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It has been shown experimentally that the 6Li nucleus shrinks by adding a � particle while its spectrum is
also compressed. We discuss the compatibility of these two effects, contrasting also with a relation between the
shrinkage effect and the stability of the spectrum in the 9

�Be hypernucleus. To this end, we employ two-body
d-5

�He and α-5
�He cluster models for the 7

�Li and 9
�Be hypernuclei, respectively. We first argue that a Gaussian-like

interaction between two clusters leads to a stabilization of the spectrum against an addition of a � particle, even
though the intercluster distance is reduced. In the case of 7

�Li, the spin-orbit interaction between the intercluster
motion and the deuteron spin has to be considered also. We show that the shrinkage effect makes the expectation
value of the spin-orbit potential larger, lowering the excitation energy for the 6Li(3+) ⊗ �(1/2+) level.
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I. INTRODUCTION

One of the main interests in the physics of hypernuclei is to
investigate the impurity effect of the � particle on the structure
of atomic nuclei. This includes the change of, e.g., nuclear size
[1], the density distribution [2], deformation properties [3–10],
the neutron drip line [11,12], and the fission barrier [13]. A
characteristic feature of the � particle is that it is free from the
Pauli principle from nucleons, and thus it can deeply penetrate
into the nuclear interior. It has been predicted that the � particle
in the center of a nucleus attracts surrounding nucleons, leading
to a shrinkage of nuclear size [1].

High precision γ -ray spectroscopy measurements have
by now been systematically carried out for the p-shell �

hypernuclei [14]. Such experiments have revealed that the
electronic quadrupole transition probability, B(E2), from the
first excited state (3+) to the ground state (1+) of 6Li is
considerably reduced when a � particle is added [15]. By
adopting a simple α-d and 5

�He-d cluster models for 6Li and
7
�Li, respectively, the reduction in B(E2) has been interpreted
as a reduction of the intercluster distance by 19% [15], in
accordance with theoretical calculations [1,16].

Although this interpretation has been well accepted, the
spectrum of 7

�Li shows a somewhat puzzling feature. That is,
one would naively think that the reduction of the intercluster
size leads to a smaller moment of inertia, and thus the
rotational excitation energy would increase. This has indeed
been observed in the 13

� C hypernucleus [17]. Notice that only
the energy of the 3/2+ state has been measured in Ref. [17].
However, the theoretical calculation suggests that the partner
state of the doublet (5/2+) lies below the 3/2+ state only by
at most 0.36 MeV [18]. This corresponds to the spin-averaged
energy of the doublet of 4.66 MeV, which is compared to
the energy of the 2+ state in 12C, 4.44 MeV. In contrast, the
observed difference in the spin-averaged energy between the
first (1/2+, 3/2+) and the second (5/2+, 7/2+) doublet levels
in 7

�Li is 1.858 MeV [19], which is smaller than the excitation
energy (2.186 MeV) of the first excited state of 6Li (see Fig. 1).
For the 9

�Be hypernucleus, the experimental data show that the
spin-averaged energy of the 8Be(2+)⊗�(1/2+) doublet states

(3/2+, 5/2+) is almost the same as the energy of the first 2+
state of the 8Be nucleus [20,21], despite a similar shrinkage
effect, expected as in the 7

�Li nucleus [1]. The stability of the
rotational energy of 9

�Be was shown to remain the same even
when the � particle is replaced by a charmed baryon �c [22].
Apparently, these behaviors of the spectrum of the 7

�Li and 9
�Be

cannot be understood by analogy to, e.g., a classical rotor of
diatomic molecules. We summarize the experimental spectra
in Fig. 1.

In this paper, we clarify the relation between the two
contradictory effects of the � particle on the structure of
light atomic nuclei, that is, the shrinkage of the size and the
compression and stabilization of the spectrum. An important
point to remember is that the α cluster structure is well
developed in the ground state of 6Li and 8Be, while the ground
state takes the mean-field-like structure in 12C and in heavier
nuclei. Our aim in this paper is thus to discuss how the spectra
of 7

�Li and 9
�Be are compatible with the shrinkage of their size

from a viewpoint of a two-body cluster model.
The paper is organized as follows. In Sec. II, we first

discuss the impurity effect of � in the 9
�Be nucleus. Using

the α-5
�He cluster model together with the semiclassical

Bohr-Sommerfeld quantization rule, we investigate how a �

particle influences the rotational spectrum. In Sec. III, we
discuss the rotational spectrum of the 7

�Li nucleus. We show
that the spin-orbit interaction due to the deuteron spin plays
an important role in lowering the excitation energy of the
6Li⊗�(1/2+) level. We then summarize the paper in Sec. IV.

II. STABILIZATION OF LEVEL SCHEME FOR 9
�BE

We first discuss the level scheme of the 9
�Be hypernucleus

and clarify the reasoning for why the influence of the � particle
in the level spacing is negligibly small. For this purpose, we use
a simple two-body cluster model with α-5

�He configuration.
By assuming a local potential, an intercluster potential at an
intercluster distance R reads

Vα5
�He(R) = V (N)

αα (R) + V (C)
αα (R) + Vα�(R), (1)
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FIG. 1. The experimental low-lying spectra for 6Li, 7
�Li, 8Be,

9
�Be, 12C, and 13

� C nuclei. The energies are denoted in units of MeV.
The energies for the 1+⊗1/2+ and 2+ ⊗ 1/2+ levels of the 7

�Li
nucleus are obtained by spin-averaging the observed level energies for
the 1/2+ (0 MeV) and the 3/2+ (0.069 MeV) states and for the 5/2+

(2.05 MeV) and the 7/2+ (2.52 MeV) states [19], respectively. The
energy for the 2+ ⊗ 1/2+ level of 9

�Be is the spin-averaged energy
between the 5/2+ (3.024 MeV) and 3/2+ (3.067 MeV) states [21].
In the 13

� C nucleus, only the energy for the 3/2+ state has been
measured [17], while the energy for the 5/2+ state is expected to be
lower than the energy of the 3/2+ state by at most 0.36 MeV [18].

where V (N)
αα and V (C)

αα are the nuclear and the Coulomb parts of
the potential between the α particle and the core nucleus (4He)
of the 5

�He, and Vα� is the potential between the � particle in
5
�He and the α particle. Assuming that the center of mass of
5
�He is identical to the center of mass of the core nucleus 4He,
we use the same potential as that given in Ref. [23] for V (N)

αα

and V (C)
αα . That is,

V (N)
αα (R) = −V0 e−αR2

, (2)

with V0 = 122.6225 MeV and α = 0.22 fm−2, and

V (C)
αα (R) = 4e2

R
erf(βR), (3)

with β = 0.75 fm−1, where erf(x) is the error function. For
Vα�, we assume that it is given by the direct part of the double-
folding potential, that is,

Vα�(R) =
∫

d rNd r� ρα(rN )ρ�(r�)vN�(R + rN − r�),

(4)

where vN� is a nucleon-� particle interaction, while ρα and
ρ� are the density distributions for the α particle and the �

particle in 5
�He, respectively. We assume Gaussian density

distributions for ρα and ρ�,

ρα(r) = 4(πb2
α)−3/2e−r2/b2

α , (5)

ρ�(r) = (πb2
�)−3/2e−r2/b2

�. (6)

Following Ref. [1], we take bα = 1.358 fm and b� =√
(4MN + M�)/4M� bα , where MN and M� are the mass

of the nucleon and � particle, respectively. For vN�, we take
the central part of the potential given in Ref. [1],

vN�(r) = v0 e−r2/b2
v , (7)

with bv = 1.034 fm, but we adjust the strength v0 so as to
reproduce the energy of the ground state of 9

�Be from the
threshold of the α+5

�He configuration (that is, −3.50 MeV).
Since ρα , ρ�, and vN� are all given in Gaussian form, the
double-folding integral in Eq. (4) can be evaluated analytically
as

Vα�(R) = 4v0

(
b2

v

b2
� + b2

α + b2
v

)3/2

exp

(
− r2

b2
� + b2

α + b2
v

)
.

(8)

With the intercluster potential so constructed, we solve the
Schrödinger equation for the relative motion for each angular
momentum L,(

− h̄2

2μα5
�He

∇2 + Vα5
�He(R) − E

)
ψL(R) = 0, (9)

where μα5
�He = 4MN (4MN + m�)/(8MN + M�) is the re-

duced mass for the relative motion between α and 5
�He. The

Pauli principle is taken into account by excluding those states
which satisfy 2n + L < 4 [23], where n is the radial node of
the wave function.

The E2 transition probability can be computed with the
intercluster wave functions ψL(R). In the two-body cluster
model of (A1, Z1) + (A2, Z2), the E2 transition operator reads

T̂E2 = eE2R
2Y2μ(R̂), (10)

where

eE2 = e

[(
M1

M1 + M2

)2

Z2 +
(

M2

M1 + M2

)2

Z1

]
(11)

is the E2 effective charge, M1 and M2 being the mass of
fragments 1 and 2, respectively.

The calculated spectra for 8Be and 9
�Be are shown in Fig. 2.

Since we do not include the spin-dependent part of the nucleon-
� interaction, the doublet states (3/2+,5/2+) of 8Be(2+) ⊗
�(1/2+) are degenerate in energy. In order to obtain the energy
and the wave function for resonance states, we use a bound-
state approximation. That is, we have replaced the intercluster
potential for R larger than the barrier radius with a constant
so that the wave functions are confined inside the potential
barrier [24–26]. We have confirmed that the energies obtained
with this procedure are close to those energies that give the
maximum of the energy derivative of the scattering phase shift.
For instance, for the 2+ state of 8Be, the energy derivative of
the phase shift is maximum at E = 2.80 MeV, while the energy
obtained in the bound-state approximation is 2.85 MeV.

From Fig. 2, one sees that the excitation energy slightly
increases due to the addition of the � particle. We have
confirmed numerically that the potential which we use well
reproduces the experimental phase shift for α + α scattering
[23]. If the resonance states were properly analyzed, this
potential would therefore yield the excitation energy of the 2+
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FIG. 2. Low-lying spectra for 8Be and 9
�Be obtained with the two-

body cluster model of α + α and α+5
�He, respectively. The energies

are denoted in units of MeV. The energies measured from the two-
body thresholds are also shown in parentheses. The arrows indicate
the reduced E2 transition probabilities, B(E2), from the first excited
state to the ground state.

state in 8Be of 3.04 MeV (see Fig. 1). Then, the energy shift due
to the addition of the � particle is estimated to be small indeed,
that is, as small as 0.05 MeV. In contrast to the excitation
energies, the B(E2) value from the first excited state to the
ground state is altered drastically. The large change of B(E2)
value occurs because the attraction of the � particle makes the
resonance levels of 8Be turn to the bound states in 9

�Be. As a
consequence, the wave functions become spatially much more
compact, as shown in Fig. 3. The root-mean-square distance
between the fragments is 4.90 and 3.24 fm for the L = 0 states
of 8Be and 9

�Be, respectively. The energy change due to the
� particle shown in Fig. 2, that is, 0.14 MeV, is much smaller
than what would have been expected from a classical rotor,
EL = L(L + 1)h̄2/2μR2, which corresponds to the energy
shift of 2.64 MeV. Notice that the B(E2) value for the transition
from the 2+ to the 0+ states in 8Be is consistent with the
value obtained in Ref. [27] using a damping factor method
to evaluate the integral with the resonance wave functions,
although this value is rather large compared with that obtained
in Ref. [1] using the harmonic oscillator expansion of the wave
functions.

We now ask why the spectrum of 9
�Be is not influenced

much, despite the fact that the wave functions are considerably
altered. In order to address this question, the semiclassical
approximation may be useful. In Ref. [28], Rowley used the
Bohr-Sommerfeld quantization rule to show that the spectrum
is approximately given by

EL − EL=0 ∼ βh̄2

8μ
L(L + 1), (12)

for a Gaussian intercluster potential, V (R) = V0 e−βR2
. We

numerically confirm this relation in Appendix A. This formula
indicates that the spectrum depends on neither the depth
parameter V0 nor the intercluster distance, but only on the
range parameter β of the potential as well as the reduced
mass μ.

We show the intercluster potentials for the present problem
in Fig. 4 by the solid lines. The potential for α+5

�He
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FIG. 3. (Color online) The radial wave functions uL(R) defined
as ψL(R) = uL(R)/R · YLM (R̂) obtained with the two-body cluster
model. The dashed and the solid lines are for the 8Be and 9

�Be nuclei,
respectively. The upper panel shows the wave functions for the ground
state with L = 0, while the lower panel shows the wave functions for
the first excited state with L = 2.

is deeper than that for α + α by 15.6 MeV, due to an
additional attraction caused by the � particle. These potentials
are actually well fitted with the Gaussian form with V0 =
−117.8 MeV and β = 0.222 fm−2 for 8Be and with V0 =
−131.2 MeV and β = 0.250 fm−2 for 9

�Be. The quality of
the fit can be seen in Fig. 4. The reduced masses, on the
other hand, are 1877.8 and 2120.6 MeV for the α + α and
the α+5

�He systems, respectively. Here, we have used the
average value of the proton and neutron masses as the nucleon
mass. The factor βh̄2/8μ in Eq. (12) is thus 0.574 MeV
for the α + α system and 0.572 MeV for the the α+5

�He
system. It is remarkable that these values are so close to
each other. Evidently, a Gaussian-like intercluster potential
has a responsibility to make the spectra between 8Be and
9
�Be resemble each other, despite the absolute value of the
energies and thus the radial dependence of the wave functions
being considerably changed due to an addition of a �

particle.

III. LEVEL SCHEME FOR 7
�LI: ROLE OF SPIN-ORBIT

INTERACTION

Let us discuss next the spectrum of the 7
�Li nucleus. If

we assume that the nucleus 6Li takes the α + deuteron (d)
structure, a big difference of this nucleus from 8Be = α + α is
that one of the fragments (i.e., the deuteron) has a finite spin
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FIG. 4. (Color online) The intercluster potential for the α + α

system (upper panel) and for the α+5
�He system (lower panel). The

dashed lines show the result of the fitting with a single Gaussian
function.

(S = 1). The potential between α and d then reads [29–31]

Vαd (R) = V0(R) + V1(R)L · S + V2(R)

[
(S · R)2

R2
− 1

3
S2

]
.

(13)

The spectrum of the ground rotational band of 6Li can be
understood as follows [31]. This band arises from the states
with 2n + L = 2, that is, L = 0 (1s) and L = 2 (0d). By
combining with the deuteron spin S = 1, the 1s state yields
the total spin and parity of Iπ = 1+, while the 0d state yields
Iπ = 1+, 2+, and 3+ triplet states. These triplet states are
degenerate in energy in the central potential V0(R), but they
split by the spin-orbit interaction V1(R)L · S as well as by the
tensor interaction V2(R)[(S · R̂)2 − S2/3].

In order to investigate how the spin-orbit intercluster
potential affects the spectrum of the 7

�Li nucleus, we closely
follow Ref. [31] and use the semimicroscopic cluster model of
Buck et al. [32]. To do so, we assume that the 7

�Li nucleus
takes the d+5

�He structure. In this model, the intercluster
potentials V0(R), V1(R), and V2(R) are constructed based on a
core +p + n three-body model. We regard the α particle and
5
�He as the core nucleus for 6Li and 7

�Li, respectively. In the
following, for simplicity, we assume that the deuteron is in a
pure s state, and thus the tensor part of the intercluster potential
vanishes. This term plays an essential role in reproducing
the quadrupole moment of 6Li [29–31], but its influence is
expected to be small for the spectrum. With this approximation,

the central and the spin-orbit potentials read [31]

V0(R) = −2
∫

dr U0(r, R)χ (r)2, (14)

V1(R) = − 2MN + Mc

2(MN + Mc)

∫
dr

[
W0(r, R) + r

2R
W1(r, R)

]
×χ (r)2, (15)

where Mc is the mass of the core nucleus (i.e., 4He or 5
�He) and

χ (r) is an s-state wave function for relative motion between
p and n in the deuteron. U0, W0, and W1 are multipole
components of the nucleon-core interaction,

VcN = −U (R ± r/2) − W (R ± r/2) l · s, (16)

where r is the relative distance between p and n in the deuteron,
l is the relative angular momentum between the core and the
nucleon, and s is the nucleon spin. That is, U0, W0, and W1 are
defined as

U (R ± r/2) = 4π
∑

λ

Uλ(R, r)Yλ(±r̂) · Yλ(R̂), (17)

W (R ± r/2) = 4π
∑

λ

Wλ(R, r)Yλ(±r̂) · Yλ(R̂). (18)

In the calculations shown below, following Ref. [31], we
employ the Hulthen form of the deuteron wave function,
that is, χ (r) = √

2α e−αr with α = 0.2316 fm−1, and the
same potential as in Ref. [31] (with a slight readjustment
for the depth parameters) for the nucleon-α potential. The
contribution of the � particle to the 5

�He-nucleon potential is
estimated with a single-folding potential,

UN�(r) =
∫

d r� ρ�(r�)vN�(r + rN − r�), (19)

where the � particle density ρ� and the nucleon-� interaction
vN� are given in the previous section. As in Eq. (4), this
potential can be computed analytically as

UN�(r) = v0

(
b2

v

b2
� + b2

v

)3/2

exp

(
− r2

b2
� + b2

v

)
. (20)

We adjust the value of v0 in order to reproduce the ground-
state energy of the 7

�Li nucleus (that is, −3.48 MeV from
the threshold of 5

�He + d). The total central potential for the
5
�He-nucleon system is given by U (r) = UNα(r) + UN�(r),
where UNα(r) is the central part of the nucleon-α potential.
Since we neglect the spin-orbit interaction in the nucleon-�
interaction, the � particle does not contribute to the spin-orbit
part of the intercluster potential, V1(R), except for the trivial
mass factor in Eq. (15).

The central part V0(R) and the spin-orbit part V1(R) of the
intercluster potentials are shown in Fig. 5. For the central
part, we also include the Coulomb potential evaluated in
the same way as in Ref. [31]. The solid and the dashed
lines are the potentials for the 5

�He-d system and the α-d
system, respectively. The depth of the central part increases
by 5.98 MeV due to an addition of a � particle, while
the change of the spin-orbit potential is much smaller. The
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FIG. 5. (Color online) The central part (upper panel) and the
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lines show the potentials for the 6Li nucleus, while the solid lines
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�Li hypernucleus.

spectra obtained with these potentials are shown in Fig. 6.
In the absence of the spin-orbit potential, V1(R), an addition
of the � particle slightly increases the energy of the first
excited state, from 3.72 MeV in 6Li to 3.80 MeV in 7

�Li.
This behavior is similar to the change of the spectrum of 8Be
shown in Fig. 2. The radial wave functions for the ground
state and the first excited state obtained without the spin-orbit
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FIG. 7. (Color online) (a) The radial wave functions for the
ground state with L = 0 for 6Li (dashed line) and 7

�Li (solid line).
(b) Those for the first excited state with L = 2 obtained without
including the spin-orbit intercluster potential. (c) The overlap between
the spin-orbit potential and the unperturbed wave functions for L = 2.
(d) The same as Fig. 7(b), but obtained by including the spin-orbit
potential.

potential are shown in Figs. 7(a) and 7(b), respectively. As
in the case of 9

�Be, the shrinkage effect of the � particle is
substantial [1,16].

Let us now consider the effect of the spin-orbit potential.
We fist treat it by first-order perturbation theory, that is, the
energy shift for L = 2 and I = 3 is approximately given by

�EL=2,I=3 ∼ 2
∫

dRV1(R)
[
u

(0)
L=2(R)

]2
. (21)

Here, the factor 2 is the eigenvalue of the operator L · S for
L = 2 and I = 3, and u

(0)
L=2 is the unperturbed wave function

for L = 2 obtained without the spin-orbit potential. Using the
wave functions shown in Fig. 7(b), we obtain �EL=2,I=3 =
−1.22 MeV for 6Li and −1.84 MeV for 7

�Li. Figure 7(c)
shows the integrand of Eq. (21). One can clearly see that
the overlap of the wave function with the spin-orbit potential
shown in the lower panel of Fig. 5 increases significantly for
the 7

�Li hypernucleus due to the shrinkage effect, leading to
the larger value of the energy shift �EL=2,I=3. The spectra
which are obtained by treating the spin-orbit potential exactly,
and the corresponding wave functions, are shown in Figs. 6
and 7(d), respectively. The effect of the spin-orbit potential
is indeed much larger in 7

�Li due to the shrinkage effect, and
the energy of the 6Li(3+) ⊗ �(1/2+) state appears lower than
that of the 6Li(3+) state. We thus conclude that the spin-orbit
potential due to the finite deuteron spin plays an important
role in compressing the spectrum of the 7

�Li hypernucleus.
We mention that the calculated B(E2) value from the 5/2+
member of the 6Li(3+) ⊗ �(1/2+) state to the 1/2+ state in
the ground state 6Li(1+) ⊗ �(1/2+) doublet is 3.03 e2 fm4,
which is in good agreement with the experimental value,
3.6±0.5+0.5

−0.4 e2 fm4 [15]. The calculation also reproduces
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well the experimental value for the energy of the 6Li(3+) ⊗
�(1/2+) state, 1.86 MeV (see Fig. 1).

IV. SUMMARY

We have investigated the structure of 9
�Be and 7

�Li hyper-
nuclei using two-body cluster models of α + d and 5

�He + d,
respectively. We particularly discussed the relation between
the shrinkage effect and the spectra of these hypernuclei. We
first showed that the two-body cluster model yields only a small
change in the spectra between 8Be and 9

�Be even though the
intercluster distance is significantly reduced due to an addition
of a � particle. We argued based on the Bohr-Sommerfeld
quantization rule that this is caused by the fact that intercluster
potentials can be well fitted with a single Gaussian function,
for which the spectra are approximately independent of the
depth of the potential. A similar effect would be expected also
for 7

�Li if the deuteron were a spinless particle. In reality, a
deuteron has a finite spin (S = 1), and the spin-orbit potential
is present in the intercluster potential. We have shown that
the shrinkage effect leads to a large overlap between the wave
function for the excited state and the spin-orbit potential for the
7
�Li hypernucleus compared with 6Li. As a consequence, the
spin-orbit potential acts effectively larger in 7

�Li, eventually
leading to the compression of the spectrum.

These behaviors of the spectra are peculiarities of a
two-body cluster structure. In this sense, 7

�Li and 9
�Be are

exceptional cases, as the ground states exhibit a well-developed
α cluster structure. For heavier nuclei, the cluster structure
appears in excited states while the ground state takes a
mean-field-like configuration. In such situations, the shrinkage
of radius would push up the spectrum, as has been seen
experimentally in 13

� C. The deformation degree of freedom
also comes into a play there. An interesting case for a future
investigation is the hypernucleus 19

� F, in which the mean-field
structure may be mixed with the 17

� O + d cluster structure.
A γ -ray spectroscopy measurement has been planned on this
hypernucleus at the J-PARC facility [33,34]. This will be the
first for the sd-shell hypernuclei. The ground and the first
excited states of the core 18F nucleus have a spin and parity
of 1+ and 3+, respectively, which are the same for 6Li. Thus
the measurement of the 18F(3+)⊗�(1/2+) level will provide a
strong stimulus to further studies on the sd-shell hypernuclei
and beyond.
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APPENDIX : ROTATIONAL SPECTRUM OF
A GAUSSIAN POTENTIAL

In this Appendix, we numerically check the performance
of the approximate formula given in Eq. (12) for the rotational
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FIG. 8. (Color online) (a) The energy difference between the
L = 2 (1d) and the L = 0 (2s) states for a Gaussian potential
V (R) = V0 e−βR2

for an α + α system as a function of the depth
parameter −V0. The solid line is obtained by numerically solving
the Schrödinger equation, while the dashed line is the result of the
approximate formula given in Eq. (12) based on the Bohr-Sommerfeld
quantization rule. The dotted line denotes the energy difference for a
classical rotor, evaluated with the root-mean-square (rms) intercluster
distance for the 2s state shown in Fig. 8(c). (b) The energy of the
L = 0 (2s) state as a function of the depth parameter −V0 for the
Gaussian potential. (c) The rms intercluster distance for the 2s state.

spectrum for a Gaussian potential, V (R) = V0 e−βR2
. We

consider here the α + α system and use the same geometry
for the potential as that given in Eq. (2), i.e., β = 0.22 fm−2.
In this Appendix, we do not include the Coulomb interaction
between the two α particles. Figure 8(a) shows the energy
difference between the L = 2 state and the L = 0 state for
2n + L = 4. Notice that without the Coulomb interaction the
L = 2 state is bound only for V0 < −131.5 MeV. The solid
line shows the numerical result of the Schrödinger equation,
while the dashed line is obtained with Eq. (12). One can see
that Eq. (12) works well, the deviation from the exact result
being about ± 0.2 MeV for this system. The energy difference
indeed depends on the depth parameter only weakly, while the
energy and the root mean square (rms) distance between the
two α particles for the L = 0 state varies from −3.269 MeV
and 3.58 fm at V0 = −132 MeV to −69.538 MeV and 1.93 fm
at V0 = −300 MeV, respectively [see Figs. 8(b) and 8(c)].
As shown by the dotted line in Fig. 8(a), this is in marked
contrast with the energy difference for a classical rotor,
�E = 6h̄2/2μR2, where μ = Mα/2 is the reduced mass for
the α + α system and R is the rms intercluster distance.
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