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Effects of density dependence of the effective pairing interaction on the first 2+ excitations and
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Excitation energies and transition probabilities of the first 2+ excitations in even tin and lead isotopes as well
as the quadrupole moments of odd neighbors of these isotopes are calculated within the self-consistent theory of
finite Fermi systems based on the energy density functional by Fayans et al. [Nucl. Phys. A 676, 49 (2000)]. The
effect of the density dependence of the effective pairing interaction is analyzed in detail by comparing results
obtained with volume and surface pairing. The effect is found to be noticeable. For example, the 2+ energies
are systematically higher at 200–400 keV for the volume paring as compared with the surface-pairing case.
However, on the average, both models reasonably agree with the data. Quadrupole moments of odd-neutron
nuclei are very sensitive to the single-particle energy of the state λ under consideration owing to the Bogolyubov
factor (u2

λ − v2
λ). A reasonable agreement with experiment for the quadrupole moments has been obtained for the

most part of odd nuclei considered. The method used gives a reliable possibility to predict quadrupole moments
of unstable odd nuclei, including very neutron rich ones.
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I. INTRODUCTION

Presently, there are two theoretical approaches which can
quantitatively describe the bulk properties of nuclear isotope
chains with a small number of effective coupling constants:
self-consistent mean-field theories and density-functional the-
ory. The successes and open problems of the mean-field ap-
proaches are reviewed in Refs. [1–3]. The Kohn-Sham density
functional theory was originally proposed for chemistry and
solids [4,5]. Important theoretical developments have been
made: An extension of the Hohenberg-Kohn theorem to pairing
degrees of freedom by Oliveira, Gross, and Kohn allowed
studies of superfluids [6] and the generalization of functional
theory to study excited states made it possible to investigate the
electromagnetic response of correlated electron materials [7].
In nuclear physics, a self-consistent theory of finite Fermi
systems (TFFS) was derived by Khodel and Saperstein [8]
on the basis of the TFFS by Migdal [9] supplemented
with the many-body theory self-consistency relation [10]
for the nucleon mass operator. As was shown in Ref. [11],
the self-consistent TFFS for nuclei without pairing can be
reformulated as a particular version of the density functional
method with a rather complicated ρ dependence of the energy
functional. It contains also τ -dependent terms but with rather
small strength resulting for the effective mass in a small
difference of |m∗

n,p(r) − m| � 0.05m. In a series of articles
by Fayans et al. [12,13] (see also [14] and references therein),
the energy density functional (EDF) method was generalized

for superfluid nuclei. Just as in the original Kohn-Sham
approach, the identity m∗ = m was imposed. A fractional
form of the density dependence for the central part of the
normal component of the EDF was introduced. The coordinate
dependence of it resembled that of Ref. [11] but the functional
form was much simpler, making the self-consistent QRPA
calculations easier. Note that a recent generalization of the
Skyrme force in Ref. [15] contains a new term with a density
dependence resembling that in Ref. [14]. In addition, the
velocity-dependent force in Ref. [15] is rather weak, leading
to the effective mass m∗ � 0.9m. Thus, the self-consistent
mean-field approaches may eventually converge with the
density functional methods.

The nonrelativistic versions of the self-consistent mean-
field theories introduce three-nucleon forces which are often
expressed as a density-dependent two-body interaction. In gen-
eral, one assumes a fractional power of the density dependence.
Recent advances in effective field theory open the possibility
to connect the density functional with the effective two-
and three-nucleon systems which are determined from two-
nucleon scattering and few-nucleon reactions. Reviews about
the current status of such attempts are given in Refs. [16,17].

The question arises of whether the pairing interaction
should have an analogous dependence on the normal nuclear
density. Several studies derived pairing interactions from free
two-nucleon interactions. Baldo et al. solved the gap equation
in semi-infinite nuclear matter [18], nuclear slab [19], and finite
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nuclei [20,21]. The Paris and Argonne v18 NN potentials were
used, the results being almost identical. To make results more
appropriate for practical nuclear self-consistent calculations
dealing with pairing in a model space, the pairing problem
was treated in a two-step way. The gap equation was solved
in a model space with limiting energy E0 = 30–40 MeV with
the use of the effective pairing interaction. The latter is found
in the subsidiary subspace in terms of a free NN potential. For
all systems under consideration and the two NN potentials
the effective pairing interaction found is much stronger, up
to ten times, at the surface than inside. The Milan group
concentrated on the 120Sn nucleus, a traditional benchmark
for the nuclear pairing problem, and solved the gap equation
starting from the Argonne v14 potential [22]. In addition to
the free NN interaction, they included corrections owing to
exchange with low-lying surface vibrations (“phonons”) [23]
and high-lying excitations, mainly spin-dependent ones [24].
In the last article, a local three-parameter density-dependent
effective pairing interaction is constructed for the model space
with E0 = 60 MeV, which reproduces approximately exact
gap values. Qualitatively, it is similar to that described above.
Without all corrections, it consists of a strong surface attraction
and very weak attraction inside. Taking into account of the
phonon exchange makes the inner interaction repulsive. At
last, inclusion of the spin-dependent excitations makes the
inner repulsion rather strong. Thus, the ab initio calculations
of the effective pairing interaction predict essential density
dependence with strong surface attraction.

As an alternative to consideration of the gap equation with
complete realistic NN interactions, Bulgac and Yu used the
fact that this equation depends mainly on the low-k behavior
of NN force which can be approximated with a rather simple
analytical function. It helped to develop a renormalization
scheme for the gap equation without any cutoff in terms of
zero-range interactions with explicit coordinate dependence
of the effective pairing interaction and to suggest an EDF for
superfluid nuclei [25,26].

The calculations by Fayans et al. employed both volume-
pairing and surface-pairing interactions. The binding energies
and the proton and neutron separation energies were found
to be insensitive to the type of pairing force used. However,
the odd-even staggering of charge radii can be quantitatively
reproduced only if the strong density dependence of the pairing
force is introduced [14].

In this work, we investigate the excitation energies and
transition rates of the low-lying 2+ states in spherical nuclei
with the aim to analyze the sensitivity of those observables to
the details of the pairing interaction. We compare two opposite
limits, the “volume pairing” with density-independent effec-
tive pairing interaction F ξ and the case of the function F ξ

with the surface dominance. The latter is named for brevity
the “surface pairing.” Several sets of calculations of these
characteristics of the first 2+ excitations were carried out
recently within the QRPA method with Skyrme force [27,28]
and within the generator coordinate method with the Gogny
force [29]. No systematic analysis of the density dependence
of the pairing force was performed in these studies. Dealing
with low-laying quadrupole excitations, it is natural to include

into analysis also quadrupole moments of odd nuclei which
give test of static quadrupole polarization.

In this paper, we use the EDF method [14] with
the functional DF3-a [30]. In the latter the spin-orbit and
effective tensor terms of the original functional DF3 [13,14]
were modified. All the QRPA-like TFFS equations are solved
in the self-consistent basis (ελ, ϕλ) obtained within the EDF
method with the functional DF3-a.

II. BRIEF OUTLINE OF THE FORMALISM

For completeness, we describe shortly the EDF method of
Ref. [14] using mainly the notation of Ref. [31]. In this method,
the ground-state energy of a nucleus is considered a functional
of normal and anomalous densities,

E0 =
∫

E[ρn(r), ρp(r), νn(r), νp(r)]d3r. (1)

The normal part of the EDF Enorm contains the central,
spin-orbit, and effective tensor nuclear terms and Coulomb
interaction term for protons. The main, central-force, term
of Enorm is finite in range with Yukawa-type coordinate
dependence. It is convenient to extract the δ(r − r′)-term from
the Yukawa function separating the rest of

D(r − r′) = 1

4πr2
c |r − r′| exp

(
−|r − r′|

rc

)
− δ(r − r′) (2)

to generate the “surface” part E s, which vanishes in infinite
matter with ρ(r) = const. The Yukawa radius rc is taken the
same for the isoscalar and isovector channels. The “volume”
part of the EDF, Ev(ρ), is taken in Refs. [13,14,31] as
a fractional function of densities ρ+ = ρn + ρp and ρ− =
ρn − ρp:

Ev(ρ) = C0

[
av

+
ρ2

+
2

f v
+(x) + av

−
ρ2

−
2

f v
−(x)

]
, (3)

where

f v
±(x) = 1 − hv

1±x

1 + hv
2±x

. (4)

Here x = ρ+/(2ρ0) is the dimensionless nuclear density where
ρ0 is the density of nucleons of one kind in equilibrium
symmetric nuclear matter. The factor C0 = (dn/dεF)−1 in
Eq. (3) is the usual TFFS normalization factor, inverse density
of states at the Fermi surface.

To write down the surface term in a compact form similar
to Eq. (3), the “tilde” operator was introduced in Ref. [31]
denoting the following folding procedure:

φ̃(r) =
∫

D(r − r′)φ(r′)dr′. (5)

Then we obtain

E s(ρ) = C0
1
2 [as

+(ρ+f s
+) ˜(f s+ρ+) + as

−(ρ−f s
−) ˜(f s−ρ−)], (6)

where

f s
±(x) = 1

1 + hs±x
. (7)

064324-2



EFFECTS OF DENSITY DEPENDENCE OF THE . . . PHYSICAL REVIEW C 84, 064324 (2011)

All the above parameters, av
±, as

±, hv
1±hv

2±, hs
±, are dimension-

less.
In momentum space, the operator (2) reads

D(q) = − (qrc)2

1 + (qrc)2
. (8)

In the small rc limit it reduces to D(q) = −(qrc)2, and Eq. (6)
could be simplified to a Skyrme-like form proportional to
(∇ρ)2.

The spin-orbit interaction reads

Fsl = C0r
2
0 (κ + κ ′τ 1τ 2)[∇1δ(r1 − r2) × (p1 − p2)]

·(σ 1 + σ 2), (9)

where the factor r2
0 is introduced to make the spin-orbit

parameters κ, κ ′ dimensionless. It can be expressed in terms
of the above equilibrium density, r2

0 = [3/(8πρ0)]2/3.
In nuclei with partially occupied spin-orbit doublets, the

so-called spin-orbit density exists,

ρτ
sl(r) =

∑
λ

nτ
λ

〈
φτ∗

λ (r)(σ l)φτ
λ (r)

〉
, (10)

where τ = n, p is the isotopic index and averaging over spin
variables is carried out. As it is well known (see, e.g., Ref. [8]),
a new term appears in the spin-orbit mean field induced by the
tensor forces and the first harmonic ĝ1 of the spin Landau-
Migdal (LM) amplitude. We combine those contributions into
an effective tensor force or first spin harmonic,

F s
1 = C0r

2
0 (g1 + g′

1τ 1τ 2)δ(r1 − r2)(σ 1σ 2)(p1p2). (11)

In Table I, we present all parameters of the normal part
of the EDF DF3-a we use. Note that the major part of
these parameters is identical to the ones used in the DF3
functional [14]. With one exception, all parameters for the
central force part remained the same and only the spin-orbit
and the first spin harmonic are changed according to Ref. [30].
Application of the volume part (3) to equilibrium nuclear
matter, with the equilibrium relation, that is, vanishing pressure
p(ρ) = ρ2∂(E/ρ)/∂ρ, makes it possible to find the parameters
av

+, hv
1+, and hv

2+ in terms of the nuclear-matter density
ρ0, the chemical potential μ0, and the compression modulus
K0 = 9dp/dρ. The asymmetry energy parameter β0 yields a
relation between the constants av

−, hv
1−, and hv

2−. They are
given in the upper half of Table I. The radius r0 introduced
above is shown instead of ρ0. The value used in Ref. [14] was
recalibrated in Ref. [30] to obtain a more accurate description
of nuclear charge radii [32]. One more remark should be
made concerning the table. The “natural” TFFS normalizing
factor C0 = 2ε0F/(3ρ0) = 308.2 MeV fm3 corresponding to
parameters of nuclear matter in the third column of the table
differs from the one, C0 = 300 MeV fm3, recommended in the
second edition of the Migdal’s textbook on the TFFS [33]. To
make a comparison with other articles within the TFFS, we
recalculated all the strength parameters to the latter. It explains
a small difference of some values in the second column in
the table from the original those in Ref. [14]. An essential
difference between DF3 and DF3-a functionals takes place for
the “spin-dependent” sector in the bottom of the table. As we

TABLE I. Parameters of the normal part of the EDF.

Parameter DF3 [14] DF3-a [30]

μ0 (MeV) −16.05 −16.05
r0 (fm) 1.147 1.145
K0 (MeV) 200 200
β (MeV) 28.7 28.7
av

+ −6.598 −6.575
hv

1+ 0.163 0.163
hv

2+ 0.724 0.725
av

− 5.565 5.523
hv

1− 0 0
hv

2− 3.0 3.0
as

+ −11.4 −11.1
hs

+ 0.31 0.31
as

− −4.11 −4.10
hs

− 0 0
rc (fm) 0.35 0.35
κ 0.216 0.190
κ ′ 0.077 0.077
g1 0 0
g′

1 −0.123 −0.308

found in Ref. [30], the second one describes the spin-orbit
splitting of doublets better.

The anomalous component of the EDF [14] reads

Ean(r) =
∑

τ

F ξ,ττ (r; [ρ])|ντ (r)|2, (12)

where the effective pairing interaction reads

F ξ = C0f
ξ = C0

[
f ξ

ex + hξx2/3 + f
ξ

∇r2
0 (∇x)2

]
. (13)

The first two terms are similar to those in the TFFS [34,35] or
in the SHFB method [36]. The third in Eq. (13) is a new one
introduced in Ref. [13]. In this paper we use an approximate
version of Eq. (13) with f

ξ

∇ = 0. We compare two models
for nuclear pairing: the “volume” pairing (hξ = 0) and the
“surface” pairing where both the pairing parameters f

ξ
ex and

hξ are nonzero. One more remark should be made concerning
the pairing problem. In the approach of Ref. [14] pairing was
considered in the coordinate representation explicitly, solving
the Gorkov equations with the method developed in Ref. [37].
However, it was found that the results are practically equivalent
to those obtained within a more simple BCS-like scheme using
the gap �λλ′ = �λδλλ′ in a sufficiently large model space,
ελ < Emax. We do not apply this method for nuclei close to
the drip line for which the diagonal approximation does not
work [14]. The effective pairing interaction (13) for the BCS
approximation is a little stronger than that in the coordinate
representation. In Sec. III, we investigate the theoretical errors
in the observables owing to the choice of the cutoff energy
Emax.

Within the TFFS, the response of a nucleus to the external
quadrupole field V0 exp (iωt) can be found in terms of the
effective field. In systems with pairing correlations, the
equation for the effective field can be written in a compact
form as

V̂ (ω) = V̂0(ω) + F̂Â(ω)V̂ (ω), (14)
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where all the terms are matrices. In the standard TFFS notation
[9], we have

V̂ =
⎛⎝ V

d1

d2

⎞⎠ , V̂0 =
⎛⎝V0

0
0

⎞⎠ , (15)

F̂ =
⎛⎝ F Fωξ Fωξ

F ξω F ξ F ξω

F ξω F ξω F ξ

⎞⎠ , (16)

Â(ω) =
⎛⎝ L(ω) M1(ω) M2(ω)

O(ω) −N1(ω) N2(ω)
O(−ω) −N1(−ω) N2(−ω)

⎞⎠ , (17)

where L,M1, and so on stand for integrals over ε of the
products of different combinations of the Green’s function
G(ε) and two Gor’kov functios F (1)(ε) and F (2)(ε). They can
be found in Ref. [9] and we write here only the first of them,
which is of main importance for us,

L =
∫

dε

2πi
[G(ε)G(ε + ω) − F (1)(ε)F (2)(ε + ω)]. (18)

Isotopic indices in Eqs. (15)–(17) are omitted for brevity.
In Eq. (16), F is the usual LM amplitude,

F = δ2E
δρ2

, (19)

whereas the amplitudes Fωξ = F ξω stand for the mixed
second derivatives,

Fωξ = δ2E
δρδν

. (20)

In the case of volume pairing, we have Fωξ = 0. The explicit
form of the above equations and (18) is written for the case of
the electric (t-even) symmetry we deal with. A static moment
of an odd nucleus can be found in terms of the diagonal matrix
element 〈λ0|V (ω = 0)|λ0〉 of the effective field over the state
λ0 of the odd nucleon.

The effective field operator V̂ (ω) has a pole in the excitation
energy ωs of the state |s〉 under consideration,

V̂ (ω) = (V̂0Â(ωs)ĝ0s)ĝ0s

ω − ωs

+ V̂R(ω). (21)

The quantity ĝ0s has the meaning of the corresponding
excitation amplitude. It obeys the homogeneous counterpart
of Eq. (14) and is normalized as follows [9]:(

ĝ+
0s

dÂ

dω
ĝ0s

)
ω=ωs

= −1, (22)

with obvious notation.
For excitation probabilities, it is more convenient to use the

transition density operator which is conjugated to ĝ0s ,

ρ̂Tr
0s = Âĝ0s . (23)

The explicit definition of the normal and anomalous
components of ρ̂Tr

0s is as follows:

ρ
Tr(0)
0s (r, r′) =

∫
dε

2πi
δG(r, r′; ε, ωs), (24)

ρ
Tr(1,2)
0s (r, r′) =

∫
dε

2πi
δF (1,2)(r, r′; ε, ωs). (25)

The TFFS equation for transition densities for nuclei with
pairing correlations,

ρ̂Tr
0s = Â(ωs)F̂ ρ̂Tr

0s , (26)

is a complete analog of the QRPA set of equations. Therefore,
we often name it the QRPA equation. The transition density
is normalized owing to Eq. (22), and the transition matrix
element for the excitation of the state |s〉 with the external
field V0 is given by

M0s =
∫

V̂0ρ̂
Tr
0s (r)dr. (27)

III. CHARACTERISTICS OF THE 2+
1 EXCITATIONS

The formalism described in the previous section is used to
describe 2+

1 states in two long isotopic chains of semimagic
nuclei, lead and tin. We investigate both a pure surface and a
pure volume version of pairing. More calculational details can
be found in Ref. [14]. We use the so-called developed pairing
approximation. In particular, there is no particle number pro-
jection procedure in our calculations; that is, particle number is
conserved only on average, corresponding to the chosen chem-
ical potential μ for the kind of nucleons under consideration.
The accuracy of this approximation is examined in a lot of pa-
pers. For the self-consistent SHF method with the SLy4 force,
it was found in a recent article [38] that the average difference
between exact and approximate gap values is 0.12 MeV, the
error being bigger in the vicinity of magic nuclei.

The effective pairing force of zero range we use [Eq. (12)]
requires a regularization. In the present approach, we chose the
cutoff energy Emax as a regulator. To quantify the sensitivity
of the numerical results to the unphysical regulator, we follow
the ideas of the renormalization procedure of effective field
theory [16]. The effective coupling constants f

ξ
ex, h

ξ of the
amplitude F ξ (13) have to be determined for each value of
the regulator Emax. At the next step, each observable under
consideration is calculated for several values of the regulator
and then one obtains an error interval. As we limit ourselves
to the lead and the tin chains, we deal with neutron pairing
only. Let us first analyze neutron separation energies Sn, the
quantity usually used for fixing pairing force parameters. More
specifically, we consider the double mass differences,

DN = 1
2

{
Sn(N ) − 1

2 [Sn(N−1) + Sn(N+1)]
}
, (28)

with N even, which is very sensitive to the value of pairing
gap because the approximate relation DN � �̄ takes place
where �̄ is an average gap value. Let us begin from the lead
chain. For each kind of pairing, we changed the cutoff energy
from the “basic” value E(0)

max = 36 MeV used in Ref. [14] to
E(1)

max = 15 MeV. The letter is approximately twice less of the
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FIG. 1. (Color online) Analysis of the cutoff dependence of
neutron double mass differences DN [Eq. (28)] for lead isotopes.
Black triangles with bars show the experimental DN values taken
from the mass table [39]. The red bars with narrow caps indicate the
uncertainties in theoretical DN values for surface pairing; blue bars
with wide caps represent those with volume pairing.

initial cutoff value if to count from the chemical potential μ.
For each value of Emax the pairing parameters were found
to reproduce the DN values with sufficient accuracy. In the
case of the volume pairing (hξ = 0) we found f

ξ
ex(Emax),

whereas for the surface pairing we fix the external parameter
f

ξ
ex = −1.05 [30] and consider the second parameter hξ as

a free one depending on the Emax value. The uncertainty
resulting from the fitting procedure is shown in Fig. 1 for
the lead chain. For each isotope, the bar shows the difference
between D(E(0)

max) and D(E(1)
max) for volume pairing (blue bars

with wide caps) and surface pairing (red bars narrow with bars),
correspondingly. We see that the uncertainty is rather small for
each kind of pairing, often smaller than the experimental error.
The average uncertainty in the double mass difference can be
found according to

δD =
√√√√ 1

N e

N2∑
N=N1

[
DN

(
E

(0)
max

) − DN

(
E

(1)
max

)]2
, (29)

with N even, Ne = (N2 − N1)/2 + 1. This quantity calculated
for the surface and volume kinds of pairing is given in Table II.
To estimate the corresponding inaccuracy in characteristics
of the 2+

1 states under consideration we calculated for the
nucleus 200Pb the difference δω2 = |ω2(E(0)

max) − ω2(E(1)
max)|,

again for both kinds of pairing. Likewise, we studied the un-
certainty of the B(E2) values, δB(E2, up) = |B(E2; E(0)

max) −
B(E2; E(1)

max)|.
A similar analysis was made for the tin chain. The results

are displayed in Fig. 2 and in the bottom part of Table II. In this
case, the nucleus 118Sn was chosen as a sample for calculating
δω2 and δB(E2, up) quantities. We see that the theoretical
uncertainties under discussion in the DN values are rather
small, often less than the experimental errors. In any case, they
are significantly less than the inaccuracy discussed above of
the simple BCS-type theory with particle number conservation

TABLE II. Accuracy of calculation results on the cutoff parameter
Emax. Quantities δD, δω2, and δB(E2, up) are defined in the text.

Version δD (MeV) δω2 (MeV) δB(E2, up)(e2b2)

Pb
Surface 0.027 0.104 0.003
Volume 0.016 0.005 0.005

Sn
Surface 0.016 0.022 0.004
Volume 0.045 0.052 0.006

on average. As to the characteristics of the 2+
1 excitations,

corresponding uncertainties are also moderate. Indeed, they
should be compared with typical values of ω2 � 1 MeV and
B(E2, up) � 0.2e2 b2.

As calculations of characteristics of the 2+
1 excitations are

time consuming, for systematic calculations we employ one
cutoff value E(0)

max = 36 MeV, keeping in mind the accuracy
of the predictions of the theory given in Table II. For finding
the parameters of the pairing force (13) we use the strategy of
“soft” variation to obtain better values of Sn for both chains
under consideration. Values of Sn for both kinds of pairing
are compared with the data in Figs. 3 and 4. In agreement
with the previous analysis of theoretical uncertainties in values
of Sn (they, evidently, being the same as for DN ), we do
not show them in these two figures. In the major part of
the points, they just would be undistinguishable graphically.
Explicit values of the pairing parameters are given in the figure
captions. Remember that we use the two-parameter version
of Eq. (13), with f

ξ

∇ = 0. For the volume pairing (hξ = 0),
one parameter remains which is smaller for lead than for tin
approximately at 6%. For the surface pairing we deal with a
two-parameter form of F ξ . The “external” pairing parameter
f

ξ
ex is taken to be A independent, in accordance with its

FIG. 2. (Color online) Analysis of the cutoff dependence of
neutron double mass differences DN [Eq. (28)] for tin isotopes.
Black triangles with bars show the experimental DN values taken
from the mass table [39]. The red bars with narrow caps indicate the
uncertainties in theoretical DN values for surface pairing; blue bars
with wide caps represent those for volume pairing.
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FIG. 3. (Color online) Neutron separation energies Sn for lead
isotopes. The volume pairing corresponds to (f ξ

ex = −0.31; hξ = 0);
the surface one to (f ξ

ex = −1.05; hξ = 0.94). The HFB theory
predictions with the HFB-17 Skyrme functional are taken from
Ref. [40]; experimental data from Ref. [39].

physical meaning as the free NN T matrix taken at negative
energy E = 2μ [18]. As to the second one, hξ , it increases
from the Sn chain to the Pb one at 2%, the resulting pairing
attraction again becoming weaker, but only a little. Thus, the A

independence of the pairing parameters in the case of surface
pairing is weaker than for the volume one. This finding seems
to favor surface pairing. As we see, the difference between
the predictions for neutron separation energies is small for
both versions and agreement with the experimental data is
nearly perfect. For comparison, we display the predictions
of the HFB-17 version of the Skyrme force [36] which has
a record accuracy in overall description of nuclear masses.
We see that for these two chains our accuracy in description

FIG. 4. (Color online) Neutron separation energies Sn for tin
isotopes. The volume pairing corresponds to (f ξ

ex = −0.33; hξ = 0);
the surface one to (f ξ

ex = −1.05; hξ = 0.92). The HFB theory
predictions with the HFB-17 Skyrme functional are taken from
Ref. [40]; experimental data from Ref. [39].

(a)

(b)

(c)

FIG. 5. (Color online) Neutron density (a), gap (b), and anoma-
lous density (c) in 200Pb nucleus. Solid red lines correspond to surface
pairing; dotted blue lines correspond to volume one. Green dashes
show the medium version (f ξ

ex = −0.70; hξ = 0.50).

of neutron separation energies is even better. Of course, we
achieved the agreement by a small variation of one of two
paring parameters, whereas calculations [36] are carried out
with a universal set of parameters. However, the pairing part
of the HFB-17 functional contains five parameters.

Figure 5 demonstrates that the normal neutron density ρn(r)
and the anomalous one, νn(r), both are practically insensitive
to the kind of paring used in the calculation. On the contrary,
the gap itself is very sensitive. For comparison, we took also a
“medium” version, with (f ξ

ex = −0.70; hξ = 0.50). It gives Sn

value approximately with the same accuracy as the previous
two.

Let us now examine to what extent predictions for char-
acteristics of 2+

1 states are different for these two versions
of pairing force which are equivalent in describing the
Sn values. A comment should be made before presenting
results of the QRPA calculations. Our QRPA code does not
include the spin-orbit (9) and spin (11) terms of the effective
interaction; therefore, the self-consistency is not complete
and the excitation energy of the ghost 1− state does not
automatically vanish. In the present investigation, we fine
tuned the parameter av

+ in Eq. (3) to decouple the ghost state.
This change is different for different nuclei but on average the
value of |av

+| increases at �3% in comparison with that given
in Table I.
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FIG. 6. (Color online) Excitation energies ω(2+
1 ) for lead iso-

topes. Predictions for mean-field approach with the forces SkM*
(dashed green line) and SLy4 (dotted green line) are taken from
Ref. [27]. The EDF results are given by the solid lines.

Let us begin with the lead chain. Excitation energies
ω2 are displayed in Fig. 6 and the probabilities B(E2, up)
in Fig. 7. Just as in Figs. 3 and 4, we do not show the
theoretical uncertainties presented in Table II. Indeed, even
the biggest of them, δω2 value for surface pairing, can
hardly be distinguishable in Fig. 6. Experimental data for
both quantities are taken from Ref. [41]. For comparison,
results of the QRPA calculations of Ref. [27] with the SkM*
and SLy4 force are shown. Note that they were carried out
with density-independent pairing. We see that the difference
�ω2 = ωvol

2 − ωsurf
2 is always positive, with the exception of

the 210,212Pb isotopes for which the two versions practically
coincide. If we limit ourselves to isotopes 182–204Pb with
developed pairing, we find �ω2 = 0.30 MeV for the average
value of the difference between predictions of two kinds of
pairing, which is significantly bigger of the uncertainty δω2

in Table II. Thus, the effect under discussion is noticeable

FIG. 7. (Color online) B(E2, up) values for lead isotopes. Pre-
dictions for the SkM* and SLy4 force are taken from Ref. [27].

for the excitation energy. Agreement with the data looks
reasonable for both the versions and a little better for surface
pairing. The root-mean-squared deviation of the theory from
experiment is (�ω2)rms = 0.33 MeV for the surface pairing
and (�ω2)rms = 0.47 MeV in volume case. Predictions of both
the SkM* and SLy4 QRPA calculations for ω2 values have
approximately the same accuracy as ours.

For excitation probabilities the situation is more complex.
For isotopes heavier than 198Pb our “surface” and “volume”
curves are very close to each other. For a lighter part of the
chain the volume pairing generates larger probabilities than
surface pairing does, producing differences of up to �30%.
Comparing with Fig. 6, we see that there is some unusual
correlation between excitations energies and probabilities.
Indeed, in magic nuclei where the pairing is absent for
low-lying collective excitations there is a rule that a lower
energy implies a larger probability. It can be qualitatively
explained with the hydrodynamical Bohr-Mottelson (BM)
model [42] which gives a simple relation for the transition
density of a L vibration:

ρ
Tr,BM
L = αL

dρ

dr
, (30)

where αL = 1/
√

2ωLBL and BL is the collective mass param-
eter of the BM model proportional to the nuclear mass. Then
one obtains

B(EL, up) = 2L + 1

2ωLBL

(ML)2, (31)

where MBM
L = (3Ze/4π )RL−1, with R being the nuclear

radius. Thus, in the BM model a lower value of the excitation
energy ωL inevitably leads to a higher value of the excitation
probability. In our calculations, the situation is opposite. In
principle, this is not strange. Indeed, even in magic nuclei the
BM model works only qualitatively [8]. If one solves equations
of the self-consistent TFFS or any HF + RPA equations for
nuclei without pairing, Eq. (30) remains approximately true,
but the mass parameter becomes ω dependent and deviates
from the BM model prescription significantly [8]. In nuclei
with pairing, the situation becomes even more different from
this simplest model as the normal component of the transition
density (24) depends now from the anomalous transition
amplitudes g

(1,2)
0s [see Eq. (26)]. They strongly depend on the

kind of pairing. As a result, the correlation between the ωL

and B(EL) values of the BM type (31) can be destroyed.
Experimental probabilities are known only for four even

204–210Pb isotopes. For all of them, the SkM* and SLy4
calculations are in perfect agreement with the data. Agreement
of our calculations is poorer. It is especially true for the magic
208Pb nucleus where there is no pairing. It should be noted
that in this nucleus the collectivity of the 2+

1 state is not
high: The B(E2) value is only about 8 single-particle units
(spu). For a comparison, the B(E3) value for the 3−

1 state
exceeds 30 spu. However, for excitations with low collectivity
in nuclei without pairing the RPA solution depends strongly
on the single-particle spectrum, and even a small inaccuracy
in the positions of single-particle levels can change results
significantly. In any case, some modification of the normal part
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FIG. 8. (Color online) Excitation energies ω(2+
1 ) for tin isotopes.

Predictions for the SkM* and SLy4 force are taken from Ref. [27].

of the functional DF3-a is necessary to obtain better agreement
for the 208Pb nucleus.

In the tin chain (see Fig. 8), the situation with the excitation
spectrum is partially similar to the one in lead. Again, 2+

1
levels are systematically higher for volume pairing than in
the surface case. If we again limit ourselves to isotopes with
developed pairing, 104–128Sn, we find the average difference
�ω2 = 0.29 MeV, very close to the corresponding value for
lead. The surface predictions are now essentially closer to the
experimental data. Now we have (�ω2)rms = 0.16 MeV for
the surface pairing and (�ω2)rms = 0.37 MeV for the volume
one. As to the SkM* spectrum, for isotopes heavier than 122Sn
it practically coincides with our “surface” one, both being
higher than the experimental spectrum by approximately 200–
300 keV. For lighter isotopes, it deviates from our surface
spectrum significantly in an irregular way, whereas the latter
practically coincides with the experiment in this A region. As
to the SLy4 spectrum, it also looks reasonable for the heavy
part of the chain but for isotopes lighter of 124Sn it strongly
oscillates around the experimental curve. In the dip minimum
for 112Sn the ω2 value is less than the experimental one at
approximately 1 MeV and it is close to an instability.

The excitation probabilities are displayed in Fig. 9. Here the
results show a very complex pattern. For the heavier part of
the chain, beginning at the 124Sn nucleus, our two theoretical
curves and the SkM* practically coincide, all being close to
the experiment. The SkM* curve behaves in a nonregular
way with strong deviations from the experimental data, up
to �50%–100%. The Sly4 interaction produces excitation
probabilities which strongly decrease with the nucleon number
A, implying drastic deviations from the data. The density
functional approach is able to describe the A dependence of
the experimental B(E2, up) values rather well. For lighter tin
isotopes, our two curves began to deviate from each other, the
volume one being higher by �25%–30%, and a first glance
may suggest that the volume-pairing interaction performs
much better. However, one has to notice the large error bars of
the experimental data in the mass region below A = 114.

FIG. 9. (Color online) B(E2, up) values for tin isotopes. Pre-
dictions for the SkM* and SLy4 force are taken from Ref. [27].
Experimental data are taken for 114–124Sn from Ref. [41], for 126–134Sn
from Ref. [43], and for 106–112Sn from Ref. [44–46].

To investigate the role of pairing itself and of the type
of its density dependence in detail, let us analyze different
components of the transition amplitude. Let us begin from the
anomalous terms g(1,2) (the index “0s” is omitted for brevity).
They are displayed in Fig. 10 for the 200Pb nucleus. We see first
that, for both the versions, the g(1) amplitude value is much
bigger than |g(2)|. Second, the coordinate dependence of the
main g(1) amplitude is absolutely different for the two versions
under comparison. In the surface-pairing case, a strong surface
maximum dominates, whereas in the volume case g(1) is spread
over the volume, with rather strong oscillations. In addition,
it is seen that the integral effect of g

(1)
surf should be noticeably

bigger than that of g
(1)
vol. All this shows some asymmetry for

FIG. 10. (Color online) The neutron anomalous transition ampli-
tudes g(1,2) in 200Pb nucleus. Solid red lines correspond to surface
pairing, dotted blue lines to volume pairing, and dashed green lines
to a medium version of pairing (f ξ

ex = −0.70; hξ = 0.50).
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FIG. 11. (Color online) The proton and neutron normal transition
amplitudes g(0) in 200Pb nucleus. For protons, solid (red) line
corresponds to surface pairing and dotted (blue) one, to volume
pairing. For neutrons, solid (blue) line corresponds to volume pairing
and dotted (red) one, to surface pairing.

Bogolyubov quasiparticles and quasiholes. Such a situation is
typical for nuclei which are close to the magic core.

The normal proton and neutron amplitudes g(0) for the
same nucleus are displayed in Fig. 11. As we see, for
this quantity the influence of the kind of pairing used is
minimal. Thus, evidently, the rather big value of the difference
�ω2 � 300 keV for this nucleus is explained with different
contributions of the anomalous amplitude g(1), which is much
stronger in the case of surface pairing. For the transition
densities (see Fig. 12), the effect is rather small but a little
bigger than for the normal amplitudes g(0). This additional
enhancement of the surface maximum of ρT r(0)(r) in the
surface-pairing case again originates from the term with g(1)

in Eq. (23). In its turn, it explains the increase of the B(E2)
value in this nucleus for the surface case.

FIG. 12. (Color online) The proton and neutron transition densi-
ties ρT r(0) in 200Pb nucleus. Red solid and dotted lines correspond to
surface pairing, blue ones to volume pairing.

FIG. 13. (Color online) The neutron anomalous transition ampli-
tudes g(1,2) in 118Sn nucleus. Red solid and dotted lines correspond to
surface pairing, blue ones to volume pairing.

Let us go to the tin chain. Figs. 13– 15 present for the 118Sn
nucleus the same quantities which were displayed in Figs. 10–
12 for the 200Pb nucleus. This nucleus is in the middle of
the chain, and all properties of the “developed” pairing, in
particular, particle-hole symmetry should take place. Indeed,
now (see Fig. 13) the amplitudes g(1) and g(2) possess a similar
form and absolute value and are of the opposite sign. In the
result, we have |g(−) = g(1) − g(2)| 	 |g(+) = g(1) + g(2)|, as
it should be [9]. Again, as in the 200Pb case, the effect of
the kind of pairing on the magnitude of g(1,2) is drastic. As
to that for the normal amplitudes g(0) and transition densities
ρT r(0), again it is rather moderate but of the another sign.
Now in the volume case, the surface peaks in both these
quantities are higher and, correspondingly, the B(E2) value
is bigger. Evidently, in this case we deal with some destructive

FIG. 14. (Color online) The proton and neutron normal transition
amplitudes g(0) in 118Sn nucleus. Red solid and dotted lines correspond
to surface pairing, blue ones to volume pairing.
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FIG. 15. (Color online) The proton and neutron transition densi-
ties ρT r(0) in 118Sn nucleus. Red solid and dotted lines correspond to
surface pairing, blue ones to volume pairing.

interference between normal and anomalous contributions to
solutions of the equations of Sec. II.

To summarize, we see an effect of the type of pairing on
the characteristics of the 2+

1 states in spherical nuclei. The
excitation energies ω2 are systematically lower in the surface
case to �ω2 � 300 keV, and the surface values are, as a rule,
closer to the data. For B(E2) values, the effect is not so regular
and here the volume version predictions on average look better.
Thus, the present analysis is compatible with both volume and
surface pairing.

In conclusion of this section we compare in Fig. 16 the
charge transition density ρTr

ch(r) in the 118Sn nucleus with the
experimental transition charge density found with a model
independent analysis of the elastic electron scattering in Ref.
[47]. The theoretical charge density is obtained from ρTr

p (r)
and ρTr

n (r) functions displayed in Fig. 13, taking into account
relativistic corrections [48]. For both versions of pairing the

FIG. 16. (Color online) The charge transition densities ρ
Tr(0)
ch in

118Sn nucleus. The solid red line corresponds to surface pairing, the
dotted blue one to volume pairing.

FIG. 17. (Color online) Static effective fields Vp (solid lines), Vn

(dashes), and d+
n (dots) in 204Pb nucleus. Red lines correspond to

surface pairing, blue ones to volume pairing.

agreement with the data is quite reasonable, and it is a little
better in the surface case.

IV. QUADRUPOLE MOMENTS OF ODD NUCLEI

Recently, magnetic moments of odd spherical nuclei have
been calculated [49,50] within the same self-consistent ap-
proach as the one used here. A reasonable description of
the data for more than 100 of the spherical nuclei was
obtained. Especially high accuracy was reached for semimagic
nuclei considered in the “single-quasiparticle approximation”
where one quasiparticle in the fixed state λ = (n, l, j,m) with
the energy ελ is added to the even-even core. According
to the TFFS, a quasiparticle differs from a particle of the
single-particle model in two respects. First, it possesses the
local charge eq (in our case, we have e

p
q = 1, en

q = 0), and,
second, the core is polarized owing to the interaction between

FIG. 18. (Color online) Static effective fields Vp (solid lines), Vn

(dashes), and d+
n (dots) in 116Sn nucleus. Red lines correspond to

surface pairing, blue ones to volume pairing.
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FIG. 19. (Color online) Diagonal matrix elements V
p

λ of the
effective proton quadrupole field in the tin isotopes. Solid symbols
correspond to surface pairing, open ones to volume pairing.

the particle and the core nucleons via the LM amplitude. In
other words, the quasiparticle possesses the effective charge
eeff caused by the polarizability of the core which is found
by solving the above TFFS equations. In the many-particle
shell model [51,52], a similar quantity is introduced as a
phenomenological parameter which describes polarizability
of the core consisting of outside nucleons.

In nonmagic nuclei, the term quasiparticle takes a double
meaning. In addition to the initial LM concept we con-
sider the Bogolyubov quasiparticles with occupation numbers

nB
λ = (Eλ − ελ)/2Eλ and energies Eλ =

√
(ελ − μ)2 + �2

λ

and solve the set of the QRPA equations (14) instead of one
RPA equation.

The success of the single-quasiparticle approximation in
describing the magnetic moments of semimagic nuclei makes
it of interest to try to use the same approach for quadrupole
moments. In this article, we do such analysis limiting ourselves
to odd neighbors of the even tin and lead isotopes considered in
the previous section. To our knowledge, there is no systematic
calculation of quadrupole moments of these nuclei.

The static quadrupole moment of an odd nucleus in the
single-particle state λ can be found in terms of the effective
field (14) with the static external field V0 = √

16π/5r2Y20(θ )
as follows [9,53]:

Q
p,n

λ = (
u2

λ − v2
λ

)
V

p,n

λ , (32)

where uλ, vλ are the Bogolyubov coefficients and

Vλ = −2j − 1

2j + 2

∫
V (r)R2

nlj (r)r2dr. (33)

The j -dependent factor in Eq. (33) appears owing to the
angular integral [54]. For j > 1/2 it is always negative. For
odd neighbors of a magic nucleus the “Bogolyubov” factor in
Eq. (32) reduces to 1 for a particle state and to −1 for a hole
one.

Components of the static effective field V̂ (ω = 0), that
is V n,p(r) and d+

n (r) = d (1)
n (r) + d (2)

n (r), are displayed in
Figs. 17 and 18 for 204Pb and 116Sn nuclei, correspondingly.
Note that the identity d−(ω = 0) = 0 takes place [9]. One can
see large surface maxima of the quantities V n,p(r) similar to

TABLE III. Quadrupole moments Q(eb) of odd-proton nuclei.

Nucleus λ0 Qexp Qsurf
th Qvol

th Q0 esurf
eff evol

eff

105In 1g9/2 +0.83(5) +0.83 +0.90 +0.18 4.6 5.0
107In 1g9/2 +0.81(5) +0.98 +1.07 +0.18 5.4 5.9
109In 1g9/2 +0.84(3) +1.11 +1.14 +0.18 6.2 6.3
111In 1g9/2 +0.80(2) +1.16 +1.10 +0.19 6.1 5.8
113In 1g9/2 +0.80(4) +1.12 +1.02 +0.19 5.9 5.4
115In 1g9/2 +0.81(5), 0.58(9) +1.03 +0.97 +0.19 5.4 5.1
117In 1g9/2 +0.829(10) +0.96 +0.95 +0.19 5.1 5.0
119In 1g9/2 +0.854(7) +0.91 +0.92 +0.19 4.8 4.8
121In 1g9/2 +0.814(11) +0.83 +0.84 +0.19 4.4 4.4
123In 1g9/2 +0.757(9) +0.74 +0.74 +0.19 3.9 3.9
125In 1g9/2 +0.71(4) +0.66 +0.74 +0.19 3.8 3.9
127In 1g9/2 +0.59(3) +0.55 +0.49 +0.19 2.9 2.6
115Sb 2d5/2 −0.36(6) −0.88 −0.81 −0.14 6.3 5.8
117Sb 2d5/2 −0(2) −0.82 −0.77 −0.14 5.9 5.5
119Sb 2d5/2 −0.37(6) −0.77 −0.76 −0.14 5.5 5.4
121Sb 2d5/2 −0.36(4), −0.45(3) −0.72 −0.73 −0.14 5.1 5.2

1g ∗
7/2 −0.48(5) −0.81 −0.81 −0.17 4.8 4.8

123Sb 1g7/2 −0.49(5) −0.74 −0.74 −0.17 4.4 4.4
205Tl 3d ∗

3/2 0.74(15) +0.23 +0.23 +0.12 1.9 1.9
203Bi 1h9/2 −0.68(6) −1.32 −0.91 −0.25 5.3 3.6
205Bi 1h9/2 −0.59(4) −0.94 −0.72 −0.25 3.8 2.9
209Bi 1h9/2 −0.37(3), −0.55(1) −0.34 −0.34 −0.25 1.4 1.4

−0.77(1), −0.40(5)
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FIG. 20. (Color online) Diagonal matrix elements V
p

λ of the
effective proton quadrupole field in the lead isotopes. Solid symbols
correspond to surface pairing, open ones to volume pairing.

those in Figs. 11 and 14 for the BM-like transition amplitudes
g(0)

n,p(r). In-volume (“quantum”) corrections are relatively
small; therefore the integral in Eq. (33) is always positive. For
protons, it is noticeably larger than the similar integral with
the bare field V 0; see the discussion on the effective charges
below.

Diagonal matrix elements (33) of the proton effective field
are displayed in Fig. 19 for the tin isotopes and in Fig. 20 for

TABLE IV. Quadrupole moments Q(eb) of odd-neutron nuclei.

Nucleus λ0 Qexp Qsurf
th Qvol

th esurf
eff evol

eff

109Sn 2d5/2 +0.31(10) +0.25 +0.27 3.5 3.7
111Sn 1g7/2 +0.18(9) +0.05 +0.10 4.0 3.9
113Sn 1h ∗

11/2 0.41(4), 0.48(5) −0.78 −0.75 4.4 4.1
115Sn 1g ∗

7/2 0.26(3) +0.38 +0.38 3.9 3.6
1h ∗

11/2 0.38(6) −0.70 −0.67 4.2 3.8
117Sn 1h ∗

11/2 −0.42(5) −0.59 −0.58 3.9 3.7
119Sn 2d ∗

3/2 +0.094(11), −0.03 −0.02 3.0 2.9
−0.065(5),
−0.061(3)

1h ∗
11/2 0.21(2) −0.46 −0.45 3.6 3.5

121Sn 2d3/2 −0.02(2) +0.06 +0.08 2.9 2.9
1h ∗

11/2 −0.14(3) −0.29 −0.29 3.3 3.3
123Sn 1h11/2 +0.03(4) −0.12 −0.10 3.0 2.9
125Sn 1h11/2 +0.1(2) +0.04 +0.06 2.7 2.7
191Pb 1i ∗

13/2 +0.085(5) +0.0004 +0.10 5.3 5.9
193Pb 1i ∗

13/2 +0.195(10) +0.33 +0.39 6.5 5.5
195Pb 1i ∗

13/2 +0.306(15) +0.69 +0.66 6.6 5.2
197Pb 3p3/2 −0.08(17) +0.19 +0.14 5.2 3.8

1i ∗
13/2 +0.38(2) +0.98 +0.78 6.4 4.6

199Pb 3p3/2 +0.08(9) +0.27 +0.19 4.5 3.1
201Pb 2f5/2 −0.01(4) +0.14 +0.09 4.2 2.8
203Pb 2f5/2 +0.10(5) +0.28 +0.22 3.2 2.3
205Pb 2f5/2 +0.23(4) +0.34 +0.28 2.6 2.0

1i ∗
13/2 0.30(5) +0.67 +0.56 3.0 2.2

209Pb 2g9/2 −0.3(2) −0.26 −0.26 0.9 0.9

the lead ones. As is seen, for a major part of the tin isotopes,
the difference between values of proton matrix elements V

p

λ

surface and volume pairing is quite small. Only for 112–116Sn
nuclei it reaches 10%. In the lead region, the difference is more
pronounced, reaching �30%–40% for 9/2− and 11/2− states.

Corresponding quadrupole moments for nuclei with odd
proton number Z = 50 ± 1 and Z = 82 ± 1 are presented in
Table III. As is noted above, in this case the Bogolyubov factor
in Eq. (32) is trivial, equal to ±1. To check our approach,
we selected only nuclei where there are experimental data
and those which satisfy presumably the single-quasiparticle
approximation. In particular, we excluded several light Tl
isotopes with known quadrupole moments of low-lying excited
9/2− states. If to suppose that they are single-quasiparticle
1h9/2 states, they should have essentially higher excitation
energies than they do.

Experimental data are taken from the compilation [55].
From several cases of proton excited isomeric states we limit
ourselves with only two, the 1g ∗

7/2 state in the 121Sb and 2d ∗
3/2

state in 205Tl nuclei, for which the hypothesis on the single-
quasiparticle structure seems to us more or less safe. Again,
we presented results for both the kinds of nuclear pairing
(the quantities Qsurf

th and Qvol
th for surface and volume pairing,

correspondingly). In the sixth column of the table, the single-
particle quadrupole moment Q0 is presented, which is found
from Eqs. (32) and (33) with substitution V → V0. As follows
from Fig. 17, for odd-proton neighbors of the tin isotopes,
difference between values of quadrupole moments for surface
and volume pairing is quite small, in limits of 10%. In the lead
region (see Fig. 20), the difference is more pronounced, but
here the number of the data is very small, only 4. In addition,
only in the 203,205Bi and 205Tl case neutron pairing exists. For
these nuclei, the effect under discussion reaches �30%–40%.

For the long chain of 12 In isotopes agreement with the
data is quite reasonable. For five Sb isotopes (six values of the
quadrupole moment) agreement is rather poor, disagreement
reaching �50%–100%. A similar situation takes place for two
lighter Bi isotopes. For the 209Bi isotope where pairing is
absent experimental data are contradictory. We think that the
main reason of existing disagreements is neglecting the phonon
coupling effects.

Let us go to odd-neutron nuclei, the odd tin and lead iso-
topes. The results are presented in Table IV and Figs. 21 and 22.
In selecting nuclei for the table, we used the same concept as for
protons. In this case, we included into the analysis 12 excited
states, in addition to the ground ones. With the only exception
of the 209Pb nucleus, all the nuclei under consideration exhibit
pairing effects and the factor (u2

λ − v2
λ) in Eq. (32) becomes

nontrivial. It changes permanently depending on the state λ

and the nucleus under consideration. Note that in the case
of magnetic moments the factor of (u2

λ + v2
λ) = 1 appears

in the relation analogous to Eq. (32) [53]. In our case, this
factor determines the sign of the quadrupole moment. In all
cases when the sign of the experimental moment is known
the theoretical sign is correct. This makes it possible to use
our predictions to determine the sign when it is unknown. The
factor under discussion depends essentially on values of the
single-particle basis energies ελ reckoned from the chemical
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FIG. 21. (Color online) Quadrupole moments of odd tin isotopes.
Solid symbols correspond to surface pairing, open ones to volume
pairing. Experimental data are shown with � for 3/2+, � for 11/2−,
� for 5/2+, and � for 7/2+ states.

potential μ as we have (u2
λ − v2

λ) = (ελ − μ)/Eλ. Keeping in
mind such sensitivity, we found this quantity for a given odd
nucleus (Z,N + 1), N even, taking into account the blocking
effect in the pairing problem [53] putting the odd neutron to
the state λ under consideration. For the Vλ value in Eq. (32)
we used the half-sum of these values in two neighboring even
nuclei. We consider agreement with the data reasonable if we
have |Qth − Qexp| < 0.1–0.2e b. If to use such a criterion, there
are 7 “bad” cases in Table IV and 16 “good.” Several rather
strong disagreements with the experimental data in Table IV
for high j levels 1h11/2 in Sn isotopes and 1i13/2 in Pb isotopes
originate just from their too distant positions from the Fermi
level. Thus, the Q values depend strongly on the single-particle
level structure. Again, as for protons, the difference between
predictions of the two models under consideration is, as a rule,

FIG. 22. (Color online) Quadrupole moments of odd lead iso-
topes. Solid symbols correspond to surface pairing, open ones to
volume pairing. Experimental data are shown with � for 13/2+, �
for 3/2−, and � for 5/2− states.

rather small, and only for 1i13/2 states in the lead chain does it
reach �20%–30%.

In the last two columns of Tables III and IV, the ef-
fective charges are presented, which are defined as e

p,n

eff =
V

p,n

λ /(V p

0 )λ. It is a direct characteristic of the core polariz-
ability by the quadrupole external field. In these tables, there
are only two nuclei, 209Bi and 209Pb, with a double-magic
core, and in this case the polarizability is rather moderate,
e
p

eff = 1.4, en
eff = 0.9. In nuclei with an unfilled neutron shell

it becomes much stronger, eeff � 3–6. The reason is rather
obvious. Indeed, for the case of a positive parity field V0,
virtual transitions inside the unfilled shell begin to contribute
and small energy denominators appear in the propagator Ln

(18) playing the main role in the problem under consideration.
It enhances the neutron response to the field V0 and, via
the strong LM neutron-proton interaction amplitude Fnp, the
proton response as well. Results for the chain 203,205,209Bi show
how the polarizability grows with increase of the number of
neutron holes. Keeping in mind this physics, one can represent
the effective charges as e

p

eff = 1 + e
p

pol, e
n
eff = en

pol, where e
p,n

pol
is the pure polarizability charge. To separate contributions
of the unfilled shells and core nucleons explicitly, one can
divide the Hilbert space of the QRPA equations (14) to the
“valent” and subsidiary ones and carry out the corresponding
renormalization procedure [56].

V. DISCUSSION AND CONCLUSIONS

The effect of the density dependence of the pairing
interaction to low-lying quadrupole excitations in spherical
nuclei is analyzed for two isotopic chains of semimagic nuclei.
Static quadrupole moments of neighboring odd nuclei are also
examined. The complete set of the QRPA-like TFFS equations
for response functions is solved in a self-consistent way within
the EDF approach to superfluid nuclei with previously fixed
parameters of the functional. The DF3-a functional [30] is used
which is a small modification of the functional DF3 [13,14].
Specifically, spin-orbit and effective tensor terms of the initial
EDF DF3 were changed. Two models for effective pairing
force are considered, the surface and the volume ones, which
give rise to approximately the same accuracy in reproducing
mass differences. A noticeable effect in excitation energies ω2

is found: Predictions for the volume model are systematically
higher than the surface ones by �ω2 � 200–400 keV. As
to the excitation probabilities B(E2, up), the effect is not
so regular; however, as a rule, the volume values are also
higher. Thus, the correlation between these two quantities
typical for the BM model, where a higher frequency always
results in a lower probability, is destroyed. On the average, both
models reasonably agree with the data. In addition, they both
reproduce rather well the model-independent charge density
ρTr

ch(2+
1 ) for the 118Sn nucleus.

Comparison with recent QRPA calculations [27] with the
Skyrme force SkM* and SLy4 shows that for the lead chain
they agree with the data a little better than our results but for
the tin chain the situation is opposite and our predictions occur
to be essentially better. The surface model is systematically
better in describing the energies ω2, whereas the excitation
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probabilities are, as a rule, reproduced better with the volume
model.

Whereas the charge radii study [14] and ab initio theory
of paring [18,24] favor the surface pairing, the ω(2+

1 ) and
B(E2, up) data do not make it possible to prefer any of the
two kinds of pairing.

A reasonable agreement with experiment for the quadrupole
moments of odd neighbors of the even tin and lead isotopes
has been obtained for the most part of nuclei considered.
For odd-proton this confirms that the single-quasiparticle ap-
proximation works sufficiently well. For odd-neutron isotopes
under consideration, the validity of this approach was checked
previously with the analysis of magnetic moments [50]. In the
case we consider, the problem is more complicated than for
odd proton isotopes as the Bogolyubov factor (u2

λ − v2
λ) =

(ελ − μ)/Eλ comes to the quadrupole moment value, in
addition to the matrix element of the effective field Vλ. This
factor makes the quadrupole moment value very sensitive to
accuracy of calculating the single-particle energy ελ of the
state under consideration, especially near the Fermi surface as
the quantity Qλ vanishes at ελ = μ. For such a situation, the
influence of the coupling of single-particle degrees of freedom

with phonons (see [50,57]) should be especially important.
This rather complicated problem will be considered separately.

As to the effect of the density dependence of pairing,
for quadrupole moments it is, on the average, less than for
quadrupole transitions. It depends on a nucleus examined and
on the odd-nucleon state as well. In the tin region, it is, as a
rule, of the order of �10%. However, in the lead region it is
higher and reaches �30%–50% for 203,205Bi and 205Pb.
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