0)
1 − R

(0)
2

)
. (9)

This implies that the M3Y+repulsion potential which is
calculated using the ground-state densities of the reacting
nuclei can be used as the bare interaction, VN .

The diagonal matrix element of the first-order term in
Eq. (8) can be nonzero, for example, in the 2+ state of
a deformed nucleus. The calculation of diagonal and off-
diagonal matrix elements is outlined in the Appendix. Details
of how to calculate the matrix elements of the second-order
couplings in Eq. (8), both for vibrational and rotational
excitations, are given in Ref. [15].

C. Nuclear structure input

The nuclear structure input to the coupled-channels cal-
culations is listed in Table II. The nuclei 12C and 13C are
both considered deformed with oblate quadrupole shapes. The
connection between the deformation parameter βλ and the
measured B(E2) values is summarized in the Appendix. For
12C one can extract the quadrupole deformation parameter
β2 = 0.57(2) from the measured strength of the 0+

1 → 2+ tran-
sition. The value of this deformation parameter produces an
intrinsic quadrupole moment of Q0 = −19.5 fm2 (assuming
an oblate shape). The quadrupole moment of the 2+ state
is therefore Q2 = −2/7Q0 = 5.57 fm2, which is consistent
with the measured value of 6 ± 3 fm2 [22]. Also shown in the
table is the structure information about the 2+ → 0+

2 transition
which is included in the calculations as part of the two-phonon
quadrupole excitation of 12C.

Values of quadrupole deformation parameter β2 of 13C,
extracted from Eq. (A8) of the Appendix and the known
strengths of the quadrupole transition from the 1/2− ground
to the 3/2− and the 5/2− excited states, are shown in the
last column of Table II. They are seen to be almost identical,
which indicates that 13C is a fairly good rotor. Assuming the

TABLE II. Properties of E2 and E3 transitions in 12C and 13C [21]. The intrinsic quadrupole moments have been extracted from the lowest
quadrupole transitions.

Nucleus State Ex (MeV) Transition B(Eλ) (W.u.) βC
λ

12C 0+
1 0 Q0 = −19.5 fm2 0.570

2+ 4.439 E2: 0+
1 → 2+ 4.65(26) 0.570

0+
2 7.654 E2: 2+ → 0+

2 8.0(11) 0.236
3− 9.641 E3: 0+

1 → 3− 12(2) [21] 0.90(7)
13C 1/2− 0 Q0 = −17.9 fm2 0.495

3/2− 3.6845 E2: 1/2− → 3/2− 3.5(8) 0.495
5/2− 7.547 E2: 1/2− → 5/2− 3.1(2) 0.465
5/2+ 3.8538 E3: 1/2− → 5/2+ 10(4) 0.82
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deformation parameter β2 = 0.495 and an oblate shape, one
obtains the intrinsic quadrupole moment Q0 = −17.9 fm2.

The strength of the octupole transition in 13C quoted in
Table II appears to be very large and almost as large as the
octupole strength in 12C. This is misleading because what
matters is the off-diagonal matrix element of the octupole
amplitude, which is given by Eq. (A6) of the appendix. In 12C
the matrix element is

〈300|α30|000〉 = β3√
7
, (10)

whereas in 13C it is (with M = K = 1/2)〈
5

2

1

2

1

2

∣∣∣∣α30

∣∣∣∣1

2

1

2

1

2

〉
= β3

√
2

6

〈
1

2

1

2
30

∣∣∣∣5

2

1

2

〉2

=
√

3

7

β3√
7
.

(11)

The matrix element of the octupole amplitude is therefore
reduced in 13C by the factor

√
3/7 ≈ 0.655 relative to the

expression Eq. (10) for 12C.
The coupled-channels calculations that are performed are

similar to those presented in Ref. [15] for the fusion of 27Al
with different germanium isotopes. In addition to the nuclear
couplings derived from the nuclear interaction, Eq. (8), the
Coulomb interaction (Eq. (2) of Ref. [15]) is included in the
calculations to first order in the deformation amplitudes.

D. Transfer reactions

The one-neutron transfer reactions that will be considered
all involve the p1/2 orbit, both in the initial and final states. One
example is the ground-state-to-ground-state transfer reaction,
12C(13C,12C)13C, which has a zero Q value. The spectroscopic
factors for the initial- and final-state 1/2− state in 13C were set
equal to 0.75(10), which is the value recommended in Table III
of Ref. [23].

The other example is the one-neutron transfer from
13C+13C to the ground states of 12C+14C which has a Q value
of +3.2 MeV. The spectroscopic factor for the initial state is
the same as above. It is set equal to 2*0.75 in the calculations
because the transfer can take place from either of the two 13C
nuclei in the entrance channel. The spectroscopic factor for the
p1/2 orbit in the 0+ ground state of 14C is 1.63(33) according
to Table III of Ref. [23].

The transfer form factors that are used are the so-called
Quesada single-particle form factors [24] which in the past
turned out to be fairly realistic [16,25]. They have here been
calibrated against calculations performed with the computer
code PTOLEMY [26] of the one-neutron transfer cross in
12C+13C collisions at a 5.2-MeV center-of-mass energy.

E. Calculation of fusion cross sections

The fusion cross section is calculated from the ingoing
flux which is determined by the IWBC that are imposed at
the minimum of the pocket in the entrance channel potential.
This approximation ignores the internal structure of the
combined dinuclear or compound system and the calculated

cross sections are usually fairly smooth functions of energies,
at least at energies near and below the Coulomb barrier.

At energies far above the Coulomb barrier, there are some-
times numerical problems in the coupled-channels calculations
which can cause an erratic behavior of the calculated cross
section as a function of energy. One can overcome these
problems by applying a weak imaginary potential [7]

W (r) = W0

1 + exp[(r − Rw)/aw]
, (12)

which acts near the position Rw of the pocket in the entrance
channel potential. The fusion cross section is then defined as
the sum of the absorption cross section and the cross section
for the ingoing flux. A weak imaginary potential will be applied
in the following when the calculated fusion cross section is
shown in a linear plot at energies far above the Coulomb barrier.
The parameters that are used are W0 = −5 MeV and aw =
0.5 fm. No imaginary potential will be used in the calculations
at energies below the Coulomb barrier.

The 1/2− ground-state spin of 13C causes some concern
when calculating the scattering and fusion of 13C+13C. The
fermionic nature of 13C requires that the total wave function
for 13C+13C be antisymmetric. By coupling the intrinsic 1/2−
ground-state spins of the reacting nuclei one obtains a total spin
of S = 0 (antisymmetric) and S = 1 (symmetric). The wave
function for the relative motion of the two nuclei must therefore
be symmetric for S = 0, i.e., it consists of even partial waves,
and it must be antisymmetric for S = 1, consisting of odd
partial waves. The fusion cross section is therefore calculated
as the weighted sum

σf = 1
2 σ (even L) + 3

2 σ (odd L). (13)

It turns out that the contributions to the fusion cross section
from odd and even L values are almost identical. The biased
weighting of the two contributions in Eq. (13) does not,
therefore, have much effect. In calculations of the fusion and
elastic scattering of two identical spin-zero 12C nuclei, one
should only consider the contribution from even partial waves
which is doubled because of the symmetry of two identical
particles. In reactions of 12C+13C, on the other hand, the
contribution from even and odd partial waves have the same
weight.

III. ANALYSIS OF THE 13C+13C FUSION DATA

In this section the 13C+13C fusion data by Trentalange
et al. [2] and Charvet et al. [3] are analyzed in terms of
coupled-channels calculations. The channels that are included
are enumerated in Fig. 3. The (red) solid lines represent the
elastic channel and the channels associated with the excitation
of the states shown in Table II, in both projectile or target. The
calculation based on these channels is referred to as the one-
phonon (ph1) calculation and has a total of seven channels.

The (blue) dashed lines in Fig. 3 are the six mutual
excitations of the lowest quadrupole and octupole excitations
in projectile and target. These include the four mutual states
(I1, I2), where Ii = 3/2− or 5/2+, i = 1, 2, and I1 and I2

belong to different nuclei, and the two (3/2−, 5/2+) mutual
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FIG. 3. (Color online) Excitation energies of the channels con-
sidered in the calculations of the fusion of 13C+13C. The (red) solid
lines are the excitations in projectile and target of the 13C states shown
in Table I. The (blue) dashed lines are the six mutual excitations that
involve the 3/2− and 5/2+ states in projectile and target.

excitations belong to the same nucleus. Together with the
7 channels of the one-phonon calculation, that gives a total
of 13 channels. This calculation is referred to as the mutual
excitation calculation or Ch13.

The calculation Ch13 will be compared to the one-phonon
calculation (ph1) described above and the no-coupling limit
which has only one channel. There are other excitations, for
example, the two-phonon excitations which are poorly known
and mutual excitations that involve the 5/2− state, but they are
all ignored in the following.

It can be very difficult to see small discrepancies between
measured and calculated cross sections, in particular, when
they are plotted on a conventional logarithmic scale. It is
therefore useful to use other representations that amplify
certain features of the comparison, such as the S factor for fu-
sion, which emphasizes the behavior at low energies. Another
representation, which is very useful when coupled-channels
effects are modest, is the so-called enhancement factor, which
was used in the early days when the enhancement of subbarrier
fusion was first discovered. It is defined as the ratio of a
cross section relative to the cross section calculated in the
no-coupling limit, and it will be used both for measurements as
well as coupled-channels calculations, as long as it is indicated
which no-coupling limit is used as a reference. Finally, the
comparison of data and coupled-channels calculations will
also be made in terms of the ratio of the measured and
calculated cross sections. If the measured and calculated cross
sections agree, the ratio should be close to 1.

The one-neutron transfer discussed earlier is included as
an independent degree of freedom. That implies that the
transfer can take place from any excited state and it is
calculated with the same form factor which describes the
ground-state-to-ground-state transition. The full calculation
(with the 13 excitation channels mentioned above and the
one-neutron transfer) will therefore contain 26 channels and is
referred to as the Ch26 calculation.

The analysis of the data is performed in terms of the
χ2 per data point, χ2/N , which is minimized by adjusting
certain parameters of the ion-ion potential. The overall
normalization of the calculated cross sections is also adjusted

by a multiplicative factor Sc, in order to improve the fit to the
data. The motivation for this adjustment is the large uncertainty
in the absolute normalization of the measured cross sections
that was mentioned in the Introduction. The shape (i.e., the
energy dependence) of the measured cross section is assumed
to be more accurately determined. The uncertainty in the data
analysis will therefore include the statistical uncertainty and
an adopted systematic error of only 3%, which is much smaller
than the 15% experimental error [2].

A. Application of Woods-Saxon potential

The first set of calculations are based on a standard Woods-
Saxon potential with typical parameters from Ref. [6]. The
diffuseness of the potential is set to a = 0.63 fm and the depth
is −39.31 MeV. The radius of the potential, RWS = 5.268 fm,
was adjusted to optimize the fit to the data of Ref. [2].
A comparison to the data is made in Fig. 4 in terms of
the enhancement of the cross sections with respect to the
no-coupling limit. The enhancement of the measured cross
sections is seen to deviate from the enhancement of the
coupled-channels calculation (Ch26) by up to 20%. Moreover,
the effects of mutual excitations and one-neutron transfer
are seen to be modest by comparing to the no-transfer
calculations (Ch13) and the one-phonon calculations (ph1).
It is very unlikely that the agreement with the data can be
improved much by adjusting the strengths of the couplings
to the excitation or transfer channels. It is shown in the
next subsection that a much better agreement with the data
is achieved by applying the M3Y+repulsion instead of the
Woods-Saxon potential.

The agreement with the data in Fig. 4 cannot be improved
much by scaling the calculated cross sections with an ad-
justable scaling factor Sc in the data analysis. The best fit for
Sc = 1 has a χ2/N = 8.7. It can be reduced to χ2/N = 6.8
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FIG. 4. (Color online) Enhancement of the fusion of 13C+13C
relative to the cross section of the no-coupling calculation. Shown
are the enhancement of the one-phonon calculation (ph1), the mutual
excitation (Ch13) calculation, and the full calculation (Ch26) which
also includes one-neutron transfer. The calculations are based on a
standard Woods-Saxon potential with radius Rws = 5.268 fm. Also
shown are the ratios of the measured cross sections [2,3] relative to
the no-coupling limit.
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by adjusting both the scaling factor Sc and the radius RWS of
the Woods-Saxon well. The values that give the best fit are
Sc = 0.885 and RWS = 5.345 fm.

Another observation in Fig. 4 is that the data sets of
Trentalange et al. [2] and Charvet et al. [3] differ by up to 10%
in the overlapping energy regime. However, this is not a serious
problem because the systematic error of both experiments is
about 15%.

B. Application of the M3Y+repulsion potential

One advantage of the M3Y+repulsion potential is that it
has an additional adjustable parameter in addition to the radius
R of the density, namely the diffuseness parameter ar of the
density that is used in calculating the repulsive part of the
potential. This parameter controls the depth of the pocket and
the thickness of the barrier in the entrance channel potential.

The determination of the best fit parameters is illustrated in
Fig. 5. For a fixed value of ar , the fusion cross sections were
calculated for different values of the radius R of 13C. In each
case the scaling factor Sc was adjusted to give the best χ2/N .
The results are shown by the dashed curves. The minimum
χ2/N for each dashed curve defines the solid curve, and the
minimum of this curve defines the absolute best fit (ABF) to
the data. The parameters of the minimum are ar = 0.31 fm,
the matter radius R = 2.28 fm, and the scaling factor Sc =
0.843. They are compared in Table I to other parameters that
were obtained for fixed choices of the radius of 13C.

The χ2/N of the best fit to Trentalange’s data is small
according to Table I, χ2/N = 1.0, although the adopted
systematic error of the analysis was set to only 3%. The scaling
factor of the best fit, Sc = 0.843, is not unreasonable but it
is slightly extreme because the systematic uncertainty in the
absolute cross section of the measurement was estimated to
be 15% [2]. It is therefore of interest to discuss whether the
other parameters of the best fit are realistic. The diffuseness
ar associated with the repulsion, ar = 0.31 fm, falls below
the range of values ar = 0.4–0.43 fm that have been obtained
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FIG. 5. (Color online) Results of the χ 2 analysis of the 13C+13C
fusion data [2] as function of the radius of 13C. The dashed curves
show the χ 2/N for the indicated fixed values of ar and minimized
with respect to the scaling factor Sc. The parameters of the best
solution for ar = 0.31 fm are shown in Table I.
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FIG. 6. (Color online) Ratios of the measured [2] and calculated
fusion cross sections for 13C+13C. The coupled-channels calculations
include 26 channels and are based on the M3Y+repulsion potential
using the 13C radius R = 2.17 fm (BF, Sc = 1) and R = 2.28 fm
(ABF, Sc = 0.843), respectively. Also shown is the ratio of Charvet’s
data [3] and the calculation that uses the radius R = 2.28 fm.

in the analysis of fusion data for other symmetric heavy-ion
systems [20].

The 13C radius of the best fit, R = 2.28 fm, produces an
rms matter radius of 2.407 fm according to Table I which is
slightly larger than the rms matter radius of 2.378 fm that
was estimated in Eq. (3). This result is not unreasonable as
discussed in connection with an analysis of the fusion data for
48Ca+48Ca [20]. There it was pointed out that a larger radius
may simulate the effect of the dynamic polarization of excited
states which are not included explicitly in the coupled-channels
calculations.

If the scaling parameter Sc is kept fixed at Sc = 1 in the
data analysis, the best fit is achieved with a smaller 13C radius,
namely R = 2.17 fm. This value is almost as small as the radius
for the point-proton density distribution of 13C. The fit is poor,
with a χ2/N = 2.75 as shown in the first line of Table I. The
value of the diffuseness parameter ar which produces the best
fit in this case is ar = 0.33.

The ratios of the measured and calculated cross sections dis-
cussed above are illustrated in Fig. 6. The ratio of Trentalange’s
data [2] to the best fit (BF) solution with radius R = 2.17 and
Sc = 1 is shown by the open symbols. The ratio of the same
data set to the ABF with radius R = 2.28 fm is shown by
the solid (red) points. Also shown at higher energies is the
ratio of Charvet’s data [3] to the same solution (with radius
R = 2.28 fm). It is seen that the ratios for the absolute best
solution are essentially constants (≈0.84 for Trentalange’s data
and ≈0.92 for Chatvet’s data up to 10 MeV). The two data sets
differ by up to 10% in the overlapping energy regime. However,
this is not a serious problem as mentioned earlier because the
systematic error of both experiments is about 15%.

The ratio for best fit (BF) solution for Sc = 1 exhibits some
energy dependence in Fig. 6. It is, of course, possible that
the data do contain some structures (similar to those observed
in the 12C+12C fusion data) that should not be accounted for
by the type of coupled-channels calculations performed here.
The ABF solution, obtained with the 13C radius R = 2.28 fm
and Sc = 0.843, could be therefore misguided or misleading.
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On the other hand, the absolute best fit does have some
attractive features as argued above: The quality of the fit is
excellent, and the extracted rms matter radius is only 1.2%
larger than expected. The absolute best fit requires a scaling
of the calculation, Sc = 0.843, which is not unreasonable
considering the large 15% systematic error of the experiment.
The parameters of the ABF are therefore adopted in the
following.

C. Results of the analysis

In order to illustrate what makes it possible to reproduce
the energy dependence of Trentalange’s data so well when
using the M3Y+repulsion potential, we show in Fig. 7 the
enhancement of the calculations and the data relative to
the no-coupling calculation. In contrast to the results for
the Woods-Saxon potential shown in Fig. 4, there is now a
strong sensitivity to mutual excitations. This is caused by a
larger second derivative of the ion-ion potential (stemming
from the onset of the strong repulsion) and, consequently, a
stronger quadratic coupling of the entrance channel to mutual
excitations.

An interesting observation in Fig. 7 is that the neutron
transfer does not have much influence on the calculated cross
section in the energy regime of the experiment. This is seen
by comparing the calculations labeled Ch13 and Ch26. The
influence shows up at energies below 3 MeV, so it will have
an impact on the extrapolation of the cross sections to lower
energies. Another interesting feature in Fig. 7 is the structure
of the data at low energies. The small peaks at 3.6 and 4.2 MeV,
for example, could be remnants of similar structures observed
in the fusion data for 12C+12C.

The calculated S factors for the fusion of 13C+13C are
compared in Fig. 8 to the data of Ref. [2]. The data have here
been divided by the scaling factor Sc = 0.843 which optimizes
the agreement with the full calculation labeled Ch26. The
calculation that is based on one-phonon excitations only (ph1)
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FIG. 7. (Color online) Enhancement of the fusion of 13C+13C [2]
relative to the cross sections obtained in the no-coupling limit. The
curves show the enhancement of calculations that include one-phonon
(ph1) and mutual excitations (Ch13) and the full calculation (Ch26)
which also includes one-neutron transfer. The enhancement factors
for Trentalange’s data [2] have been divided by the optimum scaling
factor, Sc = 0.843.
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FIG. 8. (Color online) S factors for the fusion of 13C+13C
calculated using the M3Y+repulsion potential. They are compared
to the data of Ref. [2], which have been divided by the scaling factor
Sc = 0.843.

does not reproduce the energy dependence of the data between
3 and 6 MeV. The calculation that includes mutual excitations
but no transfer (the Ch13 calculation) is seen to reproduce the
corrected data very well. Finally, the additional coupling to the
one-neutron transfer produces some enhancement in the full
Ch26 calculation but that occurs at energies below the range
of the experiment.

The calculated cross sections obtained with all 26 coupled
channels and the parameters determined in the previous
subsection are compared in Fig. 9 to the data of Ref. [3].
The calculation exceeds the data on average by only 4%,
which is small compared to the 15% systematic error of the
experiment. The coupled-channels effects are fairly modest
at high energies; this can be seen by comparing to the
no-coupling calculation which is shown by the thick dashed
curve. The results of a maximum angular-momentum cutoff in
the coupled-channels calculations are shown for Lmax = 2–12.

 1200

 1000

 800

 600

 400

 200

0  18 16 14 12 1086

σ f
 (

m
b)

Ec.m. (MeV)

13
C+

13
C

Ch26
Lmax=2-12

No coupl.

FIG. 9. (Color online) Measured fusion cross sections for
13C+13C [3] are compared to the full coupled-channels calculation
(Ch26, the solid curve). The thin (green) dashed curves are the
calculated cross sections for a maximum angular momentum of
Lmax = 2, 4, 6, 8, 10, and 12. The (black) dashed curve shows the
no-coupling limit.

064613-8



EFFECTS OF MUTUAL EXCITATIONS IN THE FUSION . . . PHYSICAL REVIEW C 84, 064613 (2011)

IV. PREDICTIONS OF THE FUSION OF 12C+13C

Having determined the radius of 13C and the diffuseness
ar associated with the repulsive part of the double-folding
potential in the previous section, one can now predict the
ion-ion potential for 12C+13C, provided the density of 12C is
known. Here the parameters of the point-proton density of 12C
given in Table I are adopted. The predicted M3Y+repulsion
potential is shown in Fig. 2(b). It is similar to 13C+13C
potential shown in Fig. 2(a). The main difference between the
two figures is that the ground state of the compound nucleus
25Mg is located at a higher energy than 26Mg because of the
unpaired neutron in 25Mg.

The excitation energies that are considered in the calcula-
tions of the fusion cross sections for 12C+13C are shown in
Fig. 10. The solid (red) lines represent the excitations shown
in Table I which together with the elastic channel give a total
of seven channels. One of these states is the 0+

2 Hoyle state
of 12C which is included because its coupling to the 2+ is
known.

The (blue) dashed lines in Fig. 10 are the six mutual
excitations that are considered. They include the (2+, 3−)
mutual excitation in 12C, the (3/2−, 5/2+) mutual excitation
in 13C, and the four (I1, I2) mutual excitations in projectile and
target with I1 = 2+ or 3− and I2 = 3/2− or 5/2+. Two-phonon
excitations (except the 0+

2 Hoyle state which has already been
mentioned) and mutual excitations that involve the 5/2− state
in 13C are ignored. The total number of excitation channels is,
therefore, 7 + 6 = 13. When the one-neutron transfer with
zero Q value is included in the calculations as described
in Sec. II D, the number of channels is doubled. The full
calculation, which includes the one-neutron transfer and all
13 excitation channels shown in Fig. 10 will therefore have 26
channels and it is referred to as Ch26.

A major problem, which causes some uncertainty in the
predictions made by the coupled-channels calculations, is the
high excitation energy and the large strength of the octupole
transition in 12C (see Table I). A large excitation energy implies
decaying boundary conditions at large separations of projectile
and target instead of the scattering boundary conditions, and
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FIG. 10. (Color online) Excitation energies of the channels
considered in the calculations of the 12C+13C fusion cross section.
The (red) solid lines are the states given in Table I. The blue lines are
mutual excitations considered in the calculations.
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described in the text. The associated calculations without transfer,
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this can cause numerical problems. A large octupole strength
implies a strong sensitivity to mutual excitations that involve
the 3− state and some of these excitations are poorly known
as explained below. The octupole excitation of 13C, on the
other hand, is not a problem because the excitation energy of
the 5/2+ state is much lower than in 12C, and the effective
octupole strength is reduced as shown in Eq. (11).

The enhancement of the 12C+13C fusion relative to the
no-coupling limit is shown in Fig. 11 for different coupled-
channels calculations. The full calculation Ch26 has a very
strong peak near 4.7 MeV. The calculation Ch24, which
excludes the mutual (2+, 3−) excitation in 12C, has a much
weaker peak. There are two reasons why the mutual (2+, 3−)
excitation in 12C has such a large influence on subbarrier
fusion. One reason is the large octupole strength of 12C. The
other reason is that the direct coupling of the ground state to
mutual excitations is governed by the second derivative of the
ion-ion potential, according to Eq. (8), and this quantity is
particularly large for the M3Y+repulsion potential as pointed
out in Sec. III C.

It is very interesting that the enhancement of the data [4,5]
with respect to the no-coupling limit also exhibits a peak
structure in Fig. 11. The peak is located near 4.3 MeV,
somewhat below the positions of the two calculated peaks.
The influence of transfer can be seen by comparing the thin
curves C12 and Ch13, which do not include the influence of
transfer, to the corresponding thick curves Ch24 and Ch26,
which include the effect. The influence is relatively modest
but it does shift the calculated peaks toward the peak position
of the data.

The S factor for the fusion of 12C+13C is illustrated in
Fig. 12. The calculation “WS Ch26” is based on the standard
Woods-Saxon potential with radius RWS = 5.352 fm, depth
V0 = −38.6 MeV, and diffuseness a = 0.63 fm, which was
illustrated in Fig. 2(b). It includes all 26 channels considered
in this sections and makes a very good fit to the data above
4 MeV. However, a strong hindrance of the data sets in
at energies below 4 MeV. The comparison shows that the
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FIG. 12. (Color online) S factors for the fusion of 12C+13C
[4,5] are compared to calculations that are based on a Woods-Saxon
potential and 26 channels (WS Ch26) and on the M3Y+repulsion
potential with 24 and 26 channels, respectively. The no-coupling
limit is also shown.

fusion of 12C+13C is an example on the fusion hindrance
phenomenon which has been observed in many medium heavy
systems [9,10].

The two calculations Ch24 and Ch26 that are based on
the M3Y+repulsion potential reproduce the data in Fig. 12
at the lowest and also at high energies. The calculation Ch26
exceeds the data between 4.5 and 5.5 MeV by up to 50%. The
calculation Ch24 is in better agreement with the data but there
are still some deviations. The measured S factor is rather flat
between 3 and 4 MeV and has a modest peak near 4.3 MeV. The
calculated S factors do not exhibit any sharp peak structures
but rise slowly with decreasing energy.

The two calculations Ch24 and Ch26 represent extreme
views of the influence of the mutual excitation of the 2+
and 3− states in 12C, i.e., of a quadrupole excitation built
on the 3− state or an octupole excitation built on the 2+
state. The calculation Ch24 completely ignores it, whereas
the calculation Ch26 exaggerates it by assuming that the 2+
and 3− excitations are independent modes of excitation. In a
realistic, microscopic description, the mutual excitation of the
2+ and 3− states will not be one discrete excitation but will be
fragmented and spread out over a range of excitation energies.
This is indeed the result of shell-model calculations that are
discussed in Sec. VI.

V. PREDICTIONS OF THE FUSION OF 12C+12C

Similar predictions are made for the fusion of 12C+12C. The
entrance channel potential that is used is shown in Fig. 2(c). It
was obtained with the parameters of the point-proton density
of 12C shown in Table I, and the diffuseness associated with
the repulsive part of the M3Y+repulsion interaction was again
set equal to the value ar = 0.31 fm which was determined in
the analysis of the 13C+13C fusion data.

The excitation energies that are considered in the coupled-
channels calculations are shown in Fig. 13. The solid (red) lines
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FIG. 13. (Color online) Excitation energies of the channels
considered in the calculations of the 12C+12C fusion cross section.
The (red) solid lines are the states given in Table I. The (blue) dashed
lines are the mutual excitations considered in the calculations. The
(3−, 3−) mutual excitation of projectile and target is indicated but it
is ignored in the calculations.

represent the excitations shown in Table I which together with
the elastic channel give a total of 7 channels. The second 0+
state is the Hoyle state. The (blue) dashed lines in Fig. 13 are
the mutual excitations that are considered in the calculations.
They include the three mutual excitations, (2+, 2+), (2+, 3−),
and (3−, 2+), with a one-phonon excitation in each 12C
nucleus, and the two mutual excitations, (2+, 3−), with both
one-phonon excitations belonging to the same nucleus. There
is also a (3−, 3−) mutual excitation indicated in the figure
(with one octupole excitation in each nucleus) but it is ignored
because the excitation energy is very high. The total number
of channels consisting of the 7 channels mentioned above
[represented by the solid (red) lines in Fig. 13] and the 5
mutual excitation channels [the (blue) dashed lines in Fig. 13]
is, therefore, 12. The associated coupled-channels calculation
is referred to as Ch12.

The calculation Ch12 includes the mutual excitation of the
2+ and 3− states, not only when the two states belong to
different nuclei but also when they belong to the same nucleus.
Since the description of the (2+, 3−) mutual excitation in terms
of two independent modes of excitation is questionable when
the two excitations belong to the same nucleus, it is of interest
to perform a calculation that does not include that kind of
mutual excitation. Such a calculation contains 10 channels
and is referred to as Ch10. The Ch10 calculation does contain
mutual excitations of the 2+ and 3− states but only when
the two one-phonon excitations belong to different nuclei. The
two calculations are compared in Fig. 14 to the measured cross
sections of Refs. [27–30]. The Ch12 calculation exceeds the
data substantially between 3 and 5.5 MeV, whereas the Ch10
calculation is lower and intersects with some of the measured
peak cross sections.

The S factors for the fusion of 12C+12C predicted by the
Ch10 and Ch12 calculations are compared in Fig. 15 to the
data of five experiments [27–31]. The symbols for the four
measurements [27–30] are the same as in Fig. 14, whereas
the symbol for Spillane’s measurements [31] is indicated in
the figure. The calculation Ch12 exceeds all of the data points
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shown in this figure. It is considered an extreme upper limit
because it exaggerates, as discussed above and in the previous
section, the influence of the mutual (2+, 3−) excitation within
the same nucleus. The calculation Ch10, which is much lower,
is considered a lower limit of the prediction.

The large difference between the Ch10 and Ch12 calcu-
lations shown in Fig. 15 is very unfortunate. It illustrates
the difficulty and uncertainty in predicting the fusion cross
section due to the poor empirical knowledge of excitations
that are built on the 2+ and 3− states. We shall eliminate
that problem in the next section by applying the results of
shell-model calculations. Another uncertainty, which is similar
in magnitude, is due to the empirical value β3 = 0.90(7) [21].
This is illustrated in the figure by the thin lines and represents
an error band of up to ±25%.

The S factor one obtains in the no-coupling limit is shown
by the lowest dashed curve in Fig. 15. It is a factor of 2 to 3
below the measured peak cross sections and a factor of 2 to
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FIG. 15. (Color online) Measured S factors for the fusion of
12C+12C [27–31] are compared to the coupled-channels calculations
Ch10 and Ch12 and to the no-coupling limit. The thin solid curves
show the error band in Ch10 calculations due to the uncertainty in the
octupole strength, β3 = 0.90 ± 0.07.

5 above the minima of the measured cross sections. In other
words, it does not provide a background nor does it provide an
upper limit of the measured cross sections. It is closer to the
smooth experimental cross section constructed by Yakovlev
et al. [32].

VI. SYSTEMATICS OF THE FUSION
OF CARBON ISOTOPES

The discussion in the previous sections shows that it is
possible to develop a fairly comprehensive description of the
fusion data for the three carbon systems within the coupled-
channels approach. A disturbing trend in the analysis of the
13C+13C fusion data [2] is the need for dividing the data by
the factor Sc = 0.843, i.e., for increasing the measured cross
sections by 19%. However, that is not a very serious problem
because the systematic error of the experiment [2] is 15%.

The need for a renormalization of the 13C+13C data is
possibly an experimental problem because it is difficult to
explain why the measured fusion cross sections for 12C+13C
[4] are larger than the measured cross sections for 13C+13C
[2]. Naively, one would expect the cross sections for the
smaller system to be smaller. This is indeed the ordering
that is observed in the fusion of carbon isotopes with a
thorium target [33]. Of course, the problem could be in the
absolute normalization of 12C+13C data [4]. Whatever the
explanation is, the basic problem is illustrated in Fig. 16,
where the measured cross sections for the two systems have
both been normalized to the Ch26 calculation for the 13C+13C
system discussed in Secs. III B. It is seen that the normalized
cross sections are fairly constant but the cross sections for
the smaller 12C+13C system are larger, on average, by the
factor 1.02/0.84 = 1.21 (cf. the caption to Fig. 16). The 21%
deviation between the two measurements is within the large
uncertainties of the two experiments, each being of the order
of 15 to 30% but it does show an unexpected trend. Clearly, it
is desirable to have the experimental uncertainties reduced in
future measurements.
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FIG. 16. (Color online) Ratios of measured fusion cross sections
relative to the calculation Ch26 of the fusion of 13C+13C. The error
bars include a 15% systematic error. The average ratio for the 12C+13C
data [4] is 1.02, whereas the average ratio for the 13C+13C data [2] is
0.843.
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FIG. 17. (Color online) S factors for the fusion of 13C+13C [2],
12C+13C [4,5], and 12C+12C [27–31] are compared to the coupled-
channels calculations described in the text. The 13C+13C data have
been divided by Sc = 0.843, which optimizes the fit to the data.
The thin solid curves show the error band due to the uncertainty in
the octupole strength in 12C, β3 = 0.90 ± 0.07. The black dashed
curve is the no-coupling limit for 12C+12C.

Another disturbing feature discussed in the previous section
is the large uncertainty in the cross section predicted for
the fusion of 12C+12C. Half of the uncertainty concerns the
influence of the (2+, 3−) mutual excitation which is poorly
known experimentally [21]. One way to overcome this problem
is to rely on shell-model calculations [34] which predict that
E2 excitations built on the 3− state and E3 excitations built
on the 2+ state primarily populate a 4− state which is about
4 MeV above the 3− state. This is similar to the model we
have used for the mutual (2+, 3−) excitation. However, the B

values of these transitions are only about half of the B values
obtained for the corresponding E2 and E3 transitions from the
ground state to the first 2+ and 3− states in 12C.

The cross sections one obtains for the three fusion reactions
discussed in this work, using the best-fit parameters deter-
mined in the previous sections, and the shell-model results
described above, are compared to the data in Fig. 17 in terms
of the S factor. The data for 13C+13C have been divided by
the scaling factor SC = 0.843 which results in an excellent
agreement with the data. The calculations of the fusion of
12C+12C and 12C+13C are Ch12 and Ch26 calculations,
respectively, which are similar to those discussed in Secs. IV
and V. The only difference is that the parameters for the mutual
(2+, 3−) excitation in 12C have been replaced by shell-model
predictions [34].

The calculated S factors for the fusion of 12C+12C and
12C+13C are essentially predictions because the parameters of
ion-ion potential and the density of 13C were determined in the
analysis of the 13C+13C fusion data, whereas the density of
12C was determined by a fit to the experimental point-proton
distribution. The 12C+13C data [4,5] shown in Fig. 17 form a
plateau between 2.5 and 4 MeV and has a peak near 4.3 MeV.
These features are not quite reproduced by the calculation but
the fit to the data is not poor; the fit to the data of Ref. [4] is
stable with respect to the scaling factor Sc and to an overall
energy shift �E in the center-of-mass energy, i.e., the χ2 per
data point has a minimum for Sc = 1 and �E = 0.

Although there is still some uncertainty in the predicted S

factor for the fusion of 12C+12C, it appears that the calculation
shown in Fig. 17 is consistent with the maxima of the measured
peak cross sections. The peak at 4.924 MeV is within the
error band of the calculation. The three low-energy (triangular
shaped) data points are from Ref. [31]. They exceed the
calculation tremendously but that is not a problem either
because those three data points are questionable as discussed in
Refs. [35,36]. The calculation (with its error band) is therefore
expected to provide a useful guidance and an upper limit for
the extrapolation to the low energies that are of interest to
astrophysics.

VII. CONCLUSIONS

We have explored the fusion of different combinations of
carbon isotopes within the coupled-channels approach. The
fusion cross section is determined by ingoing-wave-boundary
conditions that are imposed at the minimum of the pocket in
the entrance channel potential. It turned out that the measured
cross sections for the fusion of 13C+13C cannot be explained
accurately at low energies when a standard Woods-Saxon
potential is applied in the calculations. However, the data can
be explained fairly well by applying the shallow potential
that is produced by the M3Y+repulsion potential. This is a
characteristic feature of the fusion hindrance phenomenon
which has been observed in many medium-heavy systems.
One reason the shallow potential makes it possible to explain
the carbon data by coupled-channels calculations is that the
high-lying excitations become closed channels at low center-
of-mass energies, not only with respect to reactions but also to
fusion.

The coupled-channels calculations are surprisingly sen-
sitive to mutual excitations and this seems to be justified
by the comparison to the data. Thus, the calculations that
include one-phonon excitations alone cannot explain the data
so well, neither when the standard Woods-Saxon nor the
M3Y+repulsion potential is applied. The data are reproduced
much better when mutual excitations are included and the
shallow M3Y+repulsion potential is applied. The reason is that
the direct coupling to these high-lying states is proportional to
the second derivative of the ion-ion potential and this quantity
is much larger for the M3Y+repulsion than for the standard
Woods-Saxon potential because of the strong repulsion.

The large sensitivity to the excitation of high-lying states
is particularly critical when the mutual excitations involve
the strong octupole excitation of 12C. The uncertainty in the
strength of the octupole excitation, and in the strength of
transitions to high-lying states that are built on the 2+ and 3−
states, makes it difficult to predict the fusion cross sections very
accurately when 12C is involved. However, by adopting the
nuclear structure properties of the high-lying states predicted
by the shell model, one obtains a fairly good description of the
12C+13C fusion data.

The prediction of the cross section for the fusion of
12C+12C, based on the ingoing-wave-boundary conditions and
the shell-model prediction of the coupling to high-lying states,
exceeds most of the measured cross sections and is consistent
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with the maxima of the observed peak cross sections. Thus
it appears that the calculation provides an upper limit of the
measured cross sections. The calculation is therefore expected
to provide an upper limit for the extrapolation of cross sections
into the unexplored territory of very low energies.

On the experimental side it is very important to get a
better absolute normalization of the measured fusion cross
sections. The current systematic errors are fairly large. This
was exploited in the analysis of the 13C+13C fusion data by fo-
cusing on the shape of the measured cross section, whereas the
absolute normalization was treated as an adjustable parameter.
In this way it was possible to calibrate the M3Y+repulsion
potential and achieve an excellent fit to the data. It is of great
interest to know whether the renormalization that was applied
to the data can be justified by more accurate measurements.
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APPENDIX: COUPLINGS

The matrix elements of the couplings between two heavy
ions are generated by matrix elements of the static or dynamic
deformation amplitudes αλμ (see, for example, Ref. [15]). The
matrix elements are expressed in terms of the reduced matrix
elements 〈||αλ||〉,

〈I2M2|αλμ|I1M1〉 = 〈I1M1λμ|I2M2〉 〈I2||αλ||I1〉√
2I2 + 1

. (A1)

The off-diagonal reduced matrix elements can be ex-
tracted from the measured B(Eλ) values according to the
formula

B(Eλ, I2 → I1) =
(

3Ze2Rλ
C

4π

)2 |〈I2||αλ||I1〉|2
2I2 + 1

. (A2)

If the B value is expressed in Weisskopf units the relation is

B(Eλ)W.u. = [Z(λ + 3)]2

4π

|〈I2||αλ||I1〉|2
2I2 + 1

. (A3)

The diagonal matrix elements, on the other hand, can be
obtained from the measured quadrupole moments,

QII =
√

16π

5

3ZeR2
C

4π
〈II |α20|II 〉. (A4)

They are related to the intrinsic quadrupole moments Q0 and
the K quantum number by

QII = 〈IK20|IK〉 〈II20|II 〉 Q0. (A5)

For a deformed nucleus with a static deformation βλ the
deformation amplitude is αλμ = βλD

λ
μ0(ê), where ê is the

orientation of the symmetry axis. In this case the expressions
for the matrix elements between states |IKM〉 are

〈I2KM|αλ0|I1KM〉

= βλ

√
2I1 + 1

2I2 + 1
〈I1M λ0|I2M〉 〈I1K λ0|I2K〉. (A6)

This implies [by comparing to Eq. (A1)] that the reduced
matrix elements are

〈I2||αλ||I1〉 = β2

√
2I1 + 1 〈I1K λ0|I2K〉. (A7)

B(Eλ)W.u. = [Z(λ + 3)]2

4π
β2

λ

2I1 + 1

2I2 + 1
〈I1K λ0|I2K〉2.

(A8)
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