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The phase structure of symmetric nuclear matter in the extended Nambu–Jona-Lasinio (ENJL) model at
finite baryon chemical potential μ

B
and temperature T is studied by means of the effective potential in the

one-loop approximation. It is found that chiral symmetry gets restored at high nuclear density and a typical
first-order phase transition between liquid and gas occurs at zero temperature, T = 0, which weakens as T grows
and eventually ends up with a critical point at T � 18 MeV. This phase transition scenario is confirmed by
investigating the evolution of the effective potential as a function of effective nucleon mass and the equation of
state. The restoration of chiral symmetry gives a second-order phase transition in the region 0 � T � 171 MeV
and a first-order transition in the region T � 171 MeV.
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I. INTRODUCTION

Presently, heavy-ion collisions at high energies provide the
opportunity to explore many interesting properties of matter
under extreme conditions. In this connection, properties of
hot and dense strongly interacting matter, especially its chiral
transitions, are in the focus of experimental and theoretical
investigations. There has been considerable progress in ex-
ploring the chiral phase transition in quark matter within
the framework of lattice QCD simulation [1] and effective
QCD models [2,3]. Simulations [4] on the lattice including
dynamical quarks with realistic masses predict a crossover-
like deconfinement (chiral) transition at temperatures around
170 MeV. The situation at finite baryon densities remains
uncertain and subject to model building.

In fact, the phase transition of nuclear matter has been often
studied using numerous phenomenological models providing
descriptions in terms of nucleonic degrees of freedom [5–15].
Nonrelativistic nuclear models using various types of nucleon-
nucleon potentials are available at low density exclusively, but
they fail to reflect the physical characteristics of dense matter.
Relativistic mean-field nuclear models of the Walecka type
[16] have successfully reproduced many physical properties
of medium and heavy nuclei. Other relativistic nuclear models
have been developed and have obtained important results.
However, all preceding models share the serious drawback of
not respecting chiral symmetry, which is commonly accepted
as one of the basic symmetries of the strong interaction. The
chiral phase transition in a dense matter state plays a crucial
role in the study of physical properties of excited nuclei as
well as of the structure of compact stars and the evolution of
the early universe.

There exist several chiral models which could potentially
be used for describing nuclear matter. Most popular are the
Nambu–Jona-Lasinio (NJL) model [17] and the linear σ

model [18]. They are able to explain spontaneous breaking
of chiral symmetry in vacuum and its restoration at high
energy densities. But the simplest versions of these models
fail to reproduce nuclear saturation properties. In particular,

the linear σ model predicts only an abnormal state of nuclear
matter [19] where the chiral symmetry is restored and nucleons
have vanishing effective mass. Several more sophisticated
models of this kind have been suggested [20–24]. Although
they are able to reproduce the nuclear ground state, new
problems appear within these models; in particular, some
of them do not predict restoration of chiral symmetry at
high baryon densities. There were also attempts to use
the NJL model to describe cold nuclear matter [25–27]. It
has been argued [25,26] that bound nucleonic matter with
spontaneously broken chiral symmetry is not possible within
the standard NJL. The authors of Ref. [25] suggested including
additional scalar-vector interaction terms to reproduce the
observed saturation properties of nuclear matter. On the other
hand, it has been shown [27] that by assuming a sufficiently low
value of the cutoff momentum (� � 0.3 GeV) it is possible to
produce a bound state at normal density even in the standard
NJL model. However, in this case the nucleon effective mass
at ρ

B
= ρ0 is predicted twice as small as its empirical value.

Recently, we reconsidered the possibility of using an
extended version of the NJL model including in addition a
scalar-vector interaction in order to describe nuclear matter
at finite temperature and the phase structure of the liquid-
gas transition [28]. This ENJL version reproduces well the
observed saturation properties of nuclear matter such as
equilibrium density, binding energy, compression modulus,
and nucleon effective mass at ρ

B
= ρ0. It reveals a first-

order phase transition (of the liquid-gas type) occurring at
subsaturated densities; such a transition is present in any
realistic model of nuclear matter; However, the model predicts
an only approximate restoration of chiral symmetry at high
baryon densities, ρ

B
� 3ρ0, and does not exhibit any certain

chiral phase transition.
As discussed in Ref. [14], a model that may suit well our

purpose is the extended Nambu–Jona-Lasinio (ENJL) model.
In the present paper, we consider its phase structures [28] in
the case of exact chiral symmetry. The certain chiral transition
is studied in addition to the saturation properties of nuclear

064326-10556-2813/2011/84(6)/064326(8) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.064326


NGUYEN TUAN ANH AND DINH THANH TAM PHYSICAL REVIEW C 84, 064326 (2011)

matter and the consistency of the nucleon effective mass and
incompressibility with their experimental values. Our model
is able to describe simultaneously the saturation properties of
nuclear matter (liquid-gas transition) and the restoration of
chiral symmetry at high baryon densities (chiral transition).
We start from the Lagrangian

L = LNJL + μψ̄γ0ψ,

LNJL = ψ̄i/∂ψ + Gs

2
[(ψ̄ψ)2 + (ψ̄iγ5 �τψ)2]

− Gv

2
[(ψ̄γ μψ)2 + (ψ̄γ5γ

μψ)2] + Gsv

2
[(ψ̄ψ)2

+ (ψ̄iγ5 �τψ)2][(ψ̄γ μψ)2 + (ψ̄γ5γ
μψ)2], (1)

where μ is the baryon chemical potential, τ is the isospin Pauli
matrices, and Gs , Gv , and Gsv are coupling constants.

One of the main aims of the paper is to test the validity of the
above chiral ENJL Lagrangian (1): namely, whether or not it
reproduces the well-established results for symmetric nuclear
matter, such as the value of the in-medium nucleon mass, the
value of incompressibility and the liquid-gas phase transition
at subsaturation density, ρ < ρ0 ≈ 0.17 fm−3. Therefore, in
what follows, we deal only with symmetric nuclear matter
(μ

I
= 0).

In the mean-field approximation we replace

(ψ̄	iψ)2 � 2ψ̄	iψ〈ψ̄	iψ〉 − 〈ψ̄	iψ〉2,

(ψ̄	iψψ̄	jψ)2 � 〈ψ̄	iψ〉2(2ψ̄	jψ〈ψ̄	jψ〉)
+ (2ψ̄	iψ〈ψ̄	iψ〉)〈ψ̄	jψ〉2

− 3〈ψ̄	iψ〉2〈ψ̄	jψ〉2 (2)

with 	 = {1, iγ5 �τ , γμ, γ5γμ}, where the angular brackets
mean averaging at finite density and temperature.

Relations (2) combine with bosonization

σ = ψ̄ψ, �π = ψ̄iγ5 �τψ, ωμ = ψ̄γμψ, φμ = ψ̄γ5γμψ,

yielding

L= ψ̄(i/∂ + γ0μ)ψ + [Gs + Gsv(ω2 + φ2)]ψ̄(σ + iγ5 �τ �π )ψ

− [Gv − Gsv(σ 2 + π2)]ψ̄γ μ(ωμ + γ5φμ)ψ

− Gs

2
(σ 2 + π2) + Gv

2
(ω2 + φ2)

− 3
Gsv

2
(σ 2 + π2)(ω2 + φ2). (3)

The structure of the paper is as follows. Section II presents
the equations of state of chiral nuclear matter for later use.
Section III determines the static properties of symmetric
nuclear matter at zero temperature. Section IV studies the
phase transitions of chiral nuclear matter. Conclusions and
perspectives are presented in Sec. V.

II. EQUATIONS OF STATE

At μ
I
= 0, the σ , π , ω, and φ fields have the ground state

expectation values

〈σ 〉 = u, 〈π i〉 = 0, 〈ωμ〉 = ρ
B
δ0μ, 〈φμ〉 = 0 (4)

in cold nuclear matter. Inserting Eq. (4) into Eq. (3) we obtain

LMFT = ψ̄(i/∂ − M∗ + γ0μ
∗)ψ − U (ρ

B
, u), (5)

where

M∗ = −G̃su, (6)

μ∗ = μ
B

− �v = μ
B

− (Gv − Gsvu
2)ρ

B
, (7)

U (ρ
B
, u) = 1

2

(
Gsu

2 − Gvρ
2
B

+ 3Gsvu
2ρ2

B

)
, (8)

with

G̃s = Gs + Gsvρ
2
B

= Gs[1 + α(ρ
B
/ρ0)2], α = ρ2

0Gsv/Gs.

The solution M∗ of Eq. (6) is the nucleon effective mass,
which reduces to the nucleon mass in vacuum.

Starting from Eq. (5) we establish the partition function

Z =
∫

Dψ̄DψDσD �πDωμ exp
∫ β

0
dτ

∫
V

d3x LMFT .

Integrating out the nucleon degrees of freedom gives

Z = exp

(
− V U

T

)
det S−1, (9)

with

S−1(k) = k̂ − M∗ + γ0μ
∗,

giving

det S−1(k) = (k0 − E−)(k0 + E+), (10)

in which

E∓ = Ek ∓ μ∗, Ek =
√

k2 + M∗2.

Based on Eqs. (9) and (10) the effective potential is derived
immediately:

� = −T

V
ln Z = U (ρ

B
, ρ

s
) + iTr ln S−1

= U (ρ
B
, u) + 2Nf

∫
d3k

(2π )3
[Ek + T ln(n−n+)], (11)

where n∓ = [eE∓/T + 1]−1 and Nf = 2 for nuclear matter and
Nf = 1 for neutron matter.

The pressure P is defined as

P = −�min.

The energy density is obtained by taking the Legendre
transform of P

E = � + T ς + μ
B
ρ

B

= U (ρ
B
, u) + 2Nf

∫
d3k

(2π )3
�v(n− − n+)

+ 2Nf

∫
d3k

(2π )3
Ek(n− + n+ − 1), (12)

with the entropy density defined by

ς = −2Nf

∫
d3k

(2π )3
[n− ln n− + (1 − n−) ln(1 − n−)

+ n+ ln n+ + (1 − n+) ln(1 − n+)]. (13)
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The ground state of nuclear matter is determined by the
minimum condition

∂�

∂u
= 0,

or

u = ρ
s
= 2Nf

∫
d3k

(2π )3

M∗

Ek

(n− + n+ − 1), (14a)

which is usually called the gap equation.
In terms of the baryon density

ρ
B

= ∂P

∂μ
B

= 2Nf

∫
d3k

(2π )3
(n− − n+), (14b)

the expression for P reads

P = − (m0 − M∗)2

2G̃s

− Gv

2
ρ2

B
+ (μ

B
− μ∗)ρ

B

−2Nf

∫
d3k

(2π )3
[Ek + T ln(n−n+)], (15)

and the energy density takes the form

E = (m0 − M∗)2

2G̃s

+ Gv

2
ρ2

B
+ 2Nf

∫
d3k

(2π )3
Ek(n− + n+ − 1).

(16)

Equations (15) and (16) are the equations of state which govern
all the phase transition processes of nuclear matter.

III. SATURATION PROPERTIES

At zero temperature Eqs. (14a), (14b), (15), and (16)
simplify:

u = −Nf

π2

∫ �

k
F

k2dk
M∗

(k2 + M∗2)1/2
, (17)

ρ
B

= Nf

k3
F

3π2
, (18)

E = (m0 − M∗)2

2G̃s

+ Gv

2
ρ2

B
− Nf

π2

∫ �

k
F

k2dk (k2 + M∗2)1/2.

(19)

We use the method developed in Ref. [14] to determine
the four parameters Gs , Gv , α, and � for symmetric nuclear
matter; it is based on requiring that a constraint be obeyed
together with the saturation condition:

(i) As, in vacuum, ρ
B

= 0, we must have M∗ = M
N

with M
N

= 939 MeV, the nucleon mass in vacuum.
Consequently, Eq. (6) provides the first constraint

M
N

= −G̃suvac, (20)

with uvac satisfying the gap equation (17) taken at ρ
B

=
0 (i.e., k

F
= 0).

(ii) The saturation mechanism requires that the binding
energy

Ebin = −M
N

+ E/ρ
B

(21)
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FIG. 1. (Color online) Nuclear binding energy as a function of
baryon density.

reaches its minimal value

(Ebin)ρ0 � −15.8MeV,

at normal density ρ
B

= ρ0 � 0.17 fm−3, where E is
given by Eq. (19).

The numerical computation shows that Gs = 8.8975 fm2,
Gv/Gs = 0.9485, α = 0.031, and � = 400 MeV. Figure 1
displays the dependence of the binding energy on baryon
density. Next, using these values, we calculate the in-medium
nucleon mass,

M∗/M
N

� 0.6633,

and the incompressibility

K0 = 9ρ2
0

(
∂2Ebin

∂ρ2
B

)
ρ0

� 276.23 MeV.

An analysis [29] has shown that such an incompressibility
may be more compatible with the data than that previously
reported [30], K0 = 180–240 MeV.

At this stage, we have therefore successfully obtained
the values of two key nuclear quantities, which are in good
agreement with those widely accepted in the literature [31].

Table I lists all the calculated values for parameters and
physical quantities concerned.

The above values are adopted as input parameters to our
model; we are now in a position to study the phase transitions
numerically.

TABLE I. Values of parameters and physical quantities.

�(GeV) Gs(fm2) Gv/Gs m0 α M∗/M
N

K0(MeV)

[28] 0.4 8.507 0.933 41.26 0.032 0.684 285.91
Here 0.4 8.897 0.949 0.031 0.663 267.23
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IV. PHASE STRUCTURE

In our chiral nuclear model, in addition to the usual
liquid-gas nuclear phase transition, a chiral restoration phase
transition occurs at high nuclear density and/or high tempera-
ture. This is one of the fundamental issues of any chiral model
of strongly interacting matter. Therefore, both types of phase
transitions are presented below in succession.

A. Liquid-gas phase transition at subsaturation density

It is necessary to prove that the theory must exhibit a
liquid-gas phase transition at subsaturation density and zero
temperature, a well known fact in nuclear physics. To do
this, we first solve numerically the gap equation for a chiral
condensate (14a) and obtain in Fig. 2 the evolution of a
chiral condensate as a function of μ

B
for various values of

T . It is clear that chiral symmetry gets restored at large μ
B

and, moreover, for T > 18 MeV the order parameter u is a
single-valued function of the baryon chemical potential μ

B

and tends slowly toward zero. This kind of behavior is usually
defined as a crossover transition. Meanwhile, for lower T , 0 �
T � 18 MeV, the order parameter turns out to be a multivalued
function of μ

B
, where, according to Askawa and Yazaki [2], a

first-order phase transition occurs. Then applying the method
proposed in Ref. [2], we obtain the phase diagram displayed in
Fig. 3. It displays a clear liquid-gas transition. Here the solid
line denotes a first-order phase transition ending up with a
critical end point, CEP (T � 18 MeV, μ

B
� 922 MeV). This is

precisely the liquid-gas phase transition of symmetric nuclear
matter at subsaturation. Figure 3 is in good agreement with the
conjectured QCD phase diagram [32]. Low-energy heavy-ion
collisions experiments indicate that μCEP ∼ 923 MeV, TCEP =
15–20 MeV [33].

The above result is also visible on the dependence of the
effective potential on M∗ for several values of T . As shown in

1

6

78

9

10

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

μB

u
u 0

12345

860 880 900 920 940
0.80

0.85

0.90

0.95

1.00

MeV

FIG. 2. (Color online) The evolution of a chiral condensate u vs
μ

B
at various values of T . From the right the graphs correspond to

T = 0, 150, 170, 180, 190, 200 MeV, respectively. The inset shows
u(T , μ

B
) at the low values of T , T = 0 (line 1), 5 MeV (line 2),

10 MeV (line 3), 15 MeV (line 4), and 20 MeV (line 5).

T 18 MeV CEP
liquid gas

T 175 MeV
CP

chiral restoration
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FIG. 3. (Color online) The phase transitions of the chiral nuclear
matter in the (T , μ

B
) plane. The solid line means a first-order phase

transition. CEP (T = 18 MeV, μ
B

= 922 MeV) is the critical end
point. The dashed line denotes a second-order transition. CP (T =
171 MeV, μ

B
= 980 MeV) is the tricritical point, where the line of

first-order chiral phase transition meets the line of second-order phase
transition.

Fig. 4, for T � 18 MeV the first-order phase transition displays
two minima corresponding to phases of restored and broken
symmetries separated by a barrier. As T increases further, these
minima fade away and at T � 18 MeV the barrier disappears,
signaling the onset of a crossover phase transition. The effect
shows up clearly on the equation of state, as illustrated in
Fig. 5 where isotherms are seen to display typical van der Waals
shapes. Such structures are reminiscent of those derived from a
number of nuclear models [34,35] depending on the effective
forces chosen, such as the Skyrme effective interaction and

T 0
T 5 MeV
T 10 MeV
T 15 MeV
T 20 MeV

0.6 0.7 0.8 0.9 1.0

0.0

0.5

1.0

M MN

FIG. 4. (Color online) The evolution of effective potential vs M∗

at several values of T and μ
B

in the region of liquid-gas phase
transition.
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FIG. 5. (Color online) The EoS for several temperature steps.
ABO is the spinodal line.

finite temperature Hartree-Fock model [34]. The line AB is
part of the spinodal line that delimits the instability condition,(

∂P

∂ρ
B

)
T

< 0.

The isotherm segments having negative pressures and obeying
the above condition correspond to metastable states [36].
Figure 5 indicates that the phase transition occurs at a critical
point ρc ∼ 0.3–0.4ρ0 for Tc ∼ 16–18 MeV, in agreement with
other predictions [37].

Additional insight is obtained from the study of the equation
of state at high densities and zero temperature. Figure 6
shows the zero-temperature equation of state for symmetric
nuclear matter; the shaded region corresponds to the constraint
imposed on the high-density behavior of the pressure from

Symmetric Nuclear Matter

Expt.
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ρB ρ0

M
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3

FIG. 6. (Color online) The EoS of cold symmetric nuclear matter
at high baryon density. The shaded area denotes constraint on the
high-density behavior of pressure consistent with the experimental
flow data [38].
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FIG. 7. (Color online) The ρ
B

dependence of chiral condensate
at various values of T .

simulations of flow data deduced from heavy-ion collision
experiments [38].

B. Chiral phase transition

The study of the chiral phase transition is well known to
be a difficult problem. As mentioned in Ref. [39], the smooth
dependence of chiral condensates as a function of temperature
or density has lead several authors to believe that the phase
transition is second order. We adopt the method developed
by Askawa and Yazaki [2] which is commonly accepted as
being well adapted to our purpose. We evaluate numerically
the dependence of the chiral condensate on density at various
values of T from the gap equation (14a). The result, shown in
Fig. 7, shows the existence of two T regions corresponding to
different behaviors of the chiral condensate.

For 0 � T � 171 MeV, the order parameter u tends to
zero and is a single-valued function of ρ

B
, characteristic of

a second-order phase transition as defined by Landau [36]. For
T � 171 MeV the order parameter u tends to zero and is a
multi-valued function of ρ

B
, the phase transition is found to

be first-order when applying to these regions the method of
Ref. [2] which essentially identifies the multi-valued region
of the order parameter to the region of a first-order phase
transition. It is the chiral phase transition displayed on the
phase diagram of Fig. 3. The dashed line denotes a second-
order phase transition, ending up with a tricritical point, CP
(T � 171 MeV, μ

B
� 980 MeV), signaling the onset of a first-

order phase transition. This is evidenced from the evolution of
the effective potential as a function of M∗ for several values of
T belonging to the multivalued regions of the chiral condensate
(Fig. 8).

From Figs. 2, 7, and 8 it is evident that the restoration
of chiral symmetry occurs for T = 0 at the critical density
ρ

c
� 2.2ρ0, and that the second-order transition is associated

with a minimum of the effective potential. As T increases, this
minimum splits out into two minima at T � 171 MeV with a
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M MN

FIG. 8. (Color online) The evolution of effective potential vs M∗

at several values of T and μ
B

in the region of chiral phase transition.

barrier in-between signaling the onset of a first-order phase
transition. The second-order chiral transition in the region
(0 � T � 171 MeV, 980 � μ

B
� 1210 MeV) is visible on the

evolution of the chiral condensate as a function of T for several
values of μ

B
in the region 980 � μ

B
� 1210 MeV (Fig. 9).

Thus, while the liquid-gas transition occurs at saturation
density, the chiral transition occurs at higher density. The
direct signature of chiral symmetry restoration is the vanishing
chiral condensate associated with the zero of u(T ,μ

B
). This is

illustrated in Fig. 3 where the solid lines denote the first-order
chiral restoration phase transition and the dashed line denotes
the second-order chiral restoration phase transition, which are
separated by a tricritical point. We can therefore conclude that
there are really two types of phase diagrams for this model:
a first-order liquid-gas phase transition of nuclear matter

B 980 MeV

B 1100 MeV

B 1200 MeV

0 50 100 150 200
0.0
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0.6

0.8

1.0

T MeV

u
u 0

u
u
u

FIG. 9. (Color online) The evolution of the chiral condensate
versus T for several values of μ

B
in the region 980 � μ

B
�

1210 MeV.

occurring at saturation density, and a chiral phase transition
with two types of phase order, separated by a tricritical point.

V. CONCLUSION AND OUTLOOK

We have presented a systematic study of phase transitions in
chiral nuclear matter as described by the ENJL model includ-
ing additional scalar-vector interaction terms. We formulate
the model in terms of nucleonic degrees of freedom bearing
in mind that normal nuclei are indeed made of nucleons. The
main results are summarized below.

(i) The model is able to reproduce well-observed saturation
properties of nuclear matter such as equilibrium density,
binding energy, compression modulus, and nucleon
effective mass at the saturation density ρ

B
= ρ0. The

best fit of nuclear properties is achieved with the cutoff
momentum � = 0.4 GeV which is noticeably smaller
than usually assumed for quark-based models, with
an indication that using nucleonic quasi-particles is
justified at low momenta in the nuclear medium.

(ii) The model predicts two interesting features. First, it
reveals a first-order phase transition of the liquid-gas
type occurring at subsaturated densities, starting from
T = 0, μ

B
� 923 MeV and extending to a crossover

critical end point CEP at T � 18 MeV, μ
B

� 922 MeV.
This phenomenon is also apparent from the evolution of
the effective potential as a function of effective nucleon
mass, the equation of state, and the dependence of the
scalar density (and effective nucleon mass) on μ

B
.

(iii) The model predicts in addition an exact restoration
of chiral symmetry at high baryon densities, ρ

B
�

2.2ρ0 for 0 � T � 171 MeV and μ
B

� 980 MeV, and
ρ

B
� 2.2ρ0 for T � 171 MeV. In the (T ,μ

B
) plane a

second-order chiral phase transition occurs at T = 0,
μ

B
� 980 MeV and extends to a tricritical point CP at

T � 171 MeV, μ
B

� 980 MeV, signaling the onset of
a first-order phase transition. This phenomenon is also
apparent from the evolution of the effective potential as
a function of effective nucleon mass and T dependence
of chiral condensate for μ

B
� 980 MeV.

It is important to stress that our model is able to describe
simultaneously the saturation properties of nuclear matter
at normal density and the restoration of chiral symmetry
at high baryon densities. It exhibits one first-order phase
transition of the liquid-gas type at subsaturation densities
exclusively. Restoration of chiral symmetry develops gradually
with increasing baryon density and leads to two types of phase
transition orders. There exists a triple (tricritical) point in
the (T ,μ

B
) plane where the line of first-order chiral phase

transition meets the line of second-order phase transition.
Since the order of chiral transition plays a significant role in
the dynamical evolution of the system [40] it is interesting to
investigate the physical properties of the system in regions of
different orders of transitions. The phase structure of the chiral
phase transition obtained in the present work is expected to
share some features with that derived from lattice calculations
and effective quark models.
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The chiral phase diagram obtained here differs from that
obtained on the lattice (more or less quark masses) in the chiral
limit and for Nf = 2 quark flavors: a crossover transition at
high T and low μ

B
becomes a second order transition [43].

However, this situation resembles very closely that obtained in
lattice QCD calculations in the limit of “heavy” quark masses
and in the strong-coupling limit, where one finds a first-order
transition at high T and low μ

B
[44,45]. Such a feature

is also found in Walecka’s model for some choices of the
parameters [42].

QCD simulations have suggested that the chiral phase
transition is accompanied by a deconfinement transition at the
same critical temperature Tc [41]. Our calculation gives Tc �
171 MeV at μ

B
� 980 MeV, in good agreement with the lattice

QCD simulation, which suggests Tc = 140–190 MeV [41] and
predicts a chiral-deconfinement transition at temperatures of
the order of 170 MeV [4].

In conclusion, for the first time, we have obtained a good
description of hot and dense nuclear matter on the basis of
a relatively simple chiral model. Within this model, normal
nuclei are interpreted as droplets of baryon-rich matter in
a phase with spontaneously broken chiral symmetry. The
approach to a phase with restored chiral symmetry is predicted

at baryon densities above 2ρ0. The chiral transition in baryon-
rich matter is clear. We believe that effects of the chiral
symmetry restoration will be most clearly seen in nuclear
collisions at energies of a few 10A GeV, where highest baryon
densities are expected.

Finally, owing to the fact that the ENJL model satisfactorily
reproduces all basic static properties of nuclear matter and pre-
dicts an exact chiral transition, it might be a good candidate for
theoretically exploring the in-medium dynamics of hadrons,
such as kaon and pion condensation in dense matter. Moreover,
the model can be easily extended to asymmetric matter and
finite nuclei.
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