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Toward a microscopic reaction description based on energy-density-functional structure models
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A microscopic calculation of reaction cross sections for nucleon-nucleus scattering has been performed by
explicitly coupling the elastic channel to all particle-hole excitations in the target and one-nucleon pickup
channels. The particle-hole states may be regarded as doorway states through which the flux flows to more
complicated configurations, and subsequently to long-lived compound nucleus resonances. Target excitations for
40.48Ca, 8Ni, *°Zr, and '**Sm were described in a random-phase framework using a Skyrme functional. Reaction
cross sections obtained agree very well with experimental data and predictions of a state-of-the-art fitted optical
potential. Couplings between inelastic states were found to be negligible, while the pickup channels contribute
significantly. The effect of resonances from higher-order channels was assessed. Elastic angular distributions were
also calculated within the same method, achieving good agreement with experimental data. Observed absorptions
are completely accounted for by explicit channel coupling, for incident energies between 10 and 70 MeV, with

consistent angular distribution results.
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I. INTRODUCTION

Achieving a quantitative and predictive description of the
structure of and reactions with nuclei across the isotopic
chart is an important and challenging goal of nuclear physics.
Accurate knowledge of reaction rates, in particular those
related to reactions induced by a single nucleon, are important
for nuclear energy applications and for understanding
astrophysical phenomena [1], such as the evolution of
stars and the synthesis of the elements. Radiobiology and
space-science developments rely on the proper determination
of reaction observables to provide accurate yields and spectra
for radiation protection and risk estimates [2]. National
security applications also make use of reaction and structure
information to detect nuclear materials of interest.

Accurate prediction of quantities related to nuclear reac-
tions is a complex problem as not only the desired outcome,
i.e., exit channel, has to be considered, but also the interference
and competition with all other possible outgoing channels.
A successful account of elastic nucleon-nucleus scattering,
for example, has to include the effects from the excitation
of nonelastic degrees of freedom, such as collective and
particle-hole (p-h) excitations, transfer reactions, etc. The
picture that emerges is one in which flux is removed from
the elastic channel by couplings to the nonelastic degrees of
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freedom. Formally, these nonelastic effects can be accounted
for by the projection-operator approach of Feshbach [3].
This approach reduces the complexity of the problem by
introducing an effective optical model potential (OMP). This
potential, often complex, can be defined [3,4] as the effective
interaction in a single-channel calculation that contains the
effects of all the other processes that occur during collisions
between nuclei. OMPs play a very important role in the
description of nuclear reactions. They are extensively used
to describe the interactions of projectile and target in the
entrance channel, and the interaction of ejectile and residual
nuclei after the reaction; they are crucial ingredients in
direct-reaction analyses (e.g., elastic and inelastic scattering,
transfer reactions, etc.) and provide transmission coefficients
for statistical (Hauser-Feshbach) calculations.

Most widely used are phenomenological OMPs fitted to
reproduce experimental data sets. They have been extremely
successful for many applications involving nuclei in the range
of the fits [5]. At the same time, such adjustable potentials make
strong assumptions about locality and momentum dependence
that are probably not justified. In addition, present nuclear
theory applications require increasingly accurate predictions,
specially for isotopes off stability. However, for nuclei lying
outside the range of the fits, such as unstable nuclei produced
at rare-isotope facilities, in the r process, and in advanced
reactor applications, this can lead to unquantifiable uncertain-
ties. The reaction mechanisms of systems involving weakly
bound nuclei are known to be different from the strongly
bound ones [6,7]. Studies have shown that the behavior of
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phenomenological OMPs for stable systems usually cannot be
directly extended to systems involving weakly bound nuclei
[8]. To achieve a better understanding of nuclear reactions
and structure, it is thus important to calculate OMPs by more
fundamental, general, and first-principle methods.

According to microscopic reaction theory, an OMP is
comprised of two components. The first is a real bare potential,
corresponding to the diagonal potential within the elastic chan-
nel, which is generally obtained by folding the nucleon distri-
butions of both nuclei with a nucleon-nucleon effective inter-
action. The second is a complex dynamic polarization potential
which arises from couplings to inelastic states. The resulting
optical potential is complex, composed of a real part (usually
slightly different from the bare potential) and an imaginary
component. The latter gives rise to absorption of flux from
the elastic channel to the other reaction channels, and is hence
directly connected with observed reaction cross sections.

Several attempts have been made to generate OMPs from
microscopic approaches. Some have used the nuclear matter
approach [9], where the calculation is first performed in nuclear
matter and a potential is then obtained for finite nuclei by an ap-
propriate local-density approximation. This approach provides
accurate results at nucleon energies 250 MeV [10]. Recently,
new methods based on self-energy theory have been imple-
mented [11], and new calculations, which combine a nuclear
matter approach and Hartree-Fock-Bogoliubov (HFB) mean-
field structure model, provide encouraging results for neutron
scattering below 15 MeV [12,13]. Earlier attempts used the nu-
clear structure approach, which is more suitable at energies be-
low 50 MeV [14], and calculated second-order diagrams using
particle-hole propagators in the random-phase approximation
(RPA) [14-17]. However, these were not able to fully explain
observed absorption: e.g., in Ref. [16], the couplings could
account only for &44% of the nucleon-nucleus absorption
and, in Ref. [17], only for ~71% including charge exchange.

The construction of OMPs from microscopic methods that
use mapping of effective interactions to nucleon-nucleon g
matrices, which are solutions of nuclear matter equations,
have proven to provide good agreement with reaction cross-
section data [18,19]. However, due to the increased number
of discrete states of heavier nuclei (A 2 12), this approach
does not accommodate their specific structures and processes.
A method that implements successive spectator expansions
of the optical potential, where the projectile is considered to
interact at first order with a single nucleon of the target, has also
proven to be a successful tool to obtain nucleon-nucleus cross
sections [20], although analyses were made only for scattering
energies in the range ~ 65 to 400 MeV. In addition, the method
described in Ref. [20] treats the propagator modification
through a nuclear mean-field potential taken from structure
calculations. Although this is a valid approach, it may not be
completely satisfactory when aiming to keep full consistency
with the theory of multiple scattering. A more consistent
alternative, although not intractable, would be more difficult
to implement.

RPA-based microscopic methods have also been applied
to heavy-ion reactions achieving good description of the
double giant dipole resonance [21-23]. In such works, one-
and two-phonon states were populated and anharmonicities

PHYSICAL REVIEW C 84, 064609 (2011)

and nonlinear terms were treated. OMPs were then obtained
through a semiclassical approach, by integrating the excitation
probability over all impact parameters.

The latest advancements in the description of the structure
of the nuclei from ab initio methods [24] allow for the
development of more fundamental reaction models based
directly on structure results. Such microscopic approach
leads to the calculation of reaction observables that are
consistent with the structure inputs adopted. In addition, OMPs
based on microscopic approaches are much more reliable
than phenomenological ones when extrapolated to describe
processes involving unstable nuclei or previously unquantified
transitions. Among the different microscopic structure models,
methods based on energy-density functionals (EDFs) emerge
as the only tractable theoretical tool that can be applied to all
the nuclides with A = 40 [24].

In this paper we report on recent progress made toward
achieving a complete microscopic calculation of the reaction
cross sections for both neutron and proton induced reactions
on a variety of medium-mass targets. We make extensive
use of recently developed fundamental structure models
based on energy-density-functional theory, such as RPA and
quasiparticle RPA (QRPA). We calculate sets of excited
states and the corresponding transition densities and potentials
from the ground state (g.s.) for different nuclei across the
periodic table. We then incorporate this information about
the transitions in coupled-reaction-channels calculations of
nucleon-nucleus reactions, coupling to all relevant channels
necessary to consistently obtain accurate cross sections. First
results of this approach were reported in Ref. [25], while here
we detail and extend that work.

The paper is structured as follows: in Sec. II we present
details of the structure models used and explain how they
connect with reaction calculations; Sec. III explains the proce-
dure adopted for the coupled-reaction-channels calculations;
in Sec. I'V our main results are shown and discussed; and Sec. V
presents our final conclusions.

II. STRUCTURE MODELS

A HFB calculation gives the particle and hole levels of a
given nucleus and fixes the p-h basis states for generating ex-
cited states within the framework of (Q)RPA, thus accounting
for long range correlations caused by the residual interactions
within the target. To obtain the initially occupied proton and
neutron levels in a nucleus, we use the Skryme energy-density
functional SLy4 [[26], Table I], a parametrization designed to
describe systems with arbitrary neutron excess, from stable
to neutron matter, by improving isotopic properties, which
overcomes deficiencies of other interactions away from the
stability line. Although we used only the SLy4 parametrization
in our work, the method is general enough to use any Skyrme
force or any other functional.

A. Ingredients of the calculation

In this subsection, we show the equation of the single-
particle wave function and building block of the RPA excited
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state. To describe the Hartree-Fock basis formed by particles
with spin s = %, the following state vectors can be defined:

I » _
nl—jmr> = Py @ x L 0, (D)
2 r 2 b

with radial wave functions ¢,,;,(r) expressed in a coordinate
representation, and x 1 and Xi;[" are spin and isospin compo-
nents, respegtively. We associate the creation and annihilation
operators a,Tdeml and a5, With these state vectors. It is
convenient to define a modified annihilation operator, s, =
(=1)J—m Qpisjme> Which is a spherical tensor of rank j and
projection —m.

We now define particle (p) and hole () states correspond-
ing to orbitals above or below the Fermi surface, schematically
indicated by p > F and h < F, respectively. The symbol
p represents all quantum numbers except the magnetic
projection; i.e., p = {nl,3 j,t,}. The same definition applies
to the hole states, replacing p with 4.

With the above definitions we define an operator that creates
a particle-hole pair coupled to angular momentum J and
projection M,

ALy (p By =" Gpmpjn — mul IM) @b, G, (2)

myny
The Hermitian conjugate of AJ} u(D, E),

AJM(pv Fl) = (_1)J_M AJ*M(pv ﬁ)s (3)

destroys a particle-hole pair, where M = —M. Both
Al (p. ) and A, 5(p, h) are spherical tensors of rank J
and projection M.

The QRPA formalism extends this HFB approach by
including quasiparticle excitations in the following way: (1) the
single-particle wave function is extended to a two-component
representation [27]; (2) the particle-creation—hole-annhilation
and particle-annihilation—hole-creation are extended to two-
quasiparticle creation and annihilation [28,29].

The HFB calculations were performed using a slightly
modified version of the HFBRAD [27] code called HFBMARIO
(version 6.2) [30].

B. RPA states

We define a boson operator ®L s that creates the RPA
state | N J M), where N is the principal quantum number, when
applied to the correlated ground state |0), which is the vacuum
for the RPA excitations. We also define the time-reversed
destruction operator

Oy =DM Oy _u. @)

The particle-hole operators relate to the boson operators
through

Ok = > XN A (p. )= YN Apa(p. ). (5)
p>F, h<F
Ovmi= Y. XN/ A(p. by =Y Al (p. ). (6)

p>F, h<F
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where X I/;th and ij\,'f are the components of the linear combi-
nation of particle-hole excitations used to construct the RPA
states [28,31]. In the present treatment the X and Y coefficients
are real and obey the normalization and orthogonality relations

S XX N b )
p>F, h<F
and
N'JyNJ NJyN'J
S XNy = xylvn =o. (8)
p>F, h<F

Such X and Y amplitudes were obtained by solving the RPA
equations [32] with the particle-hole interaction derived from
the second derivative of the energy-density functional [33].

C. RPA transition densities

Transitions of the many-nucleon system from an initial RPA
state |i) = |o; I; M;), with angular momentum /; and projection
M;, to a final RPA state | f) = |as/; M), where o; and oy
are additional quantum numbers required to characterize the
states, can be expressed with the help of transition densities
[34]:

sl () = (o M| Y 8(e—r,) S5, T7, o 1 M)
=47 Y (LuSv|J M) M;JM|I;My)
LuJM

x prai (Y, (), ©)

where the sum over index n represents summation over all
occupied orbitals (for protons or neutrons), r; is the position
at which the transition density is calculated, and r, is the
spatial-coordinate operator of the nth particle in the Hilbert
space containing the states. The S, and 7, are the spin and
isospin transition operators respectively; T = 0 corresponds to
the isoscalar part of the interaction and 7' = 1 to the isovector
one. For § =0orl,

So=1 and &y, =oy, (10)

together with similar quantities 77, for isospin,

To=1 and Ty, = ny, (1)
where oy, and 1, are the spherical components of the vector
of Pauli matrices. It is convenient to introduce a multipole
expansion for the transition densities. The coordinate-space
radial multipole transition density is

puii () =

1
—— (a1
1/21f+1( 7

x [YL(#) x S§], T7,

n

Ol,'I,'). (12)
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Using second-quantization techniques, we can write Eq. (12)
as

2 +1 . . .
pLé, ) = | Z Z}, (o, an i) X (@2 joball f1.0r)
a ot
< [YL(®) x Sslyllonjitn) T (13)

where the isospin matrix element is 77" = (302 Trq | 511).
In this expression the density is a sum over reduced matrix
elements between single-particle states weighted by spectro-
scopic amplitudes Z,’2 (@22, a1 j1), the calculation of which
will be described below.

We can calculate the corresponding momentum-space
density by the Fourier Bessel transform, as described in
Appendix, obtaining

ord ) =

> rlgr)

Olili>. (14)

Transition densities can be classified according to the
specific states that they connect. For a spin-0 even-even
spherical nucleus, we can divide the problem of finding such

1
(a1
,/21f+1< 7

X [YL(f'n) X Sg]] ’TT”q
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densities into three parts, according to the number of RPA
phonons in the initial and final states: (1). No phonons in
either initial or final state (this is needed for elastic scattering
from the ground state, described in Sec. I C1); (2). No phonon
in the initial state, one phonon in the final state (this is needed
for inelastic scattering from the ground state to an excited
state, described in Sec. I C2); (3). One phonon in each of the
initial and final states (this corresponds to inelastic scattering
between two excited states, and also to elastic scattering from
an excited state. It is described in Sec. I C3).

In each case the main work is the calculation of the
spectroscopic amplitudes (or Z coefficients). Using these
we construct the radial densities needed for folding-model
calculations of transition and diagonal potentials. Of course,
the same coefficients can be used to calculate any other
one-body operator connecting the initial and final states.

We use the symbol p to represent the set of quantum
numbers {n,/ p% Jptp} for particle states, along with an equiv-
alent definition for hole states. When the particle has a
subscript (e.g., pp), rather than use the cumbersome p; =
{np,Lp, 3 jp tp,} We use the simpler notation {n/, 3 ji#} unless
it leads to ambiguity; a corresponding notation is used for
hole states. The superscripts n and p of the densities below
indicate that neutrons and protons orbital transitions have to
be calculated independently, so they can be later combined to
form the transition potentials.

1. Elastic from ground state

The transition density that describes elastic scattering from the 0™ RPA ground state is given by

-~ 1 3/2
n(p).g.s. _(
Looo (r)_<47'[>

n>F, pp>F

Z V2 + 178 Z5 (P2 p1) ¢pz(r) ¢p1(r) n Z mzf}llas(hz,hl) ¢>h2(r) ¢hl(r)i|

r
hy<F, h<F

(15)

where the prime on the summation sign is a indication that only neutron orbitals are to be used for the neutron density, and only
proton orbitals for the proton density. Although in the elastic scattering the occupied orbitals do not correspond to holes, we still
associate such states with the indices 4 and &, in our notation to maintain consistency.

The ground-state density is easily evaluated from the above in the Hartree-Fock approximation. The Z coefficients for the
particle states vanish, and those for the occupied states are simply Z” S s (B2, B1) = 84,5, /22 + L. Using this in Eq. (15) we

obtain that the density is

. 1\ 2
PPES (1) = (E) 3 <2jh+1><¢hr(”) . (16)

h<F

2. From ground state to excited states

After calculating the corresponding spectroscopic amplitudes (Z coefficients) we find that the transition density needed for
scattering from ground to an excited state described by a single RPA boson is

Py D) =

<F

where the initial (ground) state has spin 0.

1
-1 S YN./ =1, )
4nmz e L U
A

[Yr (%) x Ssly lh =Jn ) (17)

2

) $p(r) ¢h(r)
r
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The single-particle matrix elements are

< 1 1 YTy AN
L= jp||[[YL % Ssly ll—jl) = —( 12l 1211J2LSJ< ) 7 3 S¢- (18)
/27 0 0 0 22
2 2 2o J
The following symmetry relation results from interchanging initial- and final-state quantum numbers:
1. 1 AR 1.
(llih [Y1 x Ssly 125]2) = (=DFFHERT (12512 [Ye x Ssly 11511) (19)

3. Between excited states

For scattering involving two excited states, the spectroscopic amplitudes may be divided into two components, identified with
the superscripts (1) and (2). The parts of the spectroscopic amplitudes with superscript (2) are present only if the initial and final
states are the same and J = 0. After a great deal of angular momentum algebra, we find the parts of the spectroscopic amplitudes:

- i N¢Jr o NilJ; J J J; NyJ N J; J J i
Zi(pa, p)V = (=1 20 1) (=1 x [szfhf Xpih {J{ Jn Jz} DT {]i Jw o Jr ”
N

(20)

L A (PR B A Je J T
Zh(hy b))V = —(=1) 20, +1 Y (=) x [X;V,fljf X { s } + (=D vy { s ”
P

B2 Jp I Ji Jp )2
(21
and
Z: (P2, p1)7 = N1 M NM 8 IM .00 27 agas(P25 P1),s (22)
Zy(ho, hy)” = 8Ny mp Nimi8m.00 Zif agas(h2s 1), (23)

where N; and N are the principal quantum numbers of the initial and final states, respectively, and J; and J; are their
corresponding angular momenta.
The corresponding transition density is

n 1 2J; + 1 ,
L(SPJ)( )= { Z [Z; T (p2, p)V + Z)(pa, p1)(2)] jlhi=h <lz J»

27, 1 [Yo(®) x Ssly

r r

ll‘]l) ¢p7(r) ¢p1(r)

p1>F, py>F

[Yo(F) x Ssly 11—

5J (24)

, v (i1
+ > [Zhha k)P + Z(hy, )P i (12512

hi<F, ho<F

)%(r) ¢hl(r)}

r r

where the reduced matrix elements are given by Eq. (18). For transitions between different initial and final states, only the Z
coefficients with superscript (1) appear. When the initial and final states are the same, those with superscript (2) also appear, but
only for zero angular momentum transfer (J = 0). This case corresponds to elastic scattering, and we see that the density is the
same as for elastic scattering from the ground state, but with a correction term given by the coefficient with superscript (1). When
J is nonzero and the initial and final states are the same, only the coefficient with superscript (1) appears and this can connect
different magnetic substates when L is even and overall angular momentum is conserved. This is a reorientation effect.

D. Transition potentials

The transition potential between any pair of levels of a given target nucleus is obtained by a linear combination of the transition
potentials for protons and neutrons of the target, which are calculated by folding an effective nucleon-nucleon interaction with
the corresponding transition density. This linear combination depends on whether the projectile is a neutron or a proton. If v37 (¢)

is the Fourier transform of the effective interaction and pg)f b (")(q) and ng’f i(p )(q) are the transition densities in configuration
space for protons an neutrons respectively, then the transition potential Ul ST (q) for a (n, n) reaction is

Zgjfl( ) — (USO + US]) TCI fl (n) + (USO _ )pTCI S (17) (25)
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For a (p, p) reaction, the transition potential is
Tq.fi Tq.fi, Tq.fi,
UquJfl(‘I) — (vso _ vSI)pngf’ (n) + (vso + vSl)pngfl (28
(26)

Our scattering effective nucleon-nucleon interaction is of
Gaussian shape, with parameters matched to the volume
integral and r.m.s. radius of the M3Y interaction at 40 MeV; it
includes a knock-on exchange correction [35]:

W (r) = Ve, 27)

In the momentum space, the explicit form of the effective
interaction is

1 2
_37-[3/26—11 /Qur)? (28)
T

where we used the values V) = —24.1921 MeV and pg =
0.7180 fm~! for the isoscalar part of the interaction and
VO1 = 11.3221 MeV and u; = 0.7036 fm~! for the isovector
component. We do not include any imaginary part in this
effective interaction, as our aim is to include all nonelastic
excitations explicitly in our model. Using the Fourier transform
v (g) of the effective interaction, the configuration-space
transition potential is

UT(CI) = VoT

i 2 o . i
ULl == fo dq ¢* julqr) v (@) prdi" @) (29)

For the reaction calculations coupling to QRPA states, we
used the single-folded potential constructed by folding the
interaction of Eq. (28) with the ground-state density from the
HFB calculation as the bare potential in the elastic channel.
For simplicity, this was also used as diagonal potential for all
excited states as well. For RPA couplings we used Egs. (16)
and (20)—(24) to obtain the diagonal potentials. Diagonal
potentials describe the elastic scattering for the g.s. or an
excited state, while the off-diagonal potentials provide the
couplings between the different states of the nuclei.

III. COUPLED-REACTION-CHANNELS CALCULATIONS

According to the coupled-reaction-channels (CRC) formal-
ism, to correctly account for the effects of the competition
between the different processes occurring in a nuclear reaction,
all possible couplings between channels (elastic, inelastic,
transfer, etc.) should be explicitly considered. However, in
practice the number of couplings has to be limited, taking into
account the relevance of each channel. A criterion that may be
adopted to define this limit is to consider the corresponding
order of the correction to the elastic scattering. To explore the
relative importance of the various contributions to the reaction
cross section, we carried out a series of calculations including
three different sets of couplings: (A) only inelastic couplings
from and to the ground state, described in Sec. III A; (B) same
couplings as in (A) but also couplings between the excited
states, described in Sec. III B; and (C) same as in (A) but
also couplings to transfer channels leading to the formation
of a deuteron, described in Sec. III C. Table I illustrates the
different couplings that were explicitly included in the three
sets of calculations (A, B, and C), and the corresponding order
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TABLE I. Summary of the channels that were explicitly coupled
in the calculations A, B, and C. The corresponding order of the
correction relative to elastic scattering is also shown.

Couplings present A B C Correction
Excited states with g.s. Yes Yes Yes  2nd order
Between excited states No Yes No 3rd order
Transfer with deuteron channel No No Yes 2nd order

of the correction from elastic scattering. The contribution of the
third-order processes included in calculation (B) was found to
be negligible, as shown in Sec. III B. Hence, other third-order
(i.e., couplings between inelastic and transfer channels) and
fourth-order (deuteron break-up channels, multistep transfer
via continuum) couplings were neglected.

Truncations in channel space are necessary in any practical
calculation. In our calculations, we depend only on real
components in the scattering potentials, as we aim to reduce the
number of phenomenological parameters to a minimum. We
therefore exclude all channels coupled to the elastic at second
order and above, and use the doorway approximation so that
the imaginary parts of the optical potentials in the first-order
channels hardly affect the scattering in the elastic channel.
Any imaginary potentials introduced into our models are only
for computational convenience. They allow us to temporarily
replace couplings already studied, and to focus on additional
effects.

A. Inelastic coupled channels

We initially performed coupled channels calculations for
reactions involving protons and neutrons scattered by the
nuclei 4°Ca, *8Ca, %¥Ni, *°Zr, and '**Sm, coupling the ground
state to all levels with excitation energy (E*) lying below
some limit. Such excited states were obtained according to
the QRPA model in a box of 15 fm. The QRPA states
above the particle emission threshold are used to approximate
exact scattering waves. Recent studies have shown that such
wave functions contain large density distributions outside
the nuclear radius [36]. When used in reaction calculations
they accurately represent the continuum [37-39] inside the
maximum radius. Thus, processes containing one nucleon in
the continuum (plus the inelastically scattered projectile) are
included in our model. Several applications of this approach
can be found in the literature for nuclear structure [40] and
reactions [41] problems. Results for the nonelastic absorption
for neutron-induced reaction on a *°Zr target, corresponding
to the inelastic couplings from g.s., are shown in Fig. 1 (solid
line).

B. Couplings between inelastic channels

Couplings between excited states, as predicted by the RPA
model, were explicitly considered with transition densities
given by Egs. (20)—(24), for nucleons scattered by *°Zr. In
Fig. 1 we show the reaction cross-section as a function of
partial wave for the reaction n + *°Zr at scattering energies of
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200 T I T I T I T I
—— Couplings to/from g. s. only
——— L _ =2

E,, = 10 MeV

300 E,, =20 MeV

Partial Wave

FIG. 1. (Color online) Reaction cross section as a function of
the partial wave for the reaction n + *°Zr. Couplings to all RPA
states below 20 MeV were included. The solid lines represent
calculations without couplings between excited states. The dashed
lines correspond to the results when transitions between excited
states are explicitly calculated, with maximum transferred angular
momentum L, = 2. The dash-dotted lines correspond to the same
calculation as the dashed ones but with L,x = 4.

10 MeV (upper panel) and 20 MeV (lower panel), where all
RPA states lying below 20 MeV were coupled. For each Ejy,
we compare the calculations considering only couplings to
and from the ground state with calculations that also include
couplings between excited states (with a maximum value,
L ax, for the transferred angular momentum between them). It
is observed that, although for Ej,, = 10 MeV there are small
but noticeable differences between calculations, for higher
energies the curves are almost undistinguishable. Despite
the fact that, above 10 MeV, the couplings between excited
levels do change the cross sections of the individual states
(mostly small changes, although for some few channels the
cross sections may differ by a factor up to 20%), the overall
sum among all states remains unchanged. This supports the
validity of the doorway approximation, according to which the
total flux leaving the elastic channel to all possible first-order
channels is independent of what happens afterwards: a nucleon
later might escape as a free nucleon, the flux might equilibrate
to compound-nuclear resonances, etc. The fact that couplings
between excited states were found to provide negligible
contribution to the absorption summed over all states, for
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scattering energies above 10 MeV, allowed us to disregard them
and other higher-order multistep processes in the subsequent
CRC calculations.

C. Coupling to pickup channels

Pickup channels play an important role in nucleon-nucleus
scattering [42—-44]. We performed coupled-reaction-channels
(CRC) calculations that included all open channels that
describe the formation of a deuteron by picking up the
appropriate nucleon from occupied levels in the target.

For transfers, we approximate the HFB target states by
bound single-particle states in a Woods-Saxon potential, with
the radii fitted to reproduce the volume radii and Fermi
energy obtained by the HFB calculations. The real diffuseness
and spin-orbit parameters were taken from Koning-Delaroche
optical potentials [45] at Ej, =0, with spin-orbit radii
adjusted by the same factor used to fit the volume part to
HFB radii. The values used are shown on Table II.

To overcome numerical limitations, we coupled explicitly
only to the transfer channels, incorporating all inelastic effects
in an inelastic optical potential obtained from coupling only to
inelastic channels. The imaginary component of this inelastic
optical potential corresponds to the Koning-Delaroche [45]
optical potential renormalized to account only for the inelastic
absorption obtained in calculation (A) (described in Sec. III A).

CRC calculations require, in addition to the scattering
potentials in the incoming channel, a scattering potential
between the deuteron and the remaining target. We adopted
the Johnson-Soper [46] prescription as it includes the effects
of deuteron breakup in adiabatic (sudden) approximation. In
this prescription, the deuteron potential is the sum of the
individual neutron and proton potentials with the target. For
the real parts we used the diagonal transition potentials of the
corresponding nucleon-nucleus reaction and, for the imaginary
parts, the sum of the imaginary parts of the Koning-Delaroche
[45] optical potential for protons and neutrons. That is, fitted
parameters are used in the imaginary part of the deuteron
potential. A phenomenological deuteron potential, such as the
one proposed by Daehnick et al. [47], was not used since
it would introduce fitted parameters also in the real part of
the deuteron potential. An iterative method of eliminating

TABLE II. Parameters of the binding potentials used for the
coupled-reaction-channels (CRC) calculations

Reaction ay (fm) VSO (MGV) rso (fm) aso (fm)
Ca(n,d) 0.67 5.85 1.10 0.59
Ca(p,d) 0.67 5.80 1.12 0.59
BCa(n,d) 0.67 5.88 1.13 0.59
BCa(p,d) 0.67 5.82 1.08 0.59
BNi(n,d) 0.67 5.91 1.08 0.59
BNi(p,d) 0.67 5.86 1.10 0.59
NZr(n,d) 0.66 6.01 1.11 0.59
NZr(p,d) 0.66 5.97 1.07 0.59
144Sm(n,d) 0.66 6.19 1.10 0.59
1“4 Sm(p,d) 0.66 6.16 1.08 0.59
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FIG. 2. (Color online) Reaction cross section as a function of the
partial wave for the reaction n + *®Ni at Ej;, = 30 MeV (a) and
20 MeV (b).

this need of phenomenological parameters is currently being
investigated, but we leave for future work the task to calculate
the deuteron and nuclear potentials self-consistently.

IV. RESULTS

To assess the success of our large-scale coupled-channels
approach, we compare the calculated reaction cross section to
that obtained by the Koning-Delaroche optical potential [45],
which is one of the best nucleon-nucleus phenomenological
optical potentials available, henceforth referred to as agM.

We examined the convergence with respect to maximum
excitation energy by performing CRC calculations that explic-
itly couple to all QRPA excited states below the cutoff energies
of 10, 20, and 30 MeV, for the incident energies Ej,p, = 10, 20,
30, and 40 MeV . We found that convergence of the inelastic
calculations requires coupling of all excited levels below the
scattering energy (i.e., all open channels). This behavior is
illustrated in Fig. 2, for neutrons scattered by Ni. As it is
seen in Fig. 2, upper panel, coupling to more highly excited
states results in larger reaction cross sections. In principle,
virtual couplings between the g.s. and closed channels can
affect the reaction cross sections by changing the real, but
not the imaginary, part of the OMP. However, in the lower
panel of Fig. 2 we observe that the couplings to states lying
above the scattering energy do not noticeably contribute to the
absorption.

For reactions having protons instead of neutrons as projec-
tile, such inelastic convergence is reached with lower cutoffs,
as is observed in Fig. 3 for p + Ni. This is due to the fact
that a charged particle has to overcome the Coulomb barrier,
which decreases the amount of energy available to excite target
states. Thus, states close to Ey,p, that would correspond to open
channels in the case of an incoming neutron become effectively
closed for proton projectiles. This behavior is observed for
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FIG. 3. (Color online) Reaction cross section as a function of the
partial wave for the reaction p + **Ni at E},, = 30 MeV.

each partial wave as well as at all energies, as is illustrated
for p + *8Ni in Figs. 3 and 4, respectively. Figure 3 shows
the reaction cross section as a function of the partial wave for
incident protons of 30 MeV. We observe that the difference
between the results when coupling to states up to 20 and
30 MeV is much smaller than the one for the similar system
having neutrons as projectile, shown in Fig. 2 (upper panel).
We also observe in Fig. 4 that the effects of coupling to states
lying between 20 and 30 MeV become noticeable only for
Eab 2 27 MeV, which is consistent with the Coulomb barrier
height of ~7.4 MeV, for this reaction.

Although the reaction cross section increases with the
number of coupled inelastic states, to the limit where all
open channels are coupled, Fig. 4 shows that such inelastic
couplings account only for a small fraction (*39% at Ey, =

1200 i : . | .

10001~ L —

8oor -~ Optical Model .

) i --- CC; QRPAE*<10MeV
E 600l ---- CC; QRPA E* < 20 MeV
x —— CC; QRPA E* < 30 MeV

b I -

400

200

10 20 30 40
E,,, (MeV)

FIG. 4. (Color online) Total reaction cross section as a function
of the incident energy for the reaction p + *Ni, for the different
inelastic calculations. The short-dashed line shows the results using
the Koning-Delaroche [45] optical potential. The lines serve as guides
to the eye as calculations were performed only for E,, = 10, 20, 30,
and 40 MeV.
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FIG. 5. (Color online) Reaction cross section as a function of
the partial wave for the reactions 7, p + *“**8Ca,¥Ni,*Sm, for the
different calculations at Ej,, = 30 MeV. The results shown include
couplings to the inelastic states lying below 30 MeV (dashed green
lines), to the inelastic and transfer channels (dash-dotted blue lines)
and to the inelastic and transfer channels with nonorthogonality
corrections (solid black lines). The Koning-Delaroche [45] optical
model calculations are shown as short-dashed red lines.

30 MeV) of oM. However, after including couplings to the
pickup channels through the CRC calculations, a large increase
is found, approaching o,?M and the experimental data, as can
be seen in Fig. 5. An even better agreement can be obtained
after we include the nonorthogonality terms [[48], p. 226] in
the CRC calculations, also shown in Fig. 5. Nonorthogonality
corrections arise because at small radii the deuteron bound
state is not orthogonal to bound states occupied in the target.

In Fig. 6 we directly compare our results for p + 3Ni,*Ca
with experimental data taken from the literature. We show the
reaction cross sections obtained by coupling only to inelastic
open channels (i.e., states with E* < Ej), and also by
including couplings to pickup channels (with nonorthogonality
corrections) in addition to the inelastic channels. As observed
in Fig. 6, despite the important role of the inelastic channels,
the most significant contribution to absorption comes from
the pickup channels. We achieve a good description of the
experimental data after appropriately including couplings to
all aforementioned processes.

Within the doorway approximation, we ignore explicitly the
absorptive effects of couplings to resonances in other channels,
such as compound nucleus formation. It is thus physically
expected that, to compensate for the missing absorption from
the neglected resonances, a damping in the nonelastic channels
is necessary. In the calculations mentioned above, a damping

PHYSICAL REVIEW C 84, 064609 (2011)

® Menet et al. 1
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FIG. 6. (Color online) Total reaction cross section as a function
of the incident energy for the reactions p + *®Ni (a) and p + **Ca
(b). The results are shown for calculations that include couplings
to the damped inelastic states lying below the scattering energy
(dashed green lines), and to the inelastic and transfer channels
with nonorthogonality corrections (solid black lines). The Koning-
Delaroche [45] optical model calculations are shown as short-dashed
red lines. For the *¥Ni target (a), we also show the results of two
calculations that do not include damping: one for inelastic couplings
(dotted magenta line) and one for inelastic and pickup channels
(dash-dotted blue line). Data from Refs. [49-52].

imaginary component, corresponding to the imaginary part of
the Koning-Delaroche optical potential [45], was added to the
inelastic diagonal potentials. Imaginary potential components
had already been included in the transfer channels. For
comparison purposes, we show the result obtained when
this imaginary component in the inelastic channels is not
added (undamped) for p + Ni in the top panel of Fig. 6.
There is noticeable difference between damped and undamped
calculations when including only inelastic couplings (the
damped line approximately reproduces the lower limit of the
undamped oscillations), but there is almost no discrepancy
when the pickup channels are also coupled. The observed
differences between the damped and undamped calculations
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FIG. 7. (Color online) Comparison of the reaction cross section,
as a function of the partial wave, between calculations using RPA
states and transitions with the Gogny D1S force [54] (dashed lines)
and using the QRPA model with the SLy4 functional. The results
shown are for neutrons (a) and protons (b) scattered by the target
0Zr, both with E},, = 30 MeV. Couplings to all states below 30 MeV
were included, according to each model. Transfer channels were not
included in the comparison.

indicate that the doorway approximation adopted, although
very good, is not perfect.

A finite-range interaction in a HFB description of the target
structure was also considered, as described in Ref. [53]. For
reactions of nucleons scattered by 97, the reaction cross
section results using the QRPA model with the SLy4 functional
were found to be practically equivalent to the results found
using RPA states and transitions with the Gogny DI1S force

2500 —

® Menet et al. b
---- Optical Model
---- CC; RPA E* < 30 MeV 1
--- CC; RPAE* <40 MeV
—— Inelastic + transfer couplings

2000 -

500 e SIS

20 30 40 50 60 70
E,,, (MeV)

FIG. 8. (Color online) Total reaction cross section as a function
of the incident energy for the reaction p + *°Zr using the Gogny
D1S force [54]. The results are shown for couplings to the inelastic
RPA states lying below 30 (dash-dotted line) and 40 MeV (dashed
line), and to the inelastic and transfer channels with nonorthogonality
corrections (solid line). The Koning-Delaroche [45] optical model
calculations are shown as short-dashed lines. Data from Ref. [49].
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[54], as illustrated in Fig. 7. This was observed despite the
proton pairing gap of 1.2 MeV of *°Zr. The fact that, below a
given excitation energy cutoff, there are generally many more
QRPA states than RPA ones was not significant. In Fig. 8 we
show the total reaction cross sections for p + °°Zr as a function
of the incident energy obtained by coupling to RPA states and
using the Gogny D1S force, obtaining again good agreement
with experimental data after including the pickup channels.
This work focuses mostly on reaction cross sections, which
test the modulus of the S-matrix elements. Additional insights
can be gained from elastic angular distributions. Preliminary
calculations of these give reasonable agreement with measured
cross sections. As an example, we show in Fig. 9 predictions
for the elastic cross sections of 40 and 65 MeV protons
scattered by a “°Zr target. The dash-dotted lines represent
calculations performed within our model, coupling to all
QRPA inelastic and deuteron channels. A phenomenological
spin-orbit component from Ref. [45] was added, so the analysis
of our model would be, for now, limited to the central

10— T 17 1 " T " T " T " T 7
p+9°Zr Blumb I
p _ ) umberg etal.
104 Elab =40 MeV ——— Optical Model N
---- HFB potential
'(-'%‘ —— Modified bare potential
@ 10°
o)
E
G
3 10°
©
o°
10'

P I N A R S R
w7771 71—
10° - ¥ .

Kl
8 10° -
S
£
S o
S 10 7]
3
e Sakaguchietal. 7 TeNs.
100 | ——- Optical Mod_el o e
---- HFB potential L2 4

—— Modified bare potential i

jotb——— L1

10 20 30 40 50 60 70 80 90
0, ., (degrees)

FIG. 9. (Color online) Angular distribution for the elastic cross
section for the reaction p + °°Zr at scattering energies of 40 (a)
and 65 MeV (b). The dash-dotted and solid lines correspond to the
predictions of our model using the potential from HFB densities and
from a slightly modified bare potential (see text), respectively. The
Koning-Delaroche [45] optical model calculation is shown as the
short-dashed line. Data from Refs. [55,56].
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components of the OMP. The single-folded potential obtained
from the HFB ground-state density was used as the central
bare potential, as described previously in Sec. II D. The solid
lines correspond to the same calculation but with a modified
bare potential instead, which has an ~18% reduced internal
depth while maintaining the same intensity in the surface
region. This way, the internal depth of this new modified
potential approaches the phenomenological one while the
reaction cross sections remain essentially unchanged. As
observed in Fig. 9, these results are in better agreement with
experimental data, especially for smaller angles, providing an
additional improvement from the calculation with the unmod-
ified potential. This illustrates how the angular distributions
are sensitive to the effective interaction. This sensitivity can
serve as a method to not only evaluate how realistic the initial
structure assumptions were, which were consistently extended
to the calculation of reaction observables, but also to identify
important features of the effective interaction adopted. For
example, the fact that a better agreement with experimental
data is achieved by reducing the internal depth of the bare
potential indicates that density-dependence effects, which
have been ignored explicitly, should be relevant for future
refinements of the model. Considering the energy dependence
of the interaction, or implementing an explicit treatment of
the exchange terms, would also improve the agreement of the
model predictions with the experimental data. The result from
a phenomenological optical potential [45] calculation is also
shown in the figure for comparative purposes.

V. CONCLUSION

We have calculated the reaction cross-sections for nucleon
induced reactions on nuclei “9*8Ca, 38Ni, %°Zr, and **Sm.
This was done by explicitly calculating the couplings to all
relevant transfer and RPA and QRPA inelastic channels. It
was found that this inelastic convergence is achieved when
all open channels are coupled. Inelastic couplings account
for an important part of the reaction cross section, but still
most of it corresponds to couplings to the deuteron formation
pickup channel. The effect of couplings between excited
levels was studied, leading to the conclusion that they did
not contribute significantly to the nucleon-nucleus reaction
cross sections, and thus could be ignored. We were able to
obtain reaction cross sections that were in good agreement
with phenomenological optical model results and experimental
data, by means of coupled channels and coupled reaction
channels calculations, with nonorthogonality corrections. Ab-
sorptive effects of resonances from other channels appear to be
negligible when the one-nucleon pickup channels are coupled
in addition to the inelastic channels. Preliminary calculations
of elastic angular distributions were also in good agreement
with experimental data, for small angles. This demonstrates the
applicability of the doorway approximation, which is made
evident by the negligible difference in absorption observed
between calculations considering damped and undamped
inelastic couplings, after also including the pickup channels.
Future work on couplings between different types of nonelastic
processes will include higher-order corrections.
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APPENDIX: FOURIER-BESSEL EXPANSIONS

The following discussion is based on the treatment of
Petrovich [57], which has been applied to inelastic scattering
by Petrovich, Carr, and McManus in Ref. [58].

We consider the Fourier-Bessel series expansion of a
function that can be expressed in the form

F@® = fim(r)Y ]y ®),

which is defined within a radius R. We refer to the radial part
frm(r) as a partial-wave function. In applications the function
frum is frequently independent of M and is then labeled f;; we
retain the more general form. The Fourier transform is defined
as

(AL)

fl@)= f dr 197 f (1), (A2)
where the domain of the radial part of the integral is 0 to
R. Petrovich employs the lower (—) sign; we retain both
possibilities.

By using the expansion of the exponential term of Eq. (A2),

MO = 4 Y (i) i (gr) Yy ®Ym (@),
JM

(A3)

and the definition of the dot product of spherical tensors [59]
and inserting the result in Eq. (A2), we find

F@ = &ED fru@Y (@), (A4)
where we have defined
R
fru(q) = 4w fo dr r?j;(qr) fiu(r), (AS)

which is the partial-wave form of the transformation; we
refer to the function f;(q) as the partial-wave function in
momentum space.

In the limit R — oo it is easy to see that the expression for
the reverse transformation is the usual Fourier integral; that is,

f dq e™7 f(q), (A6)

fr) =

(m)?

where the integral extends over all momentum space, or in
partial-wave form,

Fim(r) = /0 dq ¢*jiqr) fin(q). (A7)

(2n)?
If the partial wave expansion of the function to be transformed
is defined in terms of Y, instead of Y7,,, the above discussion
is unaltered. That is, if Y7, is replaced by Y, in Eq. (Al),
all expressions are identical except for the same replacement
in Eq. (A4).
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