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E0 transitions in deformed nuclei
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E0 transitions are a sensitive indicator of structure in nuclei, reflecting shape transitional regions, deformation,
and intruder states. Attention has generally focused on E0 transitions to the ground state or low-lying yrast levels.
In this paper we look at all E0 transitions connecting 0+ states in a rather general collective model. We deduce a
new selection rule and map out calculated strengths throughout the spectrum. The distributions of E0 strengths
for several different collective structures are discussed.
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I. INTRODUCTION

Though less studied than electric quadrupole transitions,
E0 transitions are a sensitive signature of structure. There have
been a number of theoretical treatments of these transitions.
Although a consensus on their interpretation has sometimes
been lacking [1–4], it is clear that they are particularly sensitive
to changes in nuclear shape, growing rapidly in strength
in spherical-deformed shape/phase transition regions. They
have been predicted, in the context of the interacting boson
approximation (IBA) model [5], to remain large throughout
the deformed region [4]. A recent study using a geometric
model [6] has investigated their behavior as a function of
the stiffness of the quadrupole potential. In addition, their
correlation with nuclear radii has been investigated in Ref. [7].
In some models, such as the IBA model, there are definite
selection rules and analytic predictions for the strengths of
E0 transitions from excited 0+ state to the ground state in the
cases of the dynamical symmetries. In recent years there have
been attempts [8] to test these predictions in deformed nuclei
but such tests are experimentally difficult, primarily because,
in a perfect rotor, the energies of successive E0 transitions to
the yrast states, that is, transitions of the form J → J (yrast)
have identical energies.

Our aim here is to use the IBA model to map out the
full spectrum of 0+ → 0+ E0 transitions for several different
structural situations. We start with the dynamical symmetries
O(6) and SU(3) [all E0 transitions are identically zero in U(5)]
and then look at cases in the interior of the symmetry triangle of
the IBA, including a calculation along the arc of regularity [9].
We will do the calculations for different numbers of valence
nucleons to check for consistency of the results. In the case
of a well-deformed rotor of SU(3) type, we will show the
existence of a new selection rule that simultaneously describes
all the allowed 0+ → 0+ E0 transitions and we will study the
breakdown of that selection rule for deformed nuclei deviating
from a pure SU(3) structure.

Although E0 transitions present experimental challenges,
these results should be useful for studying the correlations with
structure that they show. These correlations are related to issues
of order and chaos, for vividly highlighting the breakdown of
the dynamical symmetries, for showing the interrelationships
of excited 0+ states (the E0 operator in the IBA is directly

related to the s- and d-boson structure of the states), and for
again pointing to the uniqueness of the arc of regularity.

II. SELECTION RULES FOR E0 TRANSITIONS

In the IBA model there are three dynamical symmetries
characterized by analytic expressions for eigenvalues and
transition rates and a number of selections rules for these
limiting cases. Even though very few nuclei actually exhibit the
strict constraints of these symmetries, these analytic relations
are useful as benchmarks (analogously to the role of magic
numbers in the shell model) to which realistic calculations
that break the symmetries can be compared.

To this end, Table I gives the selection rules for E0
transitions to the ground state that have been deduced [5]
for U(5)—analogous to a spherical vibrator, SU(3)−a specific
form of the axial deformed rotor, and O(6)—corresponding to
a γ -soft axially symmetric rotor.

These are highly restrictive, allowing a single E0 0+ → 0+
transition in the SU(3) and O(6) cases and none in U(5).
However, they say nothing about E0 transitions between
higher lying 0+ states, which is the main interest of this study.
Figure 1 illustrates the three dynamical symmetries of the
IBA in terms of the symmetry triangle and the allowed E0
transitions to the ground state for the SU(3) and the O(6)
symmetries. The lowest excited 0+ states in each corner of
the triangle for U(5), SU(3), and O(6) are labeled with their
quantum numbers, nd for U(5), (λ,μ) for SU(3) and (σ, τ ) for
O(6) where N in the SU(3) and O(6) cases is the total number
of bosons. The red and green dots in Fig. 1 correspond to
calculations of the E0 transitions inside the symmetry triangle
of the IBA on the arc of regularity and near the middle of the
triangle, respectively. For each corner the ratio between the
energies of the first excited 4+ and 2+ states, R4/2 is given.

The question we want to address is to look at all 0+ → 0+
transitions in these limits and between them as well. To do
this, we use the standard IBA Hamiltonian

H = εnd + κQ · Q (1)

with Q = s†d̃ + d†s + χ [d†d̃](2).
The three symmetry limits are obtained with particular

choices of the coefficients of the terms in the Hamiltonian
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TABLE I. Selection rules for ground state E0 transitions in the three dynamical symmetries of the IBA.

Dynamical Symmetry Geometric Essential quantum E0 selection rule Ground state
Analogue numbers quantum numbers

U(5) Spherical vibrator nd All forbidden nd = 0
SU(3) Axial rotor (λ, μ) (	λ,	μ) = (4,2) (2N ,0)
O(6) γ soft rotor (σ, τ ) (	σ, 	τ ) = (2,0) (N ,0)

and of χ . For U(5), κ = 0 and χ therefore is irrelevant. For
SU(3), ε = 0 and χ = −√

7/2. For O(6), ε = 0 and χ = 0.
Calculations deviating from the symmetries are obtained

for intermediate values of the parameters of the Hamiltonian.
The Hamiltonian basically represents a competition between
a spherical-driving nd term and a deformation-driving Q · Q

term. Hence, the structure is given simply by two parameters,
ε/κ , which determines the spherical-deformed nature of the
solutions, and χ , which controls the γ softness. Since ε/κ

can vary from zero to infinity it is convenient to rewrite the
Hamiltonian of Eq. (1) as follows:

H (ζ, χ ) = a

[
(1 − ζ )nd − ζ

4N
Q · Q

]
, (2)

where a is a scaling factor. The parametrization of the two
Hamiltonian Eqs. (1) and (2) are related by the equation

ε

κ
= 4N

1 − ζ

ζ
. (3)

Thus ζ = 0 corresponds to U(5) while ζ = 1 gives SU(3) for
χ = −√

7/2 and O(6) for χ = 0. ζ corresponds to a radius
vector in the symmetry triangle from the U(5) vertex toward
the O(6)–SU(3) leg, while χ corresponds to the angle of this
vector of the U(5) to SU(3) leg.

The E0 operator given by [5]:

T
(E0)

0 = α[s†s](0) + β[d†d̃](0)
0 (4)

FIG. 1. (Color online) Symmetry triangle of the IBA model
giving the three limiting symmetries and the Alhassid-Whelan arc
of regularity. For each symmetry, the allowed transitions between
the first excited 0+ state and the ground state are shown. The level
schemes are labeled by their quantum numbers. The two dots inside
the triangle represent calculations for E0 transitions between all
excited states for a point on the arc of regularity (red dot) and near
the middle of the triangle (green dot).

can be rewritten in terms of the total boson number N =
ns + nd as

T
(E0)

0 = αN + β
′
[d†d̃](0)

0 (5)

with β
′ = β − α

√
5. The constant term αN does not give rise

to electromagnetic transitions. Thus one needs to evaluate the
matrix elements of the last operator in Eq. (5).

III. RESULTS FOR THE THREE DYNAMICAL
SYMMETRIES

Since nd is a good quantum number for U(5) there are no
allowed E0 transitions in that limit. For all other calculations,
it is easy to evaluate this transition strength numerically since
the standard IBA code expands the wave functions in nd .
The results will depend on the total boson number, N . We
will show the results for SU(3) and O(6) in two forms: in
terms of a symmetric matrix of ρ2(E0) values where the
columns and rows are labeled by their quantum numbers, and
pictorially in terms of a level scheme diagram of the ground
and excited 0+ states and the allowed transitions between them.
Figure 2 shows the results for O(6) nuclei for N = 6 bosons.
Figure 3 shows similar results for SU(3) symmetry for N = 16
bosons.

Turning to Fig. 2, we see that some levels [such as the
first excited 0+ state, with (σ, τ ) = (N, 3)] have no allowed
E0 decays. Those states with the same τ but different σ have
only a single allowed transition. That is, the selection rule for
ground state transitions actually persists for all 0+ → 0+ E0
transitions and, for a state with a given (σ, τ ), there is at most
only one lower lying level satisfying it.

For SU(3), this is not the case as Fig. 3 shows. Here all
0+ levels have at least one allowed decay and some have
several (but not many—see below). Even just the decay of the
third excited 0+ state shows that the simple selection rule for
SU(3) in Table I is not adequate to describe the E0 transitions
from the higher states. Using the matrices in Fig. 3, we have
found a heretofore unrecognized selection rule that describes
all allowed 0+ → 0+ E0 transitions in SU(3). This rule can
be expressed in two ways. In the usual notation of (λ,μ)
quantum numbers 0+ → 0+ E0 transitions are allowed if any
of the following three conditions is satisfied:

(	λ,	μ) = (2, 4), (2, 2), (4, 2). (6)

These rules are sufficient albeit awkward. However, with
a different notation, using Young Tableaux (for an excellent
elementary discussion of Young Tableaux, see [10]), it is easy
to express these three results by a single simple rule.
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FIG. 2. (Color online) Calculated E0 transition strengths (arbi-
trary units) for the O(6) limit for N = 6 bosons. Top panel: The E0
matrix elements ρ2(E0, Ji → Jf ) predicted by the IBA are shown.
The corresponding O(6) quantum numbers (σ, τ ) are also given in
the figure. The energies are normalized to the first excited 0+ state.
Bottom panel: All E0 transitions between all 0+ levels are shown.
In this and the next two figures the thickness of the arrows give a
indication of the ρ2(E0) strengths.

Figure 4 (upper part) shows the Young Tableaux represen-
tation for SU(3) symmetry described in terms of two rows
of boxes. The difference in the number of boxes between
the second and first rows gives λ, while μ is given by the
number of boxes in the second row. Manipulating the boxes
between the two rows according to the rules in Eq. (6) gives
the SU(3) representations that are connected by allowed E0
transitions. The Young Tableaux designations for SU(3) in
Fig. 4 (top) are equivalent to a scheme with three rows, as
shown in the bottom of the figure. Here, the number of boxes
in the successive rows are given by n1, n2, n3. The rows are
ordered such that their length always decreases as the row
number increases, n1 > n2 > n3. Here, λ is again given by
the difference in the number of boxes between the second and
first rows, while μ is the difference in the number of boxes
between the second and third rows. In effect, one obtains the
upper description of SU(3) in Fig. 4 by truncating the boxes
on the left in which all rows are occupied. In the lower part of
Fig. 4, the ground state can be represented by a single row of
2N boxes and has (λ,μ) = (2N, 0). The next representation
is formed by moving two boxes into the second row giving
(λ,μ) = (2N − 4, 2). Two additional boxes can be moved
from the upper row to either the second or third rows, resulting
in, respectively, (λ,μ) = (2N − 8, 4) or (2N − 6, 0), and so
on.

TABLE II. Selection rules for E0 transitions of the SU(3)
symmetry, for N = 12 bosons, in terms of Young diagrams with
three rows. The n1, n2, n3 represent the numbers of boxes in the first,
middle and third rows of Young diagram and (λ,μ)i,f are the initial
and final quantum numbers.

(λ,μ)i ≡ (n1, n2, n3) (λ, μ)f ≡ (n1, n2, n3) (	λ,	μ)

(16, 4) ≡ (20, 4, 0) (14, 2) ≡ (18, 4, 2) (2,2)
(16, 4) ≡ (20, 4, 0) (12, 6) ≡ (18, 6, 0) (4,2)
(16, 4) ≡ (20, 4, 0) (18, 0) ≡ (20, 2, 2) (2,4)
(16, 4) ≡ (20, 4, 0) (24, 0) ≡ (24, 0, 0) forbidden

In this notation, all allowed E0 transitions in SU(3) can be
described by the following rule: any transition connecting two
0+ states is allowed if the Young Tableaux for either state can
be converted into that for the other state by taking two boxes
from a higher row to any lower row. This can be from n1 to
n2, or n1 to n3, or n2 to n3. That is, two states are connected if

	ni = nj ± 2 for i �= j (7)

with the third row unchanged.
We illustrate the selection rules with one example. Consider

the allowed transition in SU(3) for 12 bosons from the state
(16, 4) to (14, 2). This is (	λ,	μ) = (2, 2). In terms of the
Young Tableaux with three rows this is a movement of two
boxes from n1 to n3. For the same number of bosons in SU(3)
if we consider the transition from the state (16, 4) to (12, 6),
this is (	λ,	μ) = (4, 2). In terms of the Young Tableaux with
three rows this is a movement of two boxes from n1 to n2. In
the case of the transition (18, 0) to (16, 4), this is (	λ,	μ) =
(2, 4). In terms of the Young Tableaux with three rows this is
a movement of two boxes from n2 to n3. If we consider the
transition from state (16, 4) to (24, 0), this is (	λ,	μ) = (8,
4) which is forbidden according to the rules in Eq. (6) and
by the Young Tableaux representation with three rows. These
results are summarized in Table II.

With this result in hand, and the ones for U(5) and O(6), we
can now study how the E0 strengths and their distributions vary
for nuclei with structures corresponding to interior positions
in the triangle.

IV. RESULTS FOR NUCLEI DEVIATING FROM
THE DYNAMICAL SYMMETRIES

The simple E0 decay patterns seen in Figs. 2 and 3 reflect
the character of the symmetries and the existence of good
numbers at the vertices of the triangle. Away from those
vertices, mixing of the states of the symmetries occurs such
that the quantum numbers rapidly lose validity and, generally, a
larger number of E0 transitions have finite values. We illustrate
this with two calculations, one for the special case of nuclei
along the arc of regularity and one for a typical deformed
nucleus.

Figure 5 shows the level scheme and E0 transitions for two
calculations with parameters corresponding to the positions
marked by the colored dots in Fig. 1, along with the results
for SU(3) for comparison. The case in the middle of Fig. 5
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FIG. 3. (Color online) Calculated E0 transition strengths (arbitrary units) for the SU(3) limit for N = 16 bosons. Top panel: The E0 matrix
elements ρ2(E0, Ji → Jf ) predicted by the IBA are shown. The corresponding SU(3) quantum numbers (λ, μ) are also given in the figure.
The energies are normalized to the first excited 0+ state. Bottom panel: All E0 transitions between all 0+ levels are shown.

corresponds to a deformed nucleus lying along the arc of
regularity (red dot). The arc is a unique region, discovered by
Alhassid and Whelan [9] about twenty years ago where, amidst
nuclei whose properties appear to be highly chaotic, there is
a narrow valley of regularity starting at SU(3) and heading
toward the spherical-deformed phase transitional line and then
beyond toward U(5). In this valley, despite the distance from
SU(3), the spectra regain ordered behavior. For years it was
thought that this region was of only academic interest since it
was devoid of actual nuclei. However, about a decade ago, new
fits of the IBA [4] identified a set of eight well-deformed nuclei
that lie very close to the arc. A common characteristic was
noted, namely the near degeneracy of the first excited 0+ state

and the 2+ level of its band or of the gamma band. Degeneracies
suggest symmetries and good quantum numbers and it was
very recently demonstrated [12] that the arc of regularity in fact
corresponds to the first example of a quasi-dynamic symmetry
(QDS) within the triangle where all three symmetries are in
play. (As pointed out by [13], earlier examples of QDS’s were
positioned along the legs of the triangle bridging only the two
symmetries bounding the leg.) Thus it is interesting to look at
E0 transitions for a calculation corresponding to a point on
the arc.

As can be seen, the E0 strength is now considerably
more spread out, with a number of new transitions appearing,
especially for the higher lying levels. It is interesting to
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FIG. 4. Example of the determination of the (λ,μ) quantum
numbers of the SU(3) symmetry using the method of Young Tableaux
[10,11].

compare this to a nucleus located close to the middle of
the triangle but lying off the arc. The green dot in Fig. 1
corresponds to such a situation for which R4/2 ∼ 3.1.

It is easy to see by inspection in Fig. 5 that the E0 strength
continues to spread. Further it is not only a question of more
finite E0 strengths but also many of these transitions are quite
weak.

0 0.5 1 1.5 2 2.5 3
E0 transition strengths

0

5

10

15

20

25

30

35

St
re

ng
th

 d
is

tr
ib

ut
io

n 
of

 E
0 

tr
an

si
ti

on
s

SU(3) 

middle of the triangle 
arc of regularity

12 bosons

FIG. 6. (Color online) Distribution of the E0 transition strengths
for 12 bosons for SU(3), for a point on the arc of regularity (red) and
near the middle of the triangle (green). All values of the E0 transitions
between all 0+ states are normalized to unity for the 0+

2 → 0+
1 E0

transition strength.

An interesting way to look at these distributions is in
terms of the histogram in Fig. 6 which shows the number of
transitions in various strength bins for the three calculations.
For this figure each calculation has been normalized so that the
E0 transition from the first excited 0+ state to the ground state
has a strength of unity. The SU(3) distribution is rather flat
with very few weak transitions, that is, all allowed transitions

FIG. 5. Results for three calculations are shown for the case of N = 12 bosons. Left: Typical spectrum of the 0+ levels of the SU(3) limit
labeled by their quantum numbers (λ, μ) and the allowed E0 transitions between all 0+ states. Middle: Similar figure for E0 transition strengths
between all 0+ levels corresponding to a point on the arc of regularity. Right: The E0 transition strengths between all 0+ levels corresponding
to a point near the middle of the triangle.
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have reasonably strong strengths. The distribution for the two
calculations deviating from SU(3) clearly show many more
weak transitions and a sapping of strength from the stronger
transitions.

V. CONCLUSIONS AND OUTLOOK

In this study, we calculated E0 transitions between all
0+ states using the IBA model to probe their relation to
collectivity. For SU(3), we discovered a new selection rule
that simultaneously describes all E0 transitions. Although the
spectrum of allowed E0 transitions is complex we discussed

a very simple selection rule in terms of Young Tableaux
with three rows. Finally, we studied the fractionation of E0
strength between excited states for calculations deviating from
the dynamical symmetries and noted the somewhat different
patterns for nuclei along the arc of regularity and near the
middle of the triangle.
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