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Description of 3α-bosonic states in the 12C nucleus with local and nonlocal potentials
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The 12C nucleus is investigated in a nonmicroscopic α-particle model involving local and nonlocal potentials.
Faddeev equations formulated in configuration space are used to solve the three-body problem for bound and
resonant states. We demonstrate that the nonlocal potential developed by Papp and Moszkowski [Mod. Phys.
Lett. B 22, 2201 (2008)] appears to be particularly well adapted to study 3α clustering. We point out 12C states of
positive-parity which share common features with the 0+

2 Hoyle states. Several negative-parity states revealing a
clear bosonic α-particle structure are also obtained.
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I. INTRODUCTION

The description of the atomic nucleus as a quantum system
of interacting nucleons is a fundamental problem of theoretical
nuclear physics. Nucleons being fermions, the corresponding
A-body wave functions must be correctly antisymmetrized
to take the Pauli principle into account. In such so-called
microscopic models, the structure in quarks of the nucleons
is neglected. Shell models, or microscopic cluster models, are
typical examples of such approaches [1].

However, the α particle has played a special role since the
early days of nuclear physics [2,3]. Experimentally, α-particle
clustering effects are currently well established in light nuclei.
Owing to its compactness and strong binding, the idea that the
α particle tends to keep its own identity inside the nucleus is
at the origin of cluster models. According to the description of
the α particle as a composite particle or as an elementary one,
microscopic and nonmicroscopic theoretical frameworks have
been developed.

In the microscopic approach, the α particle is usually seen
as two neutrons and two protons that fill up the s shell of
a harmonic oscillator potential (one cluster). Historically, the
description of nuclear states based on such a cluster structure
was first suggested by Wheeler [4] and by Margenau [5], then
extended by Brink [6]. The first applications were devoted
to the study of α-particle nuclei (i.e., 4n

2nX-type nuclei, with
nucleon number A = 4n, such as 8Be, 12C, or 16O nuclei).
In such cases, the Pauli principle is exactly treated through
antisymmetrization of the A-nucleon wave functions.

In addition, the total angular momentum of the α particle
is zero and therefore it must be treated as a boson in
nonmicroscopic models [2]. Because of its bosonic nature,
the wave functions of the whole system must be symmetric for
exchange of any two α particles.

The transition from descriptions in terms of A fermions
toward those in terms of n bosons is far from obvious. However,
it remains a very interesting challenge, which can help to point
out states in which α clustering is expected to be strongly
dominant, such as in the so-called condensate state [7], a
typical example being the 0+

2 in the 12C nucleus, known
as the Hoyle state [8], which plays a crucial role in stellar
nucleosynthesis processes.

Numerous works have been devoted to this subject, par-
ticularly to the study of the 12C nucleus viewed either as a
system of 12 nucleons or as a system of 3 α particles. It is
impossible to give here an exhaustive list of all of them. We just
mention some of the representative ones. For the microscopic
aspects, we cite studies performed using the resonating group
method (RGM) [9], with the generator coordinate method [10],
and employing antisymmetrized molecular dynamics [11]
and fermionic molecular dynamics [12]. For nonmicroscopic
approaches, different methods have been used, such as the
orthogonality condition method (OCM) [13]. This method
presents a simplified version of the RGM where the anti-
symmetrization is approximatively taken into account through
the orthogonality with the forbidden states. Two typical
applications using the OCM are the study by Yamada and
Schuck [14], which focuses on the condensate interpretation of
four states around the 3α threshold, and the study by Kurukawa
and Katō [15,16], which investigates 3α-cluster structure in
the 12C nucleus. Let us also mention the two recent works of
Alvarez-Rodriguez et al. [17] and Descouvemont using the
formalism of hyperspherical harmonics [18].

In spite of all these investigations, the physical problem
is still far from being well mastered. For the nonmicroscopic
approaches the most important challenge is to replace forces
acting between nucleons by phenomenological potentials be-
tween the α particles. These forces must be able to simulate not
only the internal structure of the α particle but also, and most
importantly, the Pauli principle between the single nucleons.
In such a context, several local and nonlocal potentials have
been developed.

A straightforward approach is to parametrize a local shallow
α-α potential consistent with the nonexistence of the 8Be
bound state, which reproduces experimental αα phase shifts
together with energies of near-threshold 8Be resonances. One
way to simulate the Pauli principle is to define potentials with
a strong repulsive core, which was done by Ali and Bodmer
in the 1960s [19]. Nevertheless, such an approach seems to
be far from being satisfactory because it leads to a strong
underbinding of the 12C ground state (see Refs. [18,20] and
references therein).

An alternative approach is to consider a local deep potential,
such as the potential proposed by Buck et al. [21]. It is
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well known that such interactions involve nonphysical Pauli-
forbidden 2α bound states which must be eliminated by an
appropriate projection procedure [20,22]. Until now, however,
there has been no unique prescription of how to project out
these states. One way is to use a projector constructed using
two-body eigenfunctions of these states. Another way is to use
Pauli-forbidden relative motion states consistent with a shell-
model description of 2α particles [22]. The first prescription
leads to a strong underbinding of the 12C ground-state nucleus,
similar to that obtained by the shallow Ali-Bodmer potential
[18,23]. On the contrary, the second prescription leads to a
significant overbinding of the 12C ground state [18,24,25].

To improve previous descriptions, one is obliged to recourse
to three-body forces. However, works already performed in
that direction reveal the necessity of three-body forces with
either rather complex structure and/or being dependent on the
angular momentum J [16,18]. In such conditions, the defini-
tion of phenomenological multibody forces seems unavoidable
in describing heavier multi-α-particle structures [26]. This
point is of course a serious drawback for nonmicroscopic
approaches.

The most elaborate prescription to account for nucleon
structure in the nonmicroscopic description of nuclear clusters
is provided by the so-called fish-bone optical model [27–29].
This model takes into consideration not only fully Pauli
forbidden states of relative motion between the clusters but also
partially Pauli forbidden states and thus may be considered an
extension of the OCM. It was demonstrated that the fish-bone
model agrees with the resonating group model up to the
omission of some residual interaction [28]. In such a context,
a very accurate parametrization of the α-α fish-bone potential
was realized recently by Papp and Moszkowski [30]. Using
a single parameter set for each partial wave, these authors
succeeded in reproducing together the � = 0, � = 2, and
� = 4α-α phase shifts up to 20 MeV, the E2α = 91.6 keV
resonance in the 8Be nucleus, as well as the ground-state
binding energy of the 12C. A notable feat of this work is
the ability to describe the two lowest 0+ 12C states without
resorting to three-body force.

The present paper aims to investigate bound and resonant
states of both positive and negative parity of the 12C nucleus
in a nonmicroscopic 3α-particle model. The nonrelativistic
quantum three-body problem is solved using the formalism
of the Faddeev equations [31] in configuration space. The
nonlocal Papp and Moszkowski potential [30] is chosen to
model the two-body interactions between the α particles. We
generalize the calculation of Ref. [30] where 3α calculations
are limited to the two lowest 0+ states of the 12C nucleus.
A determination of resonant-state energies and widths is
performed by employing the complex-scaling method [32,33].
Furthermore, we complement our investigations with calcula-
tions involving the Ali and Bodmer potential [19] completed
by new three-body forces.

Our calculations focus particularly on (J, T = 0) reso-
nances located above the 3α threshold, which are expected
to present a bosonic α structure. Among them, the most
famous one is the aforementioned 0+

2 Hoyle state located at
E3α = 0.38 MeV. This state was known for a long time to
manifest a well-developed 3α-cluster structure. It cannot be

reproduced currently by standard approaches such as the shell
model even in its no-core version [34], but it was successfully
described by several microscopic-cluster models (see Refs.
[10,11] and references therein). Let us also mention a recent
investigation with an ab initio calculation within an effective
field-theory theoretical framework [35].

The interest in the Hoyle state in particular was revived
recently with its interpretation as an α-condensate state in anal-
ogy with the Bose-Einstein condensate [7]. A related question
is to know if it can be considered a rotational bandhead. In such
a context, the location of the 2+ member was investigated
by several experimental and theoretical approaches (see
Refs. [16,36] and references therein). Experimentally, the
most recent measure was performed by Freer et al. [36]. The
predicted value of energy is Ex = 9.6(1), with a width of � =
0.6(1) MeV. This result is supported by several microscopic
and nonmicroscopic theoretical calculations, which predict the
2+ member at about 2–3 MeV above the 3α threshold (see
Refs. [10,16] and references therein). In addition, let us also
mention the existence of a very broad 0+

3 state measured at
Ex ≈ 10 MeV with a width of ≈3 MeV [36,37]. This state
was interpreted as a molecular 3α state and also as a possible
condensate (suggested in Ref. [38]).

Negative-parity resonances are also interesting to investi-
gate, both to address the quality of potentials mostly fitted on
positive-parity states and to discuss the physical properties of
resonances such as the 3−

1 , 2−
1 , and 1−

1 states, which are also
believed to present α clustering [14,16,38].

The present paper is organized as follows. Section II is
devoted to the theoretical framework. Results with the nonlocal
Papp and Moszkowski potential and with the Ali and Bodmer
potential are discussed in Secs. III and IV, respectively.
Concluding remarks are given in Sec. V.

II. THEORETICAL FRAMEWORK

The nonrelativistic quantum three-body problem is de-
scribed by means of the Faddeev equations in configuration
space [31]. With the hypothesis of three identical particles
subject to pairwise interaction vij and three-body force W123,
written as a symmetric sum (with respect to the particle
permutation) of three terms W123 = w12,3 + w23,1 + w31,2, the
Faddeev equations read

(E − Ĥ0 − vij )ψij,k = vij (P + + P −)ψij,k + wij,k�, (1)

where Ĥ0 is the three-particle kinetic energy operator, ψij,k

the Faddeev component, and P +, P − the cyclic particle
permutation operators. The properly symmetrized three-body
wave function is � = (1 + P + + P −)ψij,k . It is easy to verify
that the sum of the three Faddeev equations defined in Eq. (1)
leads to the Schrödinger equation.

In this work, vij represents either the nonlocal Papp and
Moszkowski potential [30] or the local Ali and Bodmer
potential [19] complemented by the Coulomb force between
the α particles. We do not recopy here the analytical expres-
sions of these two potentials, which can be entirely found in
Refs. [19,30].
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Let us now summarize the main steps to solve Eq. (1),
including the implementation of the complex scaling method.
To simplify the kinetic energy operator and to separate internal
and center-of-mass degrees of freedom we use the Jacobi
coordinates defined as −→xij = −→rj − −→ri and −→yij = 2√

3
[−→rk −

1
2 (−→ri + −→rj )].

The energy of the resonance states and the correspond-
ing eigenfunctions are obtained by solving the following
Schrödinger (or Faddeev) equation:

Ĥ�res = Eres�res, with Eres = εres − i

2
�res, (2)

where Ĥ = Ĥ0 + v12 + v23 + v31 + W123 is the full three-
body Hamiltonian.

Because physical resonances have positive-energy real
parts (εres > 0), the corresponding eigenfunctions are not
square integrable. Nevertheless, by applying a similarity
transformation, they can be mapped onto normalizable states.
That is,

(ŜĤ Ŝ−1)(Ŝ�res) = Eres(Ŝ�res) (3)

with Ŝ�res → 0 as r → ∞. Functions (Ŝ�res) are then in
Hilbert space, although �res are not. In the complex-scaling
method [32,33], the similarity operator reads

Ŝ = eiθr ∂
∂r (4)

such that any analytical function f (r) is transformed according
to

f̃ (r) = Ŝf (r) = f (reiθ ). (5)

For a broad class of potentials, the complex-scaling oper-
ation does not affect the bound- and resonant-state spectra
of the Hamiltonian Ĥ , provided 0 � θ < π

2 . In addition,
the continuous spectra of Ĥ is rotated by an angle 2θ .
Resonance eigenfunctions (Ŝ�res) of the scaled Hamiltonian
become square integrable if tan(2θ ) > �/2εres and therefore
standard bound-state techniques can be applied to determine
the corresponding eigenvalues.

Complex scaling of the Faddeev equations causes no
difficulties. All the Jacobi vectors have simply to be scaled
with the same exponential factor

−→xij → −→xij e
iθ and −→yij → −→yij e

iθ . (6)

Such a transformation affects only the hyper-radius
ρ =√

x2
ij + y2

ij but not the angular dependence of the Faddeev
equations or the expressions of the permutation operators
(P +, P −). For instance, the complex-scaled kinetic-energy
operator can be expressed as a six-dimensional Laplacian
Ĥ0 = −(e−i2θ ) h̄2

m
χ with χ ≡ (−→xij ,

−→yij ).
As in our previous works [39,40], we project the Faddeev

components onto a partial-wave basis of the total angular
momentum LM:

ψ̃ij,k(−→xij ,
−→yij ) =

∑
�x ,�y

ψLM
�x�y

(xij , yij )

xij yij

[
Y�x

(x̂ij ) ⊗ Y�y
(ŷij )

]
LM

,

(7)

where �x and �y are the partial angular momenta associated
with Jacobi coordinates −→x and −→y , respectively.

Because the α particle has spin zero, no explicit spin
dependence is required in the last expression. Moreover, the
total angular momentum J of the 3α system coincides with
the total orbital angular momentum L. Owing to the bosonic
nature of the α particle, symmetrization implies that �x must
be an even integer. No such restriction exists on �y values. It
is also easy to verify that the parity of the 3α system obeys the
following simple rule: π = (−1)�x+�y = (−1)�y .

After the complex-scaling operation followed by the pro-
jection of Eq. (1) onto the partial-wave basis given in Eq. (7),
one obtains a system of integro-differential equations. Next,
the radial dependence of the amplitudes ψLM

�x�y
(xij , yij ) is

developed onto a basis of cubic Hermite splines [41]. Such a
procedure leads to a generalized algebraic eigenvalue problem
written as

AX = EresBX, (8)

where A and B are known complex matrices, and Eres and X

are respectively the complex eigenvalue and eigenvector to be
determined. In practice, A and B are large-scale matrices with
typical dimension of ≈2 × 104. An inverse iteration method
is used to determine the eigenvalues. This iterative method
permits to determine the closest eigenvalue to the initial guess
value. For more technical details about the numerical algorithm
employed, interested readers may refer to Refs. [39,40]. We
generally limited our investigations to about 10 MeV above
the 3α threshold, which corresponds to the natural limit for the
considered α-α interactions. (These interactions are generally
derived by fitting α-α scattering data up to Ec.m. ∼ 10 MeV.)

In our calculations, the sum (7) is limited to �max
x = �max

y =
8. This choice guarantees at least three-digit accuracy. Initial
values were carefully tested to eliminate the risk of losing a
resonance and at least two scaling angles (θ = 6◦ and θ = 10◦)
were systematically used to test the scaling.

Because resonance wave functions ψij,k are not square
integrable, the calculation of the norm or of the mean value
of some operators Ô(−→xij ,

−→yij ) does not generally converge to
a finite value. In addition, the complex-scaled functions ψ̃ij,k

turn out to be square integrable. We then use them to study the
physical properties of the resonance wave-function internal
part. To do that, we introduce complex-mean-value integrals
involving the scaled functions and the scaled operators. In such
a context, we define the complex norm as follows:

N =
∫∫

�̃(−→xij ,
−→yij )�̃(−→xij ,

−→yij )d3xij d
3yij (9)

= 3
∫∫

ψ̃ij,k(−→xij ,
−→yij )�̃(−→xij ,

−→yij )d3xij d
3yij , (10)

where the second equality results from the permutation
symmetry of the three identical particles. Then the complex
mean value of the operator Ô(−→xij ,

−→yij ) is given by

〈Ô〉 = 1

N

∫∫
�̃(−→xij ,

−→yij )Ô(−→xij e
iθ ,−→yij e

iθ )

× �̃(−→xij ,
−→yij )d3xij d

3yij . (11)
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TABLE I. 12C energies (in MeV), total widths (in MeV), and root-mean-square radius (in fermis) calculated with the Papp and Moszkowski
potential (PM). 2+

2 experimental data are taken from Ref. [36]. Other experimental data are taken from Ref. [43], where the (4−) at Ex =
13.352 MeV is tentatively assigned to a 2− state (see text).

J π Eexpt
x E

expt
3α �expt EPM

3α �PM
√

r2
PM

0+
1 0 −7.2747 −7.27 2.40

2+
1 4.43891(31) −2.8358 −5.93 2.34

4+
1 14.083(15) 6.8083 0.258(15) −2.88 2.25

0+
2 7.65420(15) 0.3795 (8.5 ± 1.0) × 10−6 0.538 �2.2 × 10−3 3.98

0+
3 ≈10.3 ≈3 ≈3 4.42 0.85 3.58

2+
2 9.6(1) 2.33 0.6(1) 4.55 0.66 3.30

0+
4 13.49 1.2 2.92

4+
2 15.69 1.36 2.76

3+
1 9.03 2 2.73

3−
1 9.641(5) 2.366 0.034(5) 0.935 0.001 2.76

1−
1 10.844(16) 3.569 0.315(25) 3.22 0.18 3.05

2−
1 11.828(16) 4.553 0.260(25) 4.22 0.13 3.08

(4−
1 ) 13.352(17) 6.077 0.375(40) 4.20 0.01 2.72

5−
1 8.59 0.2 2.51

3−
2 7.34 0.2 2.45

4−
2 8.92 1.52 2.31

Such an expression for some general observables as the
mean square radius or the mean kinetic energy turns out to
be stable and independent of the complex-scaling angle θ .
Furthermore, for narrow resonances, the complex mean-value
integrals are generally dominated by the real parts. Therefore,
when presenting results, we omit the small imaginary parts.
Let us also notice that in the following the root-mean-square
radius is computed by taking into account correction due to
the finite size of the α particle

√
r2 =

√
r2
C + 1.712, where r2

C

is the rms radius obtained with Eq. (9).
In the present work, the importance of each partial-wave

Faddeev component is estimated by means of the A�x,�y
terms

defined as follows:

A�x,�y
= 3

N

∫∫
ψ̃

�x ,�y

ij,k (−→xij ,
−→yij )�̃(−→xij ,

−→yij )d3xij d
3yij , (12)

where ψ̃
�x ,�y

ij,k (−→xij ,
−→yij ) is given by

ψ̃
�x ,�y

ij,k (−→xij ,
−→yij ) =

ψLM
�x�y

(xij , yij )

xij yij

[
Y�x

(x̂ij ) ⊗ Y�y
(ŷij )

]
LM

.

(13)

In general, the A�x,�y
terms are complex numbers, dom-

inated by the real parts for narrow resonances. Mostly real
parts A�x,�y

are positive and sum to unity, which is implied by
the normalization factor N

3 . Nevertheless, in some cases small
negative A�x,�y

contributions are also possible.

III. RESULTS WITH THE PAPP AND MOSKOWSKI
POTENTIAL

A. The 0+
1 , 2+

1 , and 4+
1 ground-state rotational band

As aforementioned, Papp and Moszkowski [30] succeeded
in parametrizing a nonlocal fish-bone-type potential that

reproduces the 0+
1 ground-state energy with respect to the

3α threshold without any three-body force. Along with the
binding energy our calculations provide a 0+

1 rms radius
of 2.40 fm, which is close to the experimental value of
R ≈ 2.47 fm. This value is also in agreement with microscopic
approaches where the 0+

1 can be described either as 3α clusters
located at the apexes of an equilateral triangle [42] or as a
compact shell-model-like structure [9,11]. The analysis of the
corresponding A�x,�y

terms (not shown here) reveals a mixed
structure in the S, D, and G waves.

Regardless of the nice description of the 0+
1 state, the 2+

1
and 4+

1 states are strongly overbound in our calculations (see
Table I and Figs. 1 and 2). The 4+

1 state is obtained as a bound
state, while it is situated above the 3α threshold experimentally.
However, let us notice that the 0+

1 , 2+
1 , and 4+

1 sequence keeps
a rotational band structure but with a too-small rotational
constant (see Fig. 1). A similar drawback is also present
for microscopic-cluster models and is interpreted as a lack
of spin-orbit interaction [42].

The poor description of the ground-state band is not really
surprising within a nonmicroscopic framework. This can be
easily understood as a signature of the nonbosonic nature
of these compact states, which apparently require a proper
microscopic treatment.

B. 3α positive-parity resonances

The nonlocal Papp and Moszkowski potential reproduces
fairly well the 0+

2 Hoyle state (see Table I, and Figs. 1 and 2).
For this state, our calculation provides a rms radius value
of 3.98 fm compatible with the analysis of electron inelastic
scattering data [44] as well as other theoretical models [11,
14,16]. It also confirms the interpretation of the 0+

2 state as a
3α dilute state. Let us remark that the numerical accuracy of
our calculation is not enough to determine the width of very
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FIG. 1. (Color online) Ground-state rotational band (black cir-
cles) and 0+

2 Hoyle-state rotational band (red diamonds) are obtained
with the nonlocal Papp and Moszkowski potential. The 0+

2 band
calculated by Kurukawa and Katō [16] (red triangles) is also given.
Solid symbols and solid lines correspond to calculated values. Open
symbols and dotted lines correspond to experimental data taken
from Ref. [36] for the 2+

2 data and from Ref. [43] for the other
data.

narrow resonances such as the Hoyle state. In such a case, we
just provide an upper value.

A very interesting point related to our study with the
nonlocal Papp and Moszkowski potential is the existence of
a set of states {0+

2 , 2+
2 , 0+

3 , 0+
4 , 4+

2 } which share intriguing
common features.1 In particular, the analysis of the A�x,�y

terms gathered in Table II shows that respective wave functions
are dominated by a single partial wave with �x = �y . In
general, �x and �y are not good quantum numbers and the
A�x,�y

values are necessarily potential dependant. However,
their quasiuniqueness in the case of the nonlocal Papp and
Moszkowski potential points out a common denominator
between the states that is interesting to discuss. Indeed,
condensates such as the Hoyle state are usually described as
a dilute bosonic state with zero angular-momentum values
between the α particles (see Refs. [14,38] and references
therein). Our calculation confirms this property for the 0+

2
state. Furthermore, the possibility of condensate states with
nonzero angular momentum, as discussed in Ref. [14], appears
also relevant. In such a context, and due to the interpreta-
tion of the Hoyle state as condensate, the previous set of
states can be interpreted as a same family of 3α-condensate
states differentiated by the relative angular-momentum
values.

Let us now discuss each member of the condensate family
in more detail. To facilitate the comparison with our results,
results of the two nonmicroscopic works of Yamada and
Schuck [14] and Kurukawa and Katō [16] are also gathered in
Fig. 3. Let us remind that in both cases three-body forces are
used at least to reproduce the 12C ground state with respect
to the 3α threshold. Furthermore, the three-body forces used
in Ref. [16] are J dependent and are fitted to reproduce the
ground-state band.

1Here, subscripts 2, 3, and 4 refer to the order of the states with
respect to the calculated energy.

3α thres.
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FIG. 2. (Color online) Ground-state band (black) and positive-
parity condensate states (red) obtained with the nonlocal Papp
and Moszkowski potential (PM). Corresponding experimental data
(Expt.) are taken from Ref. [36] for the 2+

2 and from Ref. [43] for the
other data.

The 2+
2 state at 4.55 MeV with a width of 0.66 MeV and

a dominant A2,2 term can be interpreted as the 2+ member
of the Hoyle-state band. Its energy is overestimated by ≈2
MeV as compared to the measure of Freer et al. [36]. We also
assign the 4+

2 state with a dominant A4,4 term to a possible 4+
member of the Hoyle-state band. The corresponding rotational
band is plotted in Fig. 1. We can notice the fairly nice
alignment, regardless of the fact that the 2+

2 and 4+
2 states

are quite broad already. The rotational constant, however, is
overestimated compared to the corresponding one obtained
with the 2+ experimental value of Freer et al. [36]. It is worth
mentioning that, in the corresponding resonances calculated
by Kurukawa and Katō [16], such rotational band structure
does not prevail and is spoiled by the J dependance of
the three-body forces (see Fig. 1). Our calculation indicates
the existence of a 0+

3 resonance at 4.42 MeV above the
3α threshold, close to the 2+

2 state. Its direct assignment
to the broad 0+ resonance experimentally suggested at ≈3
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TABLE II. [�x, �y] value of the dominant A�x,�y
term with

respective magnitude in parentheses for positive-parity states referred
as condensates in the text. For negative-parity states, the two dominant
values are given with respective magnitude in parentheses.

J π [�x, �y]

0+
2 [0, 0] (0.96)

0+
3 [2, 2] (1.0)

0+
4 [4, 4] (0.82)

2+
2 [2, 2] (0.94)

4+
2 [4, 4] (0.80)

1−
1 [2, 1] (0.68), [2, 3] (0.15)

2−
1 [2, 1] (0.54), [2, 3] (0.35)

3−
1 [2, 1] (0.56), [0, 3] (0.26)

4−
1 [2, 3] (0.65), [4, 1] (0.22)

5−
1 [4, 3] (0.51), [4, 1] (0.15)

MeV above the 3α threshold with an estimated width of
≈3 MeV [37,43] cannot be justified. On the one hand, it
makes no sense to compare effective parameters of such broad
resonances with S-matrix pole positions found in theoretical
calculations, because such resonances may not be interpreted
as Breit-Wigner ones. On the other hand, the complex-scaling
method is not adapted to describe very broad resonances (see
also discussions in Ref. [15]). Nevertheless, we confirm the
existence of a 0+ resonance with a bosonic α structure in the
energy range of the 2+

2 state in agreement with Kurukawa
and Katō [16], who predict the same states but at lower
energy. New experimental investigations would be useful in
this energy range to clarify the properties of these broad
states.

It is also interesting to notice that our calculations reproduce
a 0+

4 resonance at E3α = 13.49 MeV with a dominant
A4,4 term. Furthermore, if we represent the energies of the
aforementioned condensate 0+ states as a function of �(� + 1),
with � = �x = �y , we get a nice alignment (see Fig. 4) pointing
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FIG. 3. (Color online) 3α positive-parity resonances (black full
lines) and negative-parity resonances (blue dashed lines) obtained
with the nonlocal Papp and Moszkowski potential (PM) compared
with the results of Kurukawa and Katō [16] and the results of Yamada
and Schuck [14]. Corresponding experimental data (Expt.) are taken
from Ref. [36] for the 2+

2 state and from Ref. [43] for the other data.
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FIG. 4. 0+ condensate state energies obtained with the nonlocal
Papp and Moskowski potential as a function of �(� + 1).

out a rotational band structure. It would be interesting to test
this result experimentally.

The values of the radii gathered in Table I are also consistent
with our condensate-state interpretation. Indeed, resonance
radii are greater than those of the bound states. We can also
see the obvious effect of the centrifugal barrier with � = 2 for
the 0+

3 and 2+
2 states and � = 4 for the 0+

4 and 4+
2 states.

Indeed, states dominated by the same efficient centrifugal
term (�) have very similar extensions. Large centrifugal
terms permit to reduce the mean radii regardless of the fact
that resonances are pushed further into the continuum as �

increases.
Let us finally remark that our calculations indicate the

existence of a broad positive-parity 3+ resonance at Ex =
9.03 MeV, which cannot be interpreted as a condensate.

C. 3α negative-parity resonances

Negative-parity resonances are also well reproduced with
the nonlocal Papp and Moszkowski potential (see Tables I
and II, and Figs. 5 and 6). This is especially the case for
the 3−

1 , 1−
1 , and 2−

1 states, which are known to present
marked α structure [14,16,38]. However, the analysis of the
A�x,�y

coefficients gathered in Table II shows a rather mixed
structure, which prevents straightforward interpretation in
terms of condensate. Similarly, the radius of the 3−

1 , 2−
1 , and

1−
1 states being intermediate between the radius of bound and

condensate states, in agreement with Ref. [14], leads to similar
conclusions.

In addition, the 3−
1 state is also believed to be the head

of a K = 3− rotational band in microscopic-cluster studies
[42]. Up to now, there is no experimental evidence for 4− and
5− states which could belong to this band. Our calculation
suggests a K = 3− band along with the calculated 4−

1 and 5−
1

members. The corresponding band is plotted in Fig. 6. In such
a context, it is consistent to assign the 4−

1 resonance obtained in
our calculations to the level at Ex = 13.352 MeV tentatively
assigned to 2− in Ref. [43], as proposed by Kurukawa and
Katō (see discussion in Ref. [16]).

Let us also remark that our calculation points out other
negative-parity resonances (3−

2 , 4−
2 ) that have not been exper-

imentally observed yet.
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FIG. 5. (Color online) 3α negative-parity resonances obtained
with the nonlocal Papp and Moszkowski potential (PM) and the Ali
and Bodmer potential (AB). States corresponding to the K = 3−

1

rotational band are colored in red. Corresponding experimental data
(Expt.) are taken from Ref. [36], where the (4−

1 ) at Ex = 13.352 MeV
is tentatively assigned to a 2− state (see text).

IV. COMPLEMENTARY INVESTIGATIONS WITH THE
ALI AND BODMER POTENTIAL

As discussed in the introduction, the local Ali and Bodmer
α-α potential [19] fails to provide enough binding for
12C positive-parity states. For such a model, positive-parity
resonances are naturally pushed far into the continuum. The
standard way to improve the description is to introduce
a three-body force to simulate the effect of additional

0.0

4.0

8.0

12.0

10 15 20 25 30

J(J+1)

E
3 α

 (
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eV
)

3-
1

4-
1

5-
1

FIG. 6. K = 3−
1 rotational band obtained with the Ali and

Bodmer potential (solid squares) and with the nonlocal Papp and
Moszkowski potential (solid diamonds). Corresponding results of
Kurukawa and Katō [36] are also given (solid circles). Experimental
data (open squares) are taken from Ref. [36], where the (4−) at
Ex = 13.352 MeV is tentatively assigned to a 2− state (see text).

TABLE III. 12C energies (in MeV), total widths (in MeV) and
root-mean-square radius (in Fermi) calculated with the Ali and
Bodmer potential (AB). Experimental data are taken from Ref. [43]
where the (4−) at Ex = 13.352 MeV is tentatively assigned to a 2−

state (see text).

J π Eexpt
x E

expt
3α �expt EAB

3α �AB
√

r2
AB

3−
1 9.641(5) 2.366 0.034(5) 1.50 0.7 ×10−3 2.83

1−
1 10.844(16) 3.569 0.315(25) 3.97 0.52 3.37

2−
1 11.828(16) 4.553 0.260(25) 4.85 .58 3.29

(4−
1 ) 13.352(17) 6.077 0.375(40) 2.56 2.6 × 10−3 2.49

5−
1 6.99 0.58 2.90

3−
2 5.44 0.55 2.30

4−
2 7.12 1.92 3.01

polarization due to the presence of the third α particle.
Several works are devoted to this subject (see, for example,
Refs. [2,17,18,20] and references therein). However, they all
failed to parametrize simple three-body forces capable of
reproducing simultaneously the 0+

1 ground state and 2+
1 excited

states of the 12C nucleus.
Following this track, we have also tried to complement the

Ali and Bodmer potential with three-body force depending
on the hyper-radius of the three-body system (ρ2

3 = 4
∑

i r
2
i ).

More precisely, three different forms have been tested: a
Gaussian expression as used in Refs. [18,45], a Woods-
Saxon expression, and a Yukawa form. However, all these
tests provide very similar results. Indeed, owing to the lack
of a centrifugal barrier, the 0+ states are more extended
than the other positive-parity states, such as the 2+ or 4+
states, and thus less sensitive to the three-body interaction.
Therefore, the lowest 2+ and 4+ states are rapidly overbound.
In addition, some resonances, such as the 3− and 4− states,
for instance, turn out to be very sensitive to the three-body
force and become bound. For example, with the Gaussian
parametrization defined in Ref. [18] with v3 = −22 MeV and
ρ3 = 6 fm, we get the 12C 2+

1 state bound by 6.3 MeV as well
as the 3−

1 state bound by 5.3 MeV.
Let us nevertheless remark that, in spite of the failure

to describe positive-parity 12C states, the Ali and Bodmer
potential alone provides a very reasonable description of
negative-parity resonances (see Table III and Figs. 5 and 6).
Our calculations show rather similar results compared to
those obtained with the Papp and Moszkowski potential.
Nevertheless, the Ali and Bodmer energy values are slightly
more condensed and the rotational alignment of 3−

1 , 4−
1 , and

5−
1 states is not preserved, which is probably because of the

fact that the Ali and Bodmer potential is strongly partial wave
dependent (see Fig. 6).

V. CONCLUSIONS

The interplay between the fermionic and bosonic descrip-
tions of the same composite system such as a nucleus is a very
interesting challenge. In particular, it can help to point out
states with important bosonic clustering such as in the so-called
condensates, a typical example being the 12C 0+

2 Hoyle state.
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In this paper, we mainly investigated the 12C spectrum within
a 3α nonmicroscopic model based on the rigorous solution of
the Faddeev equations for the nonlocal Papp and Moszkowski
α-α potential. Our calculations point out a set of states {0+

2 , 2+
2 ,

0+
3 , 0+

4 , 4+
2 } which share common features with the 0+

2 Hoyle
state. Negative-parity states around the 3α threshold are also
well reproduced by both the nonlocal Papp and Moszkowski
potential and the Ali and Bodmer potential.

The nonlocal Papp and Moszkowski potential appears to be
a very efficient tool to investigate the physics of the 3α bound
and resonant states. We emphasize that all the results published
here were obtained without resorting to three-body potentials
and/or adding explicit angular-momentum dependence. This

result encourages us to pursue nonmicroscopic investigations
within the same framework. In such a context, we aim to
investigate the possible existence of condensate states in the
4α system.
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A. Tohsaki, Phys. Rev. Lett. 101, 082502 (2008).

[27] D. A. Zaikin, Nucl. Phys. A 170, 584 (1971)
[28] E. W. Schmid, Z. Phys. A 297, 105 (1980).
[29] E. W. Schmid, S. Saito, and H. Fiedeldey, Z. Phys. A 306, 37

(1982)
[30] Z. Papp and S. Moszkowski, Mod. Phys. Lett. B 22, 2201 (2008).
[31] L. D. Faddeev, Zh. Eksp. Teor. Fiz. 39, 1459 (1960) [Sov.

Phys.—JETP 12, 1014 (1961)].
[32] J. Nuttal and H. L. Cohen, Phys. Rev. 188, 1542 (1969).
[33] N. Moiseyev, Phys. Rep. 302, 212 (1998)
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