
PHYSICAL REVIEW C 84, 064317 (2011)

Ab initio self-consistent Gorkov-Green’s function calculations of semimagic nuclei:
Formalism at second order with a two-nucleon interaction
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An ab initio calculation scheme for finite nuclei based on self-consistent Green’s functions in the Gorkov
formalism is developed. It aims at describing properties of doubly magic and semimagic nuclei employing
state-of-the-art microscopic nuclear interactions and explicitly treating pairing correlations through the breaking
of U(1) symmetry associated with particle number conservation. The present paper introduces the formalism
necessary to undertake applications at (self-consistent) second order using two-nucleon interactions in a detailed
and self-contained fashion. First applications of such a scheme will be reported soon in a forthcoming publication.
Future works will extend the present scheme to include three-nucleon interactions and implement more advanced
truncation schemes.
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I. INTRODUCTION

Over the past decade the reach of ab initio nuclear structure
calculations has extended up to the region of medium-mass
systems. Despite the significant progress from both theoretical
and computational points of view, methods such as coupled-
cluster (CC) [1], in-medium similarity renormalization group
(IMSRG) [2], or Dyson self-consistent Green’s function [3]
(Dyson-SCGF) are, however, currently limited to a few tens
of doubly closed shell nuclei. Neighboring nuclei with ±1 or
±2 nucleons can also be reached with particle attachment or
removal formalisms [4,5]. While improving further the conver-
gence of such existing schemes, it is essential to extend their
reach and the intrinsic predictive character of ab initio methods
to truly open-shell nuclei. One way of doing so involves
the development of multireference schemes, such as, e.g.,
multireference CC [6] or a valence-space shell-model based on
microscopic inputs from the ab initio calculation of a doubly
closed shell core nucleus of reference [7,8]. Alternatively,
one may prefer to keep the simplicity of a single-reference
method. This requires, however, in any of the approaches
mentioned above, formulation of the expansion scheme around
a vacuum that can tackle Cooper pair instabilities, e.g., to
build the correlated state starting from a Bogoliubov vacuum
that already incorporates zeroth-order pairing correlations. The
objective of the present work is to realize the latter program
within the particular frame of SCGF theory.

As alluded to above, SCGF methods are being successfully
applied to the study of nuclear systems. Over the past two
decades considerable progress has been made in the devel-
opment of suitable formalisms and computational algorithms
both for finite nuclei and infinite nuclear matter [4]. In infinite
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systems, bulk and single-particle properties are typically
computed through the resummation of particle-particle (pp)
and hole-hole (hh) ladder diagrams, i.e., in the self-consistent
T -matrix approximation, that tackles short-range correlations
induced by the hard-core of conventional nucleon-nucleon
(NN ) interactions. Results have been obtained at zero and
finite temperatures for both symmetric and pure neutron
matter based on various conventional NN potentials [9–11].
Recently, microscopic three-nucleon (NNN ) forces have been
incorporated [12,13]. There also have been attempts to take
into account nucleonic superfluidity through the consistent
treatment of anomalous propagators [14,15].

In finite systems the most advanced SCGF calculations
feature the Faddeev random-phase approximation (FRPA)
technique, which allows the simultaneous inclusion of pp, hh,
and ph excitations, together with interferences among them
[16,17]. By employing a G-matrix resummation of scattering
diagrams not included in the chosen model space it is also
possible to use interactions with strong repulsive cores [18].
An important characteristic of the FRPA expansion is that it
is based on combining one- and many-body propagators, each
one representing different experimental processes including
nuclear excitations and transfer of one or two nucleons. The
method has, therefore, been applied to a variety of problems,
including the quenching of spectroscopic factors [19], anhar-
monic excitations [20], two-nucleon knockout [21,22], and
the derivation of optical potentials [23,24]. At the moment,
applications can access all doubly closed shell nuclei up
to 56Ni together with neighboring systems with ±1 or ±2
nucleons [3,19].

In the present work, SCGF calculations of finite nuclei
are implemented within the Gorkov scheme, allowing for an
explicit treatment of nucleonic superfluidity. Suitable numer-
ical techniques are developed in order to perform systematic
studies of doubly magic and semimagic medium-mass nuclei,
as will be soon reported on in a forthcoming publication [25],
referred to hereafter as Paper II.
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One of our goals is to be able to tackle various types of
nuclear interactions, in particular chiral potentials based on ef-
fective field theory (EFT) [26] and low-momentum potentials
obtained through the further application of renormalization
group (RG) techniques [27]. There are also yet unanswered
fundamental questions as to what microscopic processes are
responsible for the superfluid character of open-shell nuclei
[28–37]. This is one among several long-term objectives of the
project to provide a fully ab initio answer to such questions.
The present work eventually relates as well to the long-
term development of so-called nonempirical energy density
functionals (EDFs) [31,33,38]. There exist ongoing efforts
to construct nuclear EDFs starting from underlying nuclear
interactions, with the main goal of improving the predictive
power away from known data that is rather poor for existing
phenomenological EDF parametrizations. The connection
with NN and NNN interactions is typically obtained by
means of density matrix expansion (DME) techniques [39] and
many-body perturbation theory, which allow for the construc-
tion of schemes that can be systematically tested and improved
order by order in the interaction [40–44]. In this regard, recent
developments and applications of low-momentum potentials
[45–47], which exhibit a more perturbative nature than
traditional nuclear interactions, are instrumental. Schemes
toward nonempirical EDFs, however, are presently available
only in their first stages. Their development necessitates a
comparison with fully microscopic methods that can provide
useful benchmarks over which EDFs parametrizations can
be tested and improved. In this context, SCGF techniques
represent a valid ab initio method of reference. In particular, as
the breaking and restoration of symmetries (e.g., translational,
rotational, and particle number) is central to nuclear EDF
methods, it is crucial to develop an approach that includes
and exploits the same concept [48], which is the case of
Gorkov-Green’s function method regarding particle-number
symmetry.

The present paper aims at providing a detailed account
of Gorkov’s formalism that is eventually applied in Paper
II. Given that the present work is the first nuclear structure
application of the ab initio Gorkov self-consistent Green’s
function method, it is relevant to provide a self-contained
account of the formalism expressed in a discrete basis, which
is suited to finite nuclear systems. The present formalism is
further specified to second order in the self-energy expansion
and formulated in terms of NN interactions only. The
extension to more advanced truncation schemes and to the
inclusion of NNN forces is postponed to future works.

The paper is organized as follows. Section II introduces
the general form of the nuclear Hamiltonian employed in
the present work while Sec. III defines generic features of
Gorkov’s formalism. Section IV discusses Gorkov’s equation
of motion under the form of an energy-dependent eigen-
value problem before computing normal and anomalous self-
energies at second order and rewriting Gorkov’s equation
under the form of a more convenient energy-independent
eigenvalue problem. Further details regarding the extraction
of observables are provided in Sec. V, while Sec. VI discusses
the conserving character of the employed truncation scheme.
Finally, conclusions are given in Sec. VII followed by several

appendices complementing the body of the paper with relevant
technical details.

II. NUCLEAR HAMILTONIAN

A. Single-particle basis

Let us first introduce the particular labeling of single-
particle states that will be used throughout the work. We
consider a basis {a†

a} of the one-body Hilbert space H1 that
can be divided into two blocks according to the value (or more
precisely to the sign) of an appropriate symmetry quantum
number. To any state a belonging to the first block, one can
associate a single-particle state ã belonging to the second
block and having the same quantum numbers as a, except for
the one differentiating the two blocks. Typically there exists
an antiunitary transformation T , leaving the Hamiltonian
invariant and connecting, up to a phase ηa , state a with state
ã. With that in mind one defines a basis {ā†

a}, partner of the
initial one, {a†

a}, through1

ā†
a(t) ≡ ηaa

†
ã(t), āa(t) ≡ ηaaã(t) , (1)

which corresponds to exchanging the state a by its partner ã

up to the phase ηa . By convention ˜̃a = a with ηa ηã = −1.
As discussed in Sec. C, T will eventually be specified as the

time-reversal transformation in our applications to even-even
nuclei with J� = 0+ ground states.

B. Hamiltonian

Let us consider a finite system of N fermions interacting
via a two-body potential V NN. The corresponding Hamiltonian
can be written as

Htot ≡ T + V NN

≡
∑
ab

Tab a†
aab + 1

(2!)2

∑
abcd

V̄abcd a†
aa

†
badac, (2)

where

Tab ≡ (a|T |b) (3)

is the matrix element of the kinetic energy operator T and

V̄abcd ≡ 〈ab|V NN |cd〉
≡ (1 :a; 2 :b|V NN |1 :c; 2 :d)

− (1 :a; 2 :b|V NN |1 :d; 2 :c) (4)

is the antisymmetrized matrix element of V NN expanded in
terms of direct-product states, denoted by |1, 2). Whenever a
superscript or subscript index x̄ appears in a matrix element (3)
or (4), the associated annihilation (creation) operator is to be
intended of the form (1), i.e., āx (ā†

x). It follows that, e.g.,

Tāb̄ ≡ ηa ηb (ã|T |b̃), (5a)

V̄ābc̄d ≡ ηa ηc 〈ãb|V NN |c̃d〉, (5b)

1In the following, a tilde ( ˜ ) always refer to the sole quantum
numbers of the opposite block while barred ( ¯ ) quantities involve an
additional phase factor ηa/ã .
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and so on. As discussed in Appendix C1, properties of operator
T leads to the following useful relations:

Tāb̄ = T ∗
ab, (6a)

V̄āb̄c̄d̄ = V̄ ∗
abcd . (6b)

C. Center-of-mass correction

In the study of an N -body self-bound system, a separation
can be made between the motion of its center of mass (c.m.)
and the motion of the nucleons relative to it. Specifically, the
N -body Hamiltonian (2) can be divided into

Htot ≡ Hc.m. + Hrel, (7)

where Hc.m. represents the center-of-mass kinetic energy and
the internal Hamiltonian Hrel does not depend on center-
of-mass coordinates. Eigenfunctions of Htot can therefore
be expressed as products of eigenfunctions of Hc.m. and
eigenfunctions of Hrel. Consequently, the energy is the sum
of center-of-mass energy Ec.m. and internal energy Erel

Etot = Ec.m. + Erel. (8)

Nuclei being self-bound objects, one is interested in the
translationally invariant, internal Hamiltonian Hrel and the
corresponding energy Erel. Subtracting the (known) center-
of-mass kinetic contribution from the total Hamiltonian, one
indeed works with the internal Hamiltonian

Hrel = Htot − Hc.m. = Trel + V NN. (9)

The internal kinetic energy can be expressed either as a sum
of one- and a two-body operators

T
(a)

rel =
(

1 − 1

N̂

)∑
i

p2
i

2M
− 1

N̂

∑
i<j

pi · pj

M
, (10)

or as a straight two-body operator

T
(b)

rel = 1

N̂

∑
i<j

(pi − pj )2

2M
. (11)

Here pi represents the momentum of the i-th nucleon, M

the nucleon mass, and N̂ is the particle number operator.
In theories that do not conserve particle number, Eqs. (10)
and (11) loose their equivalence if N̂ is replaced by its
expectation value. Considering a series expansion in N̂−1, it
could be shown [49] that Eq. (10) displays the correct power
counting and should be, therefore, employed in calculations
over Fock space.

In the following, we consider Hamiltonian (9) with
choice (10) at first order in N̂−1; i.e., N̂−1 is replaced by its
average value N−1. For simplicity, and unless otherwise stated,
we denote in the following Hrel by H such that T actually
embodies the one-body part of T

(a)
rel [first term in Eq. (10)] and

such that V NN incorporates the two-body part of T
(a)

rel [second
term in Eq. (10)].

III. GORKOV FORMALISM

A. Standard propagator and superfluid systems

Let us consider the N -body ground-state |�N
0 〉 solution of

H
∣∣�N

k

〉 = EN
k

∣∣�N
k

〉
(12)

with the lowest eigenvalue EN
0 . The fundamental object of

Green’s function theory [50–52] is the one-body propagator
defined as

i G(N,N)
ab (t, t ′) ≡ 〈�N

0

∣∣T {aa(t)a†
b(t ′)}∣∣�N

0

〉
, (13)

where the operator T orders a and a† according to their time
argument (larger times to the left) and where annihilation and
creation operators are in the Heisenberg representation

aa(t) = a(H )
a (t) ≡ exp[iH t] aa exp[−iH t], (14a)

a†
a(t) = [a(H )

a (t)
]† ≡ exp[iH t] a†

a exp[−iH t]. (14b)

The knowledge of G enables the computation of expectation
values of all one-body operators plus the two-body ground-
state energy, i.e., the expectation value of the Hamiltonian if
only two-body forces are considered. One can define two-,
three-, . . ., N -body propagators in a similar way, in order to
evaluate up to N -nucleon observables.

Green’s functions’ equations of motion take the form of a
set of N -coupled integro-differential equations, each of them
involving (i−1)-, i-, and (i+1)-body propagators. In order to
compute the one-body propagator, one can as well derive a
perturbative expansion that translates into an infinite series
of diagrams. Both approaches provide systematic ways of
approximating the exact solution. The connection between
the diagrammatic expansion and the equation of motion for
G leads to the definition of the (irreducible) self-energy �̃ and
the derivation of Dyson’s equation

G(N,N)
ab = G(N,N) (0)

ab +
∑
cd

G(N,N) (0)
ac �̃cd G(N,N)

db , (15)

where G(0) is the one-body propagator of the unperturbed
system associated with a one-body Hamiltonian H0 of choice.

The scheme is, in principle, exact if one can compute the
perturbative expansion up to infinite order. Approximations are
introduced by including only a certain class or subset of terms
in the computation of the self-energy. Such a subset is chosen
according to a hierarchy between the various types of diagrams
whose rationale depends on the system under consideration.
The validity of the standard perturbative expansion, however,
is not always guaranteed. In particular, nuclear interactions
inducing strong pairing correlations between constituents of
the many-body system make the usual expansion inappropriate
for the large majority of nuclei. The breakdown of the
perturbative expansion is signaled by the appearance of
(Cooper) instabilities, which occur when summing up certain
classes of diagrams and point to the necessity of developing
an alternative diagrammatic method [53–55].

B. Auxiliary many-body problem

In the presence of Cooper instabilities, one can develop
an alternative expansion method accounting in a controlled
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fashion for the appearance and destruction of condensed
nucleonic pairs.

Instead of targeting the actual ground state |�N
0 〉 of the

system, one considers a symmetry-breaking state |�0〉, i.e., a
wave packet, defined as a superposition of actual ground states
of (N−2)-, N -, (N+2)-, . . ., particle systems, i.e.,

|�0〉 ≡
even∑
N

cN

∣∣�N
0

〉
, (16)

where cN denote unknown complex coefficients. The sum over
even particle numbers is said to respect the (even) number-
parity quantum number. Together with such a state, one
considers the grand-canonical-like potential � ≡ H − μN ,
with μ the chemical potential, in place of H .2 The state |�0〉
is chosen to minimize

�0 = 〈�0|�|�0〉 (17)

under the constraint

N = 〈�0|N |�0〉, (18)

i.e., it is not an eigenstate of the particle number operator but
it has a fixed number of particles on average. Equation (17),
together with the normalization condition

〈�0|�0〉 =
even∑
N

|cN |2 = 1, (19)

determines the set of coefficients cN , while Eq. (18) fixes the
chemical potential μ.

By targeting |�0〉, the initial problem that aimed at
describing the many-body system with N nucleons is replaced
with an auxiliary problem, whose solution approximates the
initial one. The validity of such an approximation resides in
the degeneracy characterizing the ground state of the system.
The presence of a condensate (ideally) implies that pairs of
nucleons can be added or removed from the ground state of the
system with the same energy cost, independently of N . Such
a hypothesis translates into the fact that the binding energies
of the systems with N,N±2, N±4, . . ., particles differ by
2μ; i.e., the idealized situation considered here corresponds
to the ansatz that all ground states obtained from the system
with N nucleons by removing or adding pairs of particles are
degenerate eigenstates of � such that their binding energies
fulfill

· · · ≈ EN+2
0 − EN

0 ≈ EN
0 − EN−2

0 ≈ · · · ≈ 2μ, (20)

with μ independent of N . If the assumption is valid, the energy
obtained by solving the auxiliary many-body problem provides
the energy of the initial problem as

�0 =
∑
N ′

|cN ′ |2�N ′
0 ≈ EN

0 − μN, (21)

which follows from Eqs. (17), (19), and (20).

2Let us remark that the analogy with a grand-canonical ensemble
holds only on a formal level, as here eigenstates of � are pure states
|ψN

0 〉, |ψN±2
0 〉, . . ., while the admixture or symmetry breaking state

|�0〉 is a pure state as well. In other words, one is not introducing a
statistical density operator to describe the system.

C. Gorkov propagators

In order to access all one-body information contained in
|�0〉, one must generalize the one-body propagator defined in
Eq. (13) by introducing additional objects that account for the
formation and destruction of pairs. One thus defines a set of
four Green’s functions, known as Gorkov propagators [56],
through

i G11
ab(t, t ′) ≡ 〈�0|T {aa(t)a†

b(t ′)}|�0〉, (22a)

i G12
ab(t, t ′) ≡ 〈�0|T {aa(t)āb(t ′)}|�0〉, (22b)

i G21
ab(t, t ′) ≡ 〈�0|T {ā†

a(t)a†
b(t ′)}|�0〉, (22c)

i G22
ab(t, t ′) ≡ 〈�0|T {ā†

a(t)āb(t ′)}|�0〉, (22d)

where single-particle operators associated with the partner
basis are as defined in Eq. (1) and where the modified
Heisenberg representation is introduced through

aa(t) = a(�)
a (t) ≡ exp[i�t] aa exp[−i�t], (23a)

a†
a(t) = [a(�)

a (t)
]† ≡ exp[i�t] a†

a exp[−i�t]. (23b)

In addition to the time dependence and quantum numbers
a and b identifying single-particle states, Gorkov propagators
G

g1g2
ab carry two labels g1 and g2 that span Gorkov’s space.

When g1 = 1 (g1 = 2) a particle is annihilated in the block of
a (created in the block of ã) and vice versa for g2; i.e., g2 = 1
(g2 = 2) corresponds to a second particle created in the block
of b (annihilated in the block of b̃). Green’s functions G11 and
G22 are called normal propagators while off-diagonal ones,
G12 and G21, are denoted as anomalous propagators.

D. Nambu’s matrix formalism

Gorkov’s propagators can be conveniently grouped into a
matrix representation, introduced by Nambu [57]. First, one
defines the two-component vector

Aa(t) ≡
(

aa(t)

ā
†
a(t)

)
(24a)

A†
a(t) = (a†

a(t) āa(t)), (24b)

denoting generalized annihilation and creation operators. Their
components fulfill the anti-commutation relations{

Ag1
a (t), Ag2 †

b (t)
} = δg1g2 δab, (25)

where the extra label labels the rows (columns) of the
annihilation (creation) vector operator. One can then write
the four propagators (22) in the matrix form

i Gab(t, t ′) ≡ 〈�0|T {Aa(t)A†
b(t ′)}|�0〉

= i

(
G11

ab(t, t ′) G12
ab(t, t ′)

G21
ab(t, t ′) G22

ab(t, t ′)

)
, (26)

where the time ordering operator acts separately on each
element of the Gorkov’s matrix AA†. In general, any object
O

g1g2
ab defined in Gorkov’s space can be put into such a matrix
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form

Oab(t, t ′) ≡
(

O11
ab(t, t ′) O12

ab(t, t ′)

O21
ab(t, t ′) O22

ab(t, t ′)

)
, (27)

with g1 and g2 labeling, respectively, the rows and the columns
of the matrix.

E. Energy representation

For most applications it is convenient to transform the
propagators from time to energy representation. In systems
at equilibrium governed by a time-independent Hamiltonian,
one-body Green’s functions depend only on the difference
of their two time arguments, i.e., Gab(t, t ′) = Gab(t − t ′).
Gorkov propagators in the energy domain are, thus, obtained
through the Fourier transformation

Gab(ω) =
∫ +∞

−∞
d(t − t ′) eiω(t−t ′) Gab(t − t ′). (28)

The energy representation is more suitable to analyzing the
physical content of single-particle propagators, as will become
clear in the following.

F. Gorkov’s equations

In the standard case, the derivation of the equations of
motion and the formulation of a diagrammatic expansion for
the one-body propagator lead to defining the irreducible self-
energy and Dyson’s equation, through which the propagator of
the interacting system can actually be computed. One proceeds
similarly in the Gorkov formalism. The first step consists in
separating the Hamiltonian into an “unperturbed” one-body
part and an interacting part. This is conveniently achieved
by introducing an auxiliary, one-body Hermitian potential U

taking the general form

U ≡
∑
ab

[Uab a†
aab − Uab āaā

†
b + Ũab a†

aā
†
b + Ũ

†
ab āaab]

(29)

and by defining

� = T + U − μN︸ ︷︷ ︸
≡ �U

+V NN − U︸ ︷︷ ︸
≡ �I

. (30)

The one-body grand potential �U defines unperturbed Gorkov
propagators G(0) in energy representation through

[G(0)(ω)]−1 ≡ ω − �U. (31)

The choice of G(0) corresponds to selecting an appropriate
unperturbed ground state which acts as a reference vacuum
for the application of Wick’s theorem and is crucial for the
convergence of the perturbative series. In particular, one cannot
expand the interacting superfluid ground state |�0〉 around a
nonsuperfluid unperturbed state, i.e., unperturbed propagators
must already contain the basic features characterizing the
interacting ones.

The requirement that the unperturbed ground state is
superfluid translates into a choice of a �U that breaks

particle number, as is evident from the form of the auxiliary
potential (29). Applying Wick’s theorem in the derivation of
the perturbative expansion, anomalous contractions naturally
appear and are afterward identified with anomalous Gorkov
propagators.

Once the unperturbed ground state is defined, one writes
down the perturbative series for the interacting propagator
G and defines normal and anomalous one-line irreducible
self-energies. Self-consistency is obtained by computing self-
energy diagrams in terms of fully dressed propagators G
and by only retaining skeleton diagrams, i.e., diagrams with
no self-energy insertions (see Appendix B1). Working in
the energy representation, the four irreducible self-energies
read

�̃ab(ω) ≡
(

�̃11
ab(ω) �̃12

ab(ω)

�̃21
ab(ω) �̃22

ab(ω)

)
(32)

and can be divided into a proper part and a contribution coming
from the auxiliary potential, i.e.,

�̃ab(ω) ≡ �ab(ω) − Uab. (33)

Eventually, standard Dyson’s equation is generalized as set of
coupled equations involving the two types of propagators and
self-energies. These are known as Gorkov’s equations [56] and
read, in Nambu’s notation,

Gab(ω) = G(0)
ab (ω) +

∑
cd

G(0)
ac (ω) �̃cd (ω) Gdb(ω). (34)

As Dyson’s equation in the standard case, Gorkov’s equations
represent an expansion of interacting or dressed one-body nor-
mal and anomalous Green’s functions in terms of unperturbed
ones. If the method is self-consistent, the final result does
not depend on the choice of the auxiliary potential, which
disappears from the equations once the propagators are dressed
with the corresponding self-energies. From a practical point of
view it is useful to track where the auxiliary potential enters
and how its cancellation is eventually worked out. This point
is addressed in Sec. IV A, where the solution of Gorkov’s
equations is discussed. In particular, and since such a solution
is to be found through an iterative procedure, one is still
interested in choosing a good auxiliary potential as a starting
point.

Let us further remark that, as the auxiliary potential (29)
has a one-body character, i.e., it acts as a mean field, the
search for the ground state of �U corresponds to solving a
Bogoliubov-like problem, as becomes evident when writing
the unperturbed grand potential in its Nambu’s form

[�U ]ab =
(

Tab + Uab − μδab Ũab

Ũ
†
ab −Tab − Uab + μδab

)
.

(35)

In fact, a convenient choice for �U is constituted by �HFB,
i.e., one, first, solves the Hartree-Fock-Bogoliubov (HFB)
problem and then uses the resulting propagators GHFB

ab as the
unperturbed ones. Notice that the self-energy corresponding
to this solution, �HFB, eventually differs from the first-order
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self-energy �(1) as soon as higher orders are included in the
calculation because of the associated self-consistent dressing
of the one-body propagators.

G. Lehmann representation

Let us consider a complete set of normalized eigenstates of
� with no definite particle number

�|�k〉 = �k|�k〉 (36)

and spanning the Fock space F . Inserting the corresponding
completeness relation, G11(t, t ′) becomes

G11
ab(t, t ′)

= −iθ (t − t ′)
∑

k

〈�0|aa|�k〉〈�k|a†
b|�0〉 ei[�0−�k](t−t ′)

+ iθ (t ′ − t)
∑

k

〈�0|a†
b|�k〉〈�k|aa|�0〉 e−i[�0−�k ](t−t ′).

Using the integral representation of the θ function and reading
out the Fourier transform, one obtains the propagator in energy
representation under the form

G11
ab(ω) =

∑
k

〈�0|aa|�k〉〈�k|a†
b|�0〉

ω − [�k − �0] + iη

+
∑

k

〈�0|a†
b|�k〉〈�k|aa|�0〉

ω + [�k − �0] − iη
. (37)

One can proceed similarly for the other three Gorkov-Green’s
functions and obtain the following set of Lehmann represen-
tations:

G11
ab(ω) =

∑
k

{ U k
a U k∗

b

ω − ωk + iη
+ V̄k∗

a V̄k
b

ω + ωk − iη

}
, (38a)

G12
ab(ω) =

∑
k

{ U k
a Vk∗

b

ω − ωk + iη
+ V̄k∗

a Ū k
b

ω + ωk − iη

}
, (38b)

G21
ab(ω) =

∑
k

{ Vk
a U k∗

b

ω − ωk + iη
+ Ū k∗

a V̄k
b

ω + ωk − iη

}
, (38c)

G22
ab(ω) =

∑
k

{ Vk
a Vk∗

b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}
, (38d)

with Gorkov’s spectroscopic amplitudes defined as

U k∗
a ≡ 〈�k|a†

a|�0〉, (39a)

Vk∗
a ≡ 〈�k|āa|�0〉, (39b)

and

Ū k∗
a ≡ 〈�k|ā†

a|�0〉, (40a)

V̄k∗
a ≡ 〈�k|aa|�0〉, (40b)

from which follows that3

Ū k
a = +ηa U k

ã , (41a)

3Similarly to Eq. (5), we may equivalently write Eqs. (41) as Ū k
a =

+U k
ā and V̄k

a = −Vk
ā .

V̄k
a = −ηa Vk

ã . (41b)

The poles of the propagators4 are given by ωk ≡ �k − �0.
The relation of such poles to separation energies between the
N -body ground state and eigenstates of the N ± 1 systems
is polluted by the breaking of particle number symmetry and
is less transparent than for standard Dyson-Green’s function.
Still, the structure of the propagator naturally suggests approx-
imating one-nucleon separation energies as

E+
k ≡ μ + ωk = 〈�k|H |�k〉 − 〈�0|H |�0〉

−μ [〈�k|N |�k〉 − (N + 1)] , (42a)

E−
k ≡ μ − ωk = 〈�0|H |�0〉 − 〈�k|H |�k〉

+μ [〈�k|N |�k〉 − (N − 1)] , (42b)

where the error associated with the difference between the
average number of particles in state |�k〉 and the targeted
particle number N ± 1 is taken care of by the last term in
Eqs. (42a) and (42b).

It is useful to introduce a Nambu representation for the
Lehmann form of the propagators by defining the two-
component vectors

Xk†
a ≡ 〈�k|A†

a|�0〉 = (U k∗
a Vk∗

a

)
, (43a)

Yk
a ≡ 〈�k|Aa|�0〉 =

(
V̄k∗

a

Ū k∗
a

)
, (43b)

where A and A† have been introduced in Eq. (24), and by
writing

Gab(ω) =
∑

k

{
Xk

a Xk†
b

ω − ωk + iη
+ Yk

a Yk†
b

ω + ωk − iη

}
. (44)

Note that vectors (43) contain equivalent physics information
and are transformed into each other by

Xk
a =

(
0 −1
1 0

)
Yk

ā

∗
. (45)

H. Symmetry properties

The four Gorkov propagators and self-energies are not
independent of each other and can be related through certain
symmetry operations. Starting from the definition of Gorkov
Green’s functions (22) and their Fourier transforms (28), one
can first prove that

G22
ab(ω) = − ηaηb G11

b̃ã
(−ω) = −G11

b̄ā
(−ω), (46a)

G12
ab(ω) = + ηaηb G12

b̃ã
(−ω) = +G12

b̄ā
(−ω), (46b)

G21
ab(ω) = + ηaηb G21

b̃ã
(−ω) = +G21

b̄ā
(−ω). (46c)

4As discussed later, eigensolutions of Gorkov’s equations come in
pairs (ωk, −ωk) such that one should only sum on positive solutions
in Eq. (38).
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Result (46) is easily derived from Lehmann representation
(38), together with properties (41), as

G22
ab(ω) =

∑
k

{ Vk
a Vk∗

b

ω − ωk + iη
+ Ū k∗

a Ū k
b

ω + ωk − iη

}

=
∑

k

{
− V̄k

ā V̄k∗
b̄

−ω + ωk − iη
− U k∗

ā U k
b̄

−ω − ωk + iη

}

= −G11
b̄ā

(−ω), (47a)

and

G21
ab(ω) =

∑
k

{ Vk
a U k∗

b

ω − ωk + iη
+ Ū k∗

a V̄k
b

ω + ωk − iη

}

=
∑

k

{
− V̄k

ā (−Ū k∗
b̄

)

−ω + ωk − iη
− U k∗

ā (−Vk
b̄
)

−ω − ωk + iη

}

= G21
b̄ā

(−ω). (47b)

By separating the real and imaginary parts of the poles in
Eq. (44) the Gorkov propagator splits into its Hermitian and
anti-Hermitian components

Gab(ω) =
[
Aab(ω) Cab(ω)

C
†
ab(ω) Ãab(ω)

]
+ i

[
Bab(ω) Dab(ω)

D
†
ab(ω) B̃ab(ω)

]
,

(48)

where Aab(ω) and Bab(ω) are Hermitian matrices in the
one-body Hilbert space H1. Note that because of the presence
of an anti-Hermitian component G11

ab(ω) 	= [G11
ba(ω)]∗ and

G21
ab(ω) 	= [G12

āb̄
(ω)]∗. From Eqs. (46a) and (46b) it follows

that

Ãab(ω) = −Ab̄ā(−ω),

B̃ab(ω) = −Bb̄ā(−ω),

Cab(ω) = +Cb̄ā(−ω),

Dab(ω) = +Db̄ā(−ω).

Similar symmetry properties are valid for normal and
anomalous self-energies. Starting from Gorkov’s equation (34)
and making use of relations (46) one can prove that the equiv-
alence between Gorkov’s equation (34) and its conjugate (A9)
requires

�22
ab(ω) = − ηaηb �11

b̃ã
(−ω) = −�11

b̄ā
(−ω), (49a)

�12
ab(ω) = + ηaηb �12

b̃ã
(−ω) = +�12

b̄ā
(−ω), (49b)

�21
ab(ω) = + ηaηb �21

b̃ã
(−ω) = +�21

b̄ā
(−ω). (49c)

Such properties are general and should be required from
any truncation scheme used to compute self-energies. At first
order, they are confirmed by the explicit evaluation of normal
and anomalous diagrams in Eq. (65). At second order one can
check that they are indeed fulfilled by expressions (77) and
(79).

I. Spectroscopic content of Gorkov propagators

Let us now discuss quantities that are useful to analyze
the spectroscopic content of Gorkov propagators. First, one

defines generalized spectroscopic factors through the 2 × 2
Nambu matrix

Fk ≡
∑

a

〈�0|Aa|�k〉 〈�k|A†
a|�0〉 (50)

=
∑

a

Xk
a Xk†

a ,

which is independent of the one-body basis used and whose
normal components generalize traditional spectroscopic fac-
tors for addition and removal of a nucleon

F+
k ≡ F 11

k =
∑

a

|〈�k|a†
a|�0〉|2

=
∑

a

∣∣U k
a

∣∣2 , (51a)

F−
k ≡ F 22

k =
∑

a

|〈�k|aa|�0〉|2

=
∑

a

∣∣Vk
a

∣∣2 . (51b)

As states |�0〉 and |�k〉 do not carry a definite particle
number, such spectroscopic factors do not possess the sharp
physical interpretation of the usual ones. Still, and although
F+

k (F−
k ) contains contributions from the addition (removal) of

a nucleon to (from) systems characterized by different particle
numbers, the dominating contribution remains associated with
the addition (removal) to (from) the actual targeted ground
state |�N

0 〉.
Next is Gorkov’s one-nucleon spectral function S(ω)

summing one-nucleon addition S+(ω) and removal S−(ω)
components. Such spectral functions are not only (energy-
dependent) 2 × 2 matrices in Nambu space but also matrices
on the one-body Hilbert space H1. They are extracted from the
imaginary part of Gorkov’s propagators through

S+
ab(ω) ≡ − 1

π
Im Gab(ω)

=
∑

k

Xk
a Xk†

b δ(ω − ωk) for ω > 0, (52a)

S−
ab(ω) ≡ + 1

π
Im Gab(ω)

=
∑

k

Yk
a Yk†

b δ(ω + ωk) for ω < 0, (52b)

where only ωk = ±(E±
k − μ) � 0 contribute to the sum.

Just as for spectroscopic factors, the normal components of
Gorkov’s spectral functions, e.g.,

S
p

ab(E) = S+ 11
ab (E−μ) =

∑
k

U k
a U k∗

b δ(E − E+
k ), (53a)

Sh
ab(E) = S− 11

ab (E−μ) =
∑

k

V̄k∗
a V̄k

b δ(E − E−
k ), (53b)

generalize standard particle and hole spectral functions.
The normal one-body density matrix can be extracted
by integrating the normal part of the removal spectral
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function S− 11
ab ,

ρab ≡ 〈�0|a†
baa|�0〉 (54a)

=
∫ 0

−∞
dω S− 11

ab (ω)

=
∑

k

V̄k
b V̄k∗

a , (54b)

whereas the anomalous density matrix is obtained as

ρ̃ab ≡ 〈�0|ābaa|�0〉 (54c)

=
∫ 0

−∞
dω S− 12

ab (ω)

=
∑

k

Ū k
b V̄k∗

a . (54d)

Information contained in the spectral function can be charac-
terized by computing its various moments, i.e.,

M(n)
ab ≡

∫ ∞

−∞
dω ωn Sab(ω), (55)

which are (energy-independent) matrices in Nambu space and
on H1. Making use of anticommutation relation (25) one can
derive a sum rule for the generalized spectral function that
directly relates to its zeroth moment,5 i.e.,

M
(0) g1g2
ab = 〈�0|

{
Ag1

a , A
g2 †
b

}|�0〉 = δg1g2δab. (56)

The usual sum rule associated with the normal part of the
spectral function is recovered from Eq. (56) as∫ +∞

−∞
dω
[
S− 11

ab (ω) + S+ 11
ab (ω)

] = δab, (57)

showing that diagonal matrix elements S11
aa(ω) are nothing

but probability distribution functions associated with the
probability to remove/add a nucleon from/to the ground state
from/on a given single-particle state a and leave the residual
system with a missing energy ω. Equation (57) simply states
that such a probability integrate to 1 when scanning missing
energies from −∞ to +∞. A new sum rule associated
with anomalous spectral functions can also be deduced from

5As discussed in Sec. V B, the first moment M(1) of Gorkov spectral
function gives access to effective single-particle energies [58].

Eq. (56) as ∫ +∞

−∞
dω
[
S− 12

ab (ω) + S+ 12
ab (ω)

] = 0. (58)

Last but not least, one introduces the spectral strength
distribution (SSD) through Sp(E) ≡ TrH1 [S(E−μ)], which
reads as

Sp(E) =
∑

k

F+
k δ(E − E+

k ) + F−
k δ(E − E−

k ). (59)

The SSD is a 2 × 2 matrix of energy-dependent functions and
is independent of the single-particle basis used to compute it.
Its normal part Sp(E) ≡ Sp11(E) reads as

Sp(E) =
∑

k

F+
k δ(E − E+

k ) + F−
k δ(E − E−

k ) (60)

and provides the probability to leave the system with relative
energy E by adding(removing) a nucleon to(from) the ground
state |�0〉.

IV. GORKOV’S EQUATIONS

We now proceed to a form of Gorkov’s equations allowing
for a direct numerical implementation.

A. Energy-dependent eigenvalue problem

Let us, first, transform Eq. (34) into an eigenvalue equation
for amplitudes U k and Vk , along with a normalization
condition for those amplitudes. Multiplying Gorkov’s equa-
tion (34) by (ω − ωk), the pole at ω = +ωk is extracted by
taking the limit ω → ωk , such that substituting Lehmann
representation (44) for G and operator form (31) for G(0),
one obtains

Xk
a Xk†

b =
∑
cd

(ω − �U )−1
ac �̃cd (ω) Xk

d Xk†
b

∣∣∣∣∣
+ωk

.

Multiplying both sides by (ω − �U )ea and summing over a

yields

∑
a

(ω − �U )ea Xk
a

∣∣∣∣∣
+ωk

=
∑

d

�̃ed (ω) Xk
d

∣∣∣∣∣
+ωk

,

such that Eqs. (33) and (35) finally allows writing the matrix
eigenvalue equation

∑
b

(
Tab − μδab + �11

ab(ω) �12
ab(ω)

�21
ab(ω) −Tab + μδab + �22

ab(ω)

)∣∣∣∣∣
+ωk

(
U k

b

Vk
b

)
= +ωk

(
U k

a

Vk
a

)
. (61)

whose solutions are amplitudes (U k,Vk) and associated pole energy ωk . Equivalently, computing the residue at ω = −ωk

leads to

∑
b

(
Tab − μδab + �11

ab(ω) �12
ab(ω)

�21
ab(ω) −Tab + μδab + �22

ab(ω)

)∣∣∣∣∣
−ωk

(
V̄k∗

b

Ū k∗
b

)
= −ωk

(
V̄k∗

a

Ū k∗
a

)
. (62)
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Notice that the latter relationship can be also obtained from the
conjugate of Eq. (61) by using properties of Gorkov amplitudes
and self-energies. Equations (61) or (62) and their solutions are
independent of auxiliary potential U , which canceled out. This
leaves proper self-energy contributions only, which eventually
act as energy-dependent potentials. The self-energies depend,
in turn, on amplitudes U k and Vk such that Eqs. (61) or (62)
must be solved iteratively. At each iteration the chemical
potential μ must be fixed such that Eq. (18) is fulfilled, which
translates into the necessity for amplitude V to satisfy

N =
∑

a

ρaa =
∑
a,k

∣∣Vk
a

∣∣2 , (63)

where ρab is the (normal) one-body density matrix (54a).
As demonstrated in Appendix A, the spectroscopic am-

plitudes solution of Eq. (61) or (62) fulfill normalization
conditions∑

a

∣∣Xk
a

∣∣2 = 1 +
∑
ab

Xk†
a

∂�ab(ω)

∂ω

∣∣∣∣
+ωk

Xk
b, (64a)

∑
a

∣∣Yk
a

∣∣2 = 1 +
∑
ab

Yk†
a

∂�ab(ω)

∂ω

∣∣∣∣
−ωk

Yk
b, (64b)

where only the proper self-energy appears because of the
energy independence of the auxiliary potential.

B. First-order self-energies

In Fig. 1, first-order diagrams contributing to normal and
anomalous self-energies are displayed. Diagrammatic rules
appropriate to the computation of Gorkov’s propagators and
for the evaluation of self-energy diagrams are discussed in
Appendix B, while the � derivability of the presently used
truncation scheme is addressed in Sec. VI.

The four first-order self-energies diagrams are computed in
Eqs. (B8), (B10), (B12), and (B13) and read

�
11 (1)
ab = +

∑
cd

V̄acbd ρdc ≡ +�ab = +�
†
ab, (65a)

�
22 (1)
ab = −

∑
cd

V̄b̄dāc ρ∗
cd = −�∗

āb̄
, (65b)

�
12 (1)
ab = 1

2

∑
cd

V̄ab̄cd̄ ρ̃cd ≡ +h̃ab, (65c)

�
21 (1)
ab = 1

2

∑
cd

V̄ ∗
bācd̄

ρ̃∗
cd = +h̃

†
ab, (65d)

where the normal (ρab) and anomalous (ρ̃ab) density matrices
have been defined in Eqs. (54).

FIG. 1. First-order normal �11 (1) (left) and anomalous �21 (1)

(right) self-energy diagrams. Double lines denote self-consistent
normal (two arrows in the same direction) and anomalous (two
arrows in opposite directions) propagators while dashed lines embody
antisymmetrized matrix elements of the NN interaction.

C. HFB limit

Neglecting higher-order contributions to the self-energy,
Eqs. (61) and (65) combine to give

∑
b

(
Tab + �ab − μδab h̃ab

h̃
†
ab −T ∗

āb̄
− �∗

āb̄
+ μδāb̄

)(
U k

b

Vk
b

)

= ωk

(
U k

a

Vk
a

)
, (66)

which is nothing but the HFB eigenvalue problem in the case
where time-reversal invariance is not assumed. In such a limit,
U k and Vk define the unitary Bogoliubov transformation [59]
according to

aa =
∑

k

U k
a βk + V̄k∗

a β
†
k , (67a)

a†
a =

∑
k

U k∗
a β

†
k + V̄k

a βk. (67b)

Moreover, normalization condition (64b) reduces in this case
to the well-known HFB identity∑

a

∣∣Yk
a

∣∣2 =
∑

a

∣∣U k
a

∣∣2 +
∑

a

∣∣Vk
a

∣∣2 = 1. (68)

Let us now stress that, despite the energy independence of first-
order self-energies, some fragmentation of the single-particle
strength is already accounted for at the HFB level such that
one deals with quasiparticle degrees of freedom. In particular,
one can deduce from Eq. (68) that (generalized) spectroscopic
factors defined in Eq. (51) are already smaller than one. Such
a fragmentation is an established consequence of static pairing
correlations that are explicitly treated at the HFB level through
particle number symmetry breaking.

Finally, let us underline again that, whenever higher orders
are to be included in the calculation, first-order self-energies
(65) are self-consistently modified (in particular, through
the further fragmentation of the quasiparticle strength) such
that they no longer correspond to standard Hartree-Fock and
Bogoliubov potentials, in spite of their energy independence.
They actually correspond to the energy-independent part of
the (dynamically) correlated self-energy.

D. Second-order self-energies

Let us now discuss second-order contributions to normal
and anomalous (irreducible) self-energies.

In Figs. 2 and 3 the four types of normal and anomalous
self-energies are depicted. The evaluation of all second-order
diagrams is performed in Appendix B. Before addressing their

FIG. 2. Second-order normal self-energies �11 (2′) (left) and
�11 (2′′) (right). See Fig. 1 for conventions.
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FIG. 3. Second-order anomalous self-energies �21 (2′) (left) and
�21 (2′′) (right). See Fig. 1 for conventions.

expressions, let us introduce useful quantities

Mk1k2k3
a ≡

∑
ijk

V̄akij U k1
i U k2

j V̄k3
k , (69a)

Pk1k2k3
a ≡

∑
ijk

V̄ak̄ij̄ U k1
i Vk2

k Ū k3
j = Mk1k3k2

a , (69b)

Rk1k2k3
a ≡

∑
ijk

V̄ak̄īj Vk1
k U k2

j Ū k3
i = Mk3k2k1

a , (69c)

and

N k1k2k3
a ≡

∑
ijk

V̄akij Vk1
i Vk2

j Ū k3
k , (70a)

Qk1k2k3
a ≡

∑
ijk

V̄ak̄ij̄ Vk1
i U k2

k V̄k3
j = N k1k3k2

a , (70b)

Sk1k2k3
a ≡

∑
ijk

V̄ak̄īj U k1
k Vk2

j V̄k3
i = N k3k2k1

a , (70c)

in terms of which second-order self-energies are expressed
below. Using relations (41) one shows that

M̄k1k2k3
a = ηa Mk1k2k3

ã , (71a)

P̄k1k2k3
a = ηa Pk1k2k3

ã , (71b)

R̄k1k2k3
a = ηa Rk1k2k3

ã , (71c)

and

N̄ k1k2k3
a = −ηa N k1k2k3

ã , (72a)

Q̄k1k2k3
a = −ηa Qk1k2k3

ã , (72b)

S̄k1k2k3
a = −ηa Sk1k2k3

ã . (72c)

Given that P and R can be obtained from M through odd
permutations of indices {k1, k2, k3} and taking into account
the symmetries of interaction matrix elements, one can prove
that such quantities display the properties∑

k1k2k3

Mk1k2k3
a Mk1k2k3

b

∗ = +
∑
k1k2k3

Pk1k2k3
a Pk1k2k3

b

∗

= +
∑
k1k2k3

Rk1k2k3
a Rk1k2k3

b

∗
, (73a)

and ∑
k1k2k3

Mk1k2k3
a Pk1k2k3

b

∗ = +
∑
k1k2k3

Mk1k2k3
a Rk1k2k3

b

∗

= +
∑
k1k2k3

Pk1k2k3
a Mk1k2k3

b

∗

= −
∑
k1k2k3

Pk1k2k3
a Rk1k2k3

b

∗

= +
∑
k1k2k3

Rk1k2k3
a Mk1k2k3

b

∗

= −
∑
k1k2k3

Rk1k2k3
a Pk1k2k3

b

∗
. (73b)

Similarly, for N , Q, and S one has∑
k1k2k3

N k1k2k3
a

∗ N k1k2k3
b = +

∑
k1k2k3

Qk1k2k3
a

∗ Qk1k2k3
b

= +
∑
k1k2k3

Sk1k2k3
a

∗ Sk1k2k3
b , (74a)

and ∑
k1k2k3

N k1k2k3
a

∗ Qk1k2k3
b = +

∑
k1k2k3

N k1k2k3
a

∗ Sk1k2k3
b

= +
∑
k1k2k3

Qk1k2k3
a

∗ N k1k2k3
b

= −
∑
k1k2k3

Qk1k2k3
a

∗ Sk1k2k3
b

= +
∑
k1k2k3

Sk1k2k3
a

∗ N k1k2k3
b

= −
∑
k1k2k3

Sk1k2k3
a

∗ Qk1k2k3
b . (74b)

Analogous properties can be derived for terms mixing
{M,P,R} and {N ,Q,S}.

Let us now consider �11, whose second-order contribu-
tions, evaluated in Eqs. (B17) and (B19), can be written as

�
11 (2′)
ab (ω)

= 1

2

∑
k1k2k3

{
Mk1k2k3

a

(
Mk1k2k3

b

)∗
ω − Ek1k2k3 + iη

+
(
N̄ k1k2k3

a

)∗ N̄ k1k2k3
b

ω + Ek1k2k3 − iη

}
,

(75)

�
11 (2′′)
ab (ω)

= −
∑
k1k2k3

{
Mk1k2k3

a

(
Pk1k2k3

b

)∗
ω − Ek1k2k3 + iη

+
(
N̄ k1k2k3

a

)∗ Q̄k1k2k3
b

ω + Ek1k2k3 − iη

}
,

(76)

where the notation Ek1k2k3 ≡ ωk1 + ωk2 + ωk3 has been intro-
duced. Summing the two terms and using properties (73) and
(74) one obtains

�
11 (2′+2′′)
ab (ω)

=
∑
k1k2k3

{
Ck1k2k3

a

(
Ck1k2k3

b

)∗
ω − Ek1k2k3 + iη

+
(
D̄k1k2k3

a

)∗ D̄k1k2k3
b

ω + Ek1k2k3 − iη

}
, (77)

where

Ck1k2k3
a ≡ 1√

6

[
Mk1k2k3

a − Pk1k2k3
a − Rk1k2k3

a

]
, (78a)

Dk1k2k3
a ≡ 1√

6

[
N k1k2k3

a − Qk1k2k3
a − Sk1k2k3

a

]
. (78b)

Notice that from Eqs. (71) and (72) follow C̄k1k2k3
a =

+ηa Ck1k2k3
ã and D̄k1k2k3

a = −ηa Dk1k2k3
ã . All other second-order
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self-energies computed in Sec IV B2 can be written similarly
according to

�
12 (2′+2′′)
ab (ω)

=
∑
k1k2k3

{
Ck1k2k3

a

(
Dk1k2k3

b

)∗
ω − Ek1k2k3 + iη

+
(
D̄k1k2k3

a

)∗ C̄k1k2k3
b

ω + Ek1k2k3 − iη

}
, (79a)

�
21 (2′+2′′)
ab (ω)

=
∑
k1k2k3

{
Dk1k2k3

a

(
Ck1k2k3

b

)∗
ω − Ek1k2k3 + iη

+
(
C̄k1k2k3

a

)∗ D̄k1k2k3
b

ω + Ek1k2k3 − iη

}
, (79b)

�
22 (2′+2′′)
ab (ω)

=
∑
k1k2k3

{
Dk1k2k3

a

(
Dk1k2k3

b

)∗
ω − Ek1k2k3 + iη

+
(
C̄k1k2k3

a

)∗ C̄k1k2k3
b

ω + Ek1k2k3 − iη

}
. (79c)

E. Energy-independent eigenvalue problem

Defining quantities W and Z through(
ωk − Ek1k2k3

)
Wk1k2k3

k ≡
∑

a

[(
Ck1k2k3

a

)∗ U k
a + (Dk1k2k3

a

)∗ Vk
a

]
,

(80a)

(
ωk + Ek1k2k3

)
Zk1k2k3

k ≡
∑

a

[
D̄k1k2k3

a U k
a + C̄k1k2k3

a Vk
a

]
,

(80b)

Gorkov’s equations (61) computed at second order can be
rewritten as

ωk U k
a =

∑
b

[
(Tab − μδab + �ab)U k

b + h̃ab Vk
b

]
+
∑
k1k2k3

[
Ck1k2k3

a Wk1k2k3
k + (D̄k1k2k3

a

)∗ Zk1k2k3
k

]
,

(81a)

ωk Vk
a =

∑
b

[
h̃
†
ab U k

b − (Tab − μδab + �∗
āb̄

)Vk
b

]
+
∑
k1k2k3

[
Dk1k2k3

a Wk1k2k3
k + (C̄k1k2k3

a

)∗ Zk1k2k3
k

]
.

(81b)

The four relations above provide a set of coupled equations for
unknowns U , V , W , and Z that can be displayed in a matrix
form

ωk

⎛
⎜⎜⎜⎝
U
V
W
Z

⎞
⎟⎟⎟⎠

k

=

⎛
⎜⎜⎜⎝

T − μ + � h̃ C D̄∗

h̃† −T + μ − �̄∗ D C̄∗

C† D† E 0

D̄T C̄T 0 −E

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝
U
V
W
Z

⎞
⎟⎟⎟⎠

k

≡ �

⎛
⎜⎜⎜⎝
U
V
W
Z

⎞
⎟⎟⎟⎠

k

, (82)

where � is an energy-independent Hermitian matrix. The di-
agonalization of � is equivalent to solving Gorkov’s equation.
Such a transformation is made possible by the explicit energy
dependence embodied in the Lehmann representation, i.e., the
known pole structure of the propagators—and, consequently,
of second-order self-energies—is used to recast Gorkov’s
equations under the form of an energy-independent eigenvalue
problem whose eigenvalues and eigenvectors yield the com-
plete set of poles of Gorkov-Green’s functions. The solution of
such an eigenvalue problem has to be found self-consistently
while satisfying Eq. (63).

A normalization condition for the column vectors in
Eq. (82) is obtained for each solution k by inserting second-
order self-energies (77) and (79) into Eq. (64a) [or, equiva-
lently, into Eq. (64b)]. One obtains

∑
a

[∣∣U k
a

∣∣2 + ∣∣Vk
a

∣∣2]+
∑
k1k2k3

[∣∣Wk1k2k3
k

∣∣2 + ∣∣Zk1k2k3
k

∣∣2] = 1.

(83)

The fact that � is Hermitian implies that eigenvalues ωk

are real. Moreover, similarly to the HFB problem [59],
solutions come in pairs with opposite sign, i.e., for any
solution {U k,Vk,Wk,Zk, ωk} there exists another solution
{V̄k∗, Ū k∗, Z̄∗

k , W̄∗
k ,−ωk}. This can be checked either by

substituting ω with −ω in the steps that led to Eq. (82) or by
rederiving Eq. (82) starting from Eq. (62) instead of Eq. (61).

Let us discuss in some detail the structure of �. The upper-
left block

�(1) ≡
(

T − μ + � h̃

h̃† −T + μ − �̄∗

)
(84)

represents the “mean-field” sector. If second-order self-
energies are zero, � = �(1) = �HFB and one recovers the
HFB eigenvalue problem of fixed dimensionality (twice the
size of the single-particle basis) for amplitudes U and V
discussed in Sec. IV C.

The upper-right

�(2) ≡
(C D̄∗

D C̄∗

)
(85)

and lower-left �(2)† blocks contain second-order couplings
between one-quasi-particle and three-quasi-particle configu-
rations. Such couplings further fragment the single-particle
strength as compared to the pure HFB approximation. As a
matter of fact, following the iterative process leading to a
self-consistent solution of Gorkov’s equations, the dimension
of �(2) grows, i.e., a larger number of poles is generated in
Gorkov-Green’s functions at each iteration. A propagator with
an initial number of poles N0

p = 2 Nb generates at first iteration
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a second-order self-energy with approximately (Nb)3 poles,
which reflects into a matrix �(2) of dimension N0

p + 2(Nb)3.
After n iterations the propagator and the second-order self-
energy will contain, respectively, O[(Nb)3n

] and O[(Nb)3(n+1)
]

poles, and the dimension of �(2) will be O[(Nb)3(n+1)
]. This

exponential growth of the number of poles seems to prevent
the achievement of convergence in an actual calculation. In
practice, one limits the growth of the number of poles by
Krylov projection techniques [60,61], as discussed in Paper II,
while ensuring the convergence of the calculation.

F. Application to J� = 0+ states

The results obtained so far are general and valid for any
choice of single-particle basis {a†

a} and even-number parity
state |�0〉. If the target system, however, possesses specific
symmetries, one can exploit them to simplify the set of
equations. The first applications of the scheme developed in the
present paper will be dedicated to studying the ground state
of even-even semimagic nuclei, i.e., states characterized by
angular momentum and parity J� = 0+. Appendix C specifies
the set of equations provided above to the particular case of
such J� = 0+ states.

V. QUANTITIES OF INTEREST

A. Binding energy

The energy sum rule first derived by Galitskii [62] and
formalized by Koltun [63] expresses the expectation value of
the Hamiltonian in terms of the one-body propagator. It is one
of the appealing features of Green’s functions theory, since the
energy of the system, a two-body observable, can be computed
exactly from a one-body quantity.

The purpose of this subsection is to derive the analogous
of the Koltun sum rule in the more general context of Gorkov-
Green’s functions. Let us, first, recall that the equation of
motion of annihilation operators defined in their Heisenberg
representation through Eq. (23) reads

− i
daa(t)

dt
= [�, aa(t)] (86)

and that the normal Gorkov propagator is defined at equal
times through

〈�0|a†
b(0)aa(t)|�0〉|t=0 ≡ 1

2πi

∫
C↑

dω G11
ab(ω). (87)

From the definition of the Fourier transform one can then
derive

d G11
ab(t)

dt

∣∣∣∣
t=0−

= 1

2πi

∫
C↑

dω ω G11
ab(ω). (88)

Also, it is useful for the following to compute the three
commutators ∑

a

a†
a [T , aa] = −T , (89a)

∑
a

a†
a [V NN, aa] = −2V NN, (89b)

∑
a

a†
a [N, aa] = −N. (89c)

Let us now write �0 = 〈�0|�|�0〉 as

�0 = 1

2
〈�0|T − μN |�0〉︸ ︷︷ ︸

≡ A0

+1

2
〈�0|T + 2V NN − μN |�0〉︸ ︷︷ ︸

≡ B0

.

Using Eq. (87) one has

A0 =
∑
ab

[Tab − μδab] 〈�0|a†
aab|�0〉

=
∑
ab

[Tab − μδab]
1

2πi

∫
C↑

dω G11
ba(ω), (90)

while using Eqs. (86), (88), and (89), one can also write

B0 = −
∑

a

〈�0|a†
a[�, aa]|�0〉

= i
∑

a

〈�0|a†
a(0)

daa(t)

dt

∣∣∣∣
t=0

|�0〉

=
∑

a

1

2πi

∫
C↑

dω ω G11
aa(ω). (91)

Hence, one obtains the generalized Koltun sum rule

�0 =
∑
ab

1

4πi

∫
C↑

dω G11
ba(ω) [Tab − μδab + ω δab] , (92)

where the normal Gorkov propagator G11 appears instead of
the Dyson one.

B. Effective single-particle energies

In Ref. [58], an extensive discussion about effective single-
particle energies (ESPE) in doubly closed shell nuclei was
proposed. Results were based on the definition of ESPE going
back to Baranger [64] and the fact that eigenstates of the
nuclear Hamiltonian are also eigenstates of the particle number
operator. Such a definition and its associated properties need
to be revisited in the context of Gorkov-Green’s function were
particle number, as a good symmetry, is lost, i.e., for methods
formulated over Fock space rather than over the Hilbert space
associated with a definite number of particles.

As in Refs. [58,64], ESPE are naturally computed as
eigenvalues of the so-called centroid matrix, which in the
present context is nothing but the normal part of the first
moment of the spectral function introduced in Eq. (55)

M
(1) 11
ab ≡

∑
k

U k
a U k∗

b E+
k + V̄k∗

a V̄k
b E−

k . (93)

By definition of M (1) 11, the computation (or extraction)
of ESPEs requires the full spectroscopic strength, i.e., the
complete set of separation energies and spectroscopic ampli-
tudes from both one-nucleon stripping and pickup processes.
This is particularly critical as one moves away from doubly
closed-shell nuclei as the low-lying strength becomes more
and more fragmented, e.g., by pairing correlations, into both
the additional and the removal channels. This is precisely
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the focus of the presently developed theoretical method to
access the complete spectroscopic one-nucleon addition and
removal strength in open-shell nuclei from which ESPEs can
be extracted.

Let us now derive a sum rule for M (1) 11 that complements
the one provided for M (0) 11 in Eq. (56) and that provides ESPEs
with a transparent physical meaning. Considering the first term
on the right-hand side of Eq. (93), substituting the definition of
spectroscopic amplitudes and one-nucleon additional energy,
one finds∑

k

U k
a U k∗

b E+
k =

∑
k

〈�0|aa|�k〉 〈�k|a†
b|�0〉(μ + ωk)

=
∑

k

〈�0|aa�k|�k〉〈�k|a†
b|�0〉

−
∑

k

〈�0|�0aa|�k〉〈�k|a†
b|�0〉

+
∑

k

μ 〈�0|aa|�k〉〈�k|a†
b|�0〉

= 〈�0|[aa,�]a†
b|�0〉 + μ 〈�0|aaa

†
b|�0〉, (94)

where a completeness relation over F was removed. Similarly,
one obtains∑

k

V̄k∗
a V̄k

b E−
k = 〈�0|a†

b[aa,�]|�0〉 + μ 〈�0|a†
baa|�0〉,

(95)

which, combined with Eqs. (25) and (94), leads to

M
(1) 11
ab = 〈�0|{[aa,�], a†

b}|�0〉 + μδab. (96)

Using the second quantized form of T , N and V NN , together
with symmetries of interaction matrix elements, one eventually
obtains the key result

M
(1) 11
ab = Tab +

∑
cd

V̄ NN
adbc ρcd (97a)

≡ h∞
ab, (97b)

where h∞
ab ≡ Tab + �11

ab involves the energy-independent (or
static) part of the normal self-energy. Eventually, solving

h∞ ψESPE
p = eESPE

p ψESPE
p (98)

provides ESPEs and associated single-particle wave functions.
Defined in this way, ESPEs are manifestly independent of the
single-particle basis used to compute the centroid matrix (93).
They possess the meaning of an average of observable one-
nucleon separation energies weighted by the probability to
reach the corresponding many-body state of the N ± 1-body
system by adding or removing a nucleon in the single-particle
state ψESPE

p . As such, it is, however, essential to understand that
ESPEs are by essence nonobservable and display an intrinsic
resolution scale dependence, just as spectroscopic factors
do [58].

In spite of the breaking of particle-number symmetry lead-
ing to the coupling of additional and removal spectroscopic
amplitudes via anomalous self-energies in Gorkov’s equations,
Eq. (97b) demonstrates that the centroid matrix is equal to the
normal static field h∞, exactly as for theories that explicitly

conserve particle number [58]. In other words, the centroid
sum rule screens out not only the energy-dependent part of the
normal self-energy but also the entire anomalous self-energy.
This is an a priori nontrivial, though straightforward to obtain,
result. Of course, the explicit tackling of pairing correlations
through anomalous propagators and self-energies does impact
the results indirectly via their feedback onto the normal
one-body density matrix ρ entering h∞.

Eventually, one can demonstrate, just as for particle-number
conserving theories [58], that h∞ only involves the so-called
monopole part [65,66] of the NN interaction whenever |�0〉
is a Jπ = 0+ state.

C. Natural basis

The natural basis is the one that diagonalizes the one-body
density matrix, i.e.,

ρ ψnat
p = nnat

p ψnat
p , (99)

where basis states ψnat
p are called “natural orbitals” and where

diagonal elements nnat
p denote “natural occupation numbers.”

The N most occupied natural orbitals define the set that better
approximates the true (correlated) density matrix ρ in terms
of a Slater determinant wave function. Thus, the natural basis
is most convenient to expand approximations of observables
other than energies (e.g., radii and density distributions). We
stress that, in general, ψnat

p correspond to superpositions of
orbits ψESPE

p with ESPEs both above and below the Fermi
surface, chosen to optimize the density profile of the system.
Therefore, natural orbitals are a poorer approximation to
energy levels. Conversely, single-particle states ψESPE

p , in
Eq. (98), can be directly associated to orbits of the effective
shell structure.

D. One-body observables and radii

The expectation value of a general one-body operator, O, is
obtained from the normal density matrix (54a) or, equivalently,
by integration over the normal Gorkov propagator

〈�0|O|�0〉 = TrH1 {ρ O} =
∑
ab

∫
C↑

dω

2πi
G11

ba(ω) oab, (100)

where oab ≡ (a|O|b) are matrix elements of the one-body
operator.

For matter radii, however, one needs to sum over particle
positions in the intrinsic frame. The operator for the root-
mean-square point radius rrms is, thus,

r2
rms = 1

N̂

∑
i

(ri − R)2

= 1

N̂

(
1 − 1

N̂

)∑
i

r2
i − 2

N̂2

∑
i<j

ri · rj , (101)

where ri denote coordinates of nucleon i in the laboratory
frame and R ≡ (

∑
i ri)/N̂ is the center-of-mass coordinate.

Operator (101) contains a two-body correction term and
depends on the number of particles. As for the center-of-mass-
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corrected Hamiltonian, this is the form suitable for applications
in Fock space. At second order in the Gorkov self-energy, as
considered in this work, there is no resummation of diagrams
corresponding to correlated two-body propagators. Only the
free propagation of dressed pp or hh is accounted for in the
second-order diagrams. Correspondingly, one can approxi-
mate the two-particle density matrix with the antisymmetrized
product of correlated one-body density matrices in order to
evaluate the two-body part in Eq. (101). The rrms radius is,
thus, calculated to first order in N̂−1 as

〈
r2

rms

〉 = 1

N

(
1 − 1

N

)∑
ab

∫
C↑

dω

2πi
G11

ba(ω) r2
ab

− 1

N2

∑
abcd

∫
C↑

dω

2πi

∫
C↑

dω′

2πi
〈ab|r1 · r2|cd〉

×G11
ca(ω) G11

db(ω′), (102)

where r2
ab = (a|r2|b) and where 〈ab|r1 · r2|cd〉 are antisym-

metrized two-body matrix elements while N denotes the total
number of nucleons (protons plus neutrons). Equations (101)
and (102) are valid for matter radii. Charge point radii rch can
be obtained from

r2
ch = 1

Ẑ

∑
p

(rp − R)2, (103)

where Ẑ is the number operator for protons and where p runs
only over protons while R is the same as in Eq. (101). Isotope
shifts are calculated from differences of squared charge radii,

δ
〈
r2

ch

〉N,N ′ = 〈r2
ch

〉N ′ − 〈r2
ch

〉N
, (104)

where N ′ is the number of nucleons of the system under
consideration, whereas N characterizes a reference nucleus.

E. Pairing gaps

Experimentally, a suitable way of extracting the pairing gap
goes through, e.g., the three-point mass formula

�(3)(N ) = (−1)N

2

[
EN+1

0 − 2EN
0 + EN−1

0

]
, (105)

where N is the total number of nucleons. This is motivated
by the relation between the odd-even staggering of nuclear
binding energies and the lack of binding of the unpaired odd
nucleon, as first pointed out in Ref. [67].

To compute �(3)(N ) theoretically, one needs to perform
consistent calculations of odd nuclei. In the present context,
this would require to perform Gorkov calculations for a state
|�0〉 having an odd number-parity quantum number, i.e. a
state such that the sum runs over odd N in Eq. (16). This
is, however, beyond the scope of the present work. The
next best approximation would consist in keeping an even
number-parity state while accounting for the blocking of a
quasiparticle within the filling approximation [68]. However,
such an approximation remains to be formulated within the
general frame of Gorkov-Green’s function formalism.

In such a situation, the next best estimate to the ground-state
energy of the odd system is obtained through [69,70]

EN
0 ≈ EN ∗

0 + ωN
F , (106)

where EN ∗
0 is the energy of the odd nucleus computed as

it were an even one, i.e., as a fully paired vacuum with an
odd number of particles on average, while ωN

F denotes the
lowest pole energy obtained from that Gorkov calculation.
Obviously, for even N one simply has EN

0 = EN ∗
0 . With such

an appropriate decomposition of the energy, the three-point
mass formula reads

�(3)(N ) ≈ (−1)N

2

∂2EN ∗
0

∂N2
+ �F (N ). (107)

The first contribution relates to the second derivative of the
smooth part of the energy EN ∗

0 , i.e., the energy curve on which
both even and odd nuclei would lie in the absence of odd-even
mass staggering. Such a second derivative of EN ∗

0 evolves very
smoothly with N . However, the corresponding contribution
to �(3)(N ) oscillates strongly around zero due to the factor
(−1)N appearing in Eq. (107), accounting for the odd-even
oscillation of experimental �(3)(N ) and having nothing to do
with the pairing gap itself [69,70]. The second contribution
to �(3)(N ) relates specifically to the unpaired character of the
odd nucleon and, thus, extracts the actual pairing gap at the
Fermi energy in open-shell nuclei [69,70]

�F (N ) ≡
{

ωN
F for N odd(

ωN−1
F + ωN+1

F

)/
2 for N even

. (108)

VI. � DERIVABILITY

Gorkov-Green’s functions constitute a versatile and pow-
erful technique that can as well be applied to time-dependent,
nonequilibrium systems (see, e.g., Ref. [71]). When truncating
the self-energy expansion, and, hence, approximating the
solution of the many-problem, one has to pay attention to
the possible violation of basic conservation laws involving,
e.g., particle number, total energy, total momentum, and
total angular momentum. For an arbitrary set of self-energy
diagrams, nothing assures that quantities are conserved with
time even though the corresponding operator commutes
with H .

A way to construct a class of conserving approximations
was devised in the early 1960s by Baym and Kadanoff [72,73].
Baym and Kadanoff demonstrated that if the self-energy is
derived from a certain functional � of the one-body Green’s
function (and the two-body potential), previously introduced
by Luttinger and Ward [74], the resulting scheme automatically
satisfies all basic conservation laws. Moreover, the resulting
approximation preserves thermodynamic consistency require-
ments, including the Hugenhotlz-van Hove [75] and Luttinger
[76] identities. Fulfilling such consistency requirements avoids
ambiguities in the calculation of thermodynamic observables,
i.e., different ways of computing the same quantity yield the
same result.

The concept of �-derivable approximations, introduced
by Baym and Kadanoff for normal Green’s functions, was
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generalized to Gorkov’s formalism by De Dominicis and
Martin [77] (see also Refs. [78,79]). In this case such a
class of approximations relies on the existence of a closed
functional � of the four Gorkov-Green’s functions G and the
two-body interaction V , from which self-energy contributions
are obtained via a functional derivative. At zero temperature,
such a functional is closely related to the correlation energy
�E0, i.e., the total energy measured with respect to the
unperturbed energy [80]

�E0 = �[G, V ] + Tr

{
G
G(0)

− 1

}
− Tr

{
ln

G
G(0)

}
, (109)

where traces have to be performed over Gorkov and one-
particle Hilbert spaces

Tr ≡ TrH1

1

2
TrG

∫
dω

2 π
. (110)

There exist two possible strategies to build a �-derivable
scheme. Starting from a carefully chosen set of self-energy
contributions, Baym-Kadanoff’s functional can be formally
defined through [80]

�[G, V ] ≡ −1

2

∞∑
n=1

1

n
Tr
{
�(n)[G, V ] G

}

≡
∞∑

n=1

�(n)[G, V ], (111)

where �(n)[G, V ] denotes skeleton self-energy terms of order
n. Compared to the standard definition, an additional 1/2
factor appears in relation to the trace over the two-dimensional
Gorkov space in Eq. (110). Notice that self-consistency, i.e.,
the use of dressed propagators in the functional, is a necessary
condition for � derivability.

Alternatively, one can use diagrammatic techniques to
construct �, analogously to the self-energy expansion. At
order n in V , �(n) is given by two-fermion-line irreducible
connected closed skeleton diagrams. With the obvious change
from an open to a closed topology, all diagrammatic rules
outlined in Appendix B1 hold for the construction of the
functional. From � one can obtain the four self-energies by
differentiating with respect to Gorkov propagators

�11
ij (ω) = −δ�[G, V ]

δG11
ji (ω)

, (112a)

�12
ij (ω) = −2

δ�[G, V ]

δG21
ji (ω)

, (112b)

�21
ij (ω) = −2

δ�[G, V ]

δG12
ji (ω)

, (112c)

�22
ij (ω) = −δ�[G, V ]

δG22
ji (ω)

, (112d)

as demonstrated in Appendix D1. Any subset of � diagrams
employed to derive the self-energy via Eq. (112) will generate
a conserving approximation. If at a given order all terms are
taken into account, the resulting self-energy will contain all
possible contributions at that order. Eventually, one should
have internal consistency, i.e., if the functional is constructed

FIG. 4. Diagrams contributing to �(1).

from a certain set of self-energy contributions via Eq. (111),
all and only these self-energy contributions must be generated
from that functional when employing Eq. (112).

Most of the commonly used (fully) self-consistent ap-
proximations in Green’s function theory are � derivable.
It is the case of the second-order approximation used in
the present work, as well as of Hartree-Fock, RPA, or T -
matrix approximations. Diagrams in the � functional that
generate first- and second-order self-energies of Figs. 1, 2,
and 3 are depicted, respectively, in Figs. 4 and 5. Writing
explicit expressions for such diagrams and applying functional
derivative (112), one obtains all self-energies calculated in
Appendix B2. As an illustration, the first-order case is treated
in full detail in Appendix D2.

VII. CONCLUSIONS

The aim of the present paper is to extend the reach of
ab initio nuclear structure calculations to truly open-shell
nuclei. This is done by implementing a self-consistent Green’s
function method within the general Gorkov’s scheme. Such a
method retains the simplicity of single-reference approaches,
i.e., methods relying on a many-body expansion around a
single vacuum. As for open-shell systems, this can be done
only at the price of breaking U(1) symmetry associated with
particle-number conservation in order to tackle Cooper pair
instabilities and explicitly account for pairing correlations.

FIG. 5. Diagrams contributing to �(2).
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The present work provides a detailed account of Gorkov’s
formalism and of its specification to second order in the
expansion of normal and anomalous self-energies. At the
present stage, this is done in terms of two-nucleon interactions
only. First numerical applications of such a scheme will be
reported soon in a forthcoming publication. This constitutes
the first ab initio application of self-consistent Gorkov-Green’s
function method in finite nuclei using realistic two-nucleon
interactions. The extension of the proposed ab initio method
to more advanced truncation schemes and to include three-
nucleon forces is the aim of future works.

ACKNOWLEDGMENTS

The authors thank S. Baroni and P. Bożek for useful
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APPENDIX A: NORMALIZATION CONDITION

In order to work out the normalization of the spectro-
scopic amplitudes let us consider the expansion of Gorkov’s

equation (34) around the pole +ωk . We recall that a
complex function f (z) can be expanded in a Laurent series
around a point c in the complex plane as

f (z) =
+∞∑

n=−∞
an (z − c)n, (A1)

with

an ≡ 1

2πi

∫
C

f (z) dz

(z − c)n+1
, (A2)

and where C is a contour containing c on which f is analytic.
Here one is interested in the case in which f (z) has a simple
pole at z = c, which means that the integrand in Eq. (A2)
has a pole of order n + 2 at z = c and the integral can be
performed by means of the residue theorem. In particular, the
n = 0 coefficient reads

a0 = 1

2πi

∫
C

f (z) dz

(z − c)
= lim

z→c

d

dz

[
(z − c)2 f (z)

(z − c)

]
. (A3)

Performing a Laurent expansion of Gorkov’s equation (34)
around ω = +ωk and extracting the coefficients of order zero
on both sides, one obtains

lim
ω→ωk

d

dω

{
Xk

aXk†
b + (ω − ωk) Bk

ab(ω) = (ω − ωk) (ω − �U )−1
ab +

∑
cd

[
(ω − �U )−1

ac �̃cd (ω) Xk
dXk†

b

+ (ω − ωk) (ω − �U )−1
ac �̃cd (ω) Bk

db(ω)
]}

, (A4)

where the singular part in the dressed propagator has been isolated as follows:

Gab(ω) = Xk
a Xk†

b

ω − ωk + iη
+
∑
k′ 	=k

Xk′
a Xk′†

b

ω − ωk′ + iη
+
∑
k′

Yk′†
a Yk′

b

ω + ωk′ − iη

≡ Xk
a Xk†

b

ω − ωk + iη
+ Bk

ab(ω). (A5)

Applying the derivative to all terms and dropping the ones that give zero in the limit ω → ωk , one has

lim
ω→ωk

{
Bk

ab(ω) = (ω − �U )−1
ab +

∑
cd

[
−(ω − �U )−2

ac �̃cd (ω) Xk
dXk†

b

+ (ω − �U )−1
ac

∂�̃cd (ω)

∂ω
Xk

dXk†
b + (ω − �U )−1

ac �̃cd (ω)Bk
db(ω)

]}
, (A6)

such that, using Eq. (61),

lim
ω→ωk

{∑
a

(ω − �U )−1
ea Xk

aXk†
b + Bk

eb(ω) = (ω −�U )−1
eb +

∑
cd

[
(ω − �U )−1

ec

∂�̃cd (ω)

∂ω
Xk

dXk†
b + (ω − �U )−1

ec �̃cd (ω) Bk
db(ω)

]}
.

(A7)

Multiplying both sides of Eq. (A7) by (ω − �U )f e and summing over e yields

Xk
f Xk†

b = δf b +
∑

d

∂�̃f d (ω)

∂ω

∣∣∣∣
ωk

Xk
dXk†

b , (A8)

where the terms involving Bk cancel out after using the conjugate Gorkov’s equation

Gab(ω) = G(0)
ab (ω) +

∑
cd

Gac(ω) �̃cd (ω) G(0)
db (ω). (A9)
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Multiplying by Xk†
f from the left, summing over f and renaming (f, d) to (a, b), one finally obtains the normalization condition∑

a

∣∣Xk
a

∣∣2 = 1 +
∑
ab

Xk†
a

∂�ab(ω)

∂ω

∣∣∣∣
ωk

Xk
b, (A10)

where only the proper self-energy appears as a result of the energy independence of the auxiliary potential. Similarly, one can
derive a condition for Gorkov’s amplitude Y∑

a

∣∣Yk
a

∣∣2 = 1 +
∑
ab

Yk†
a

∂�ab(ω)

∂ω

∣∣∣∣
−ωk

Yk
b. (A11)

APPENDIX B: DIAGRAMMATIC

1. Diagrammatic rules

A convenient way to express the expansion of the single-
particle propagator is via diagrammatic techniques. By giving
the interaction and the single-particle propagator a graphical
representation and by establishing a set of rules one can
generate diagrams that are in one-to-one correspondence with
the terms appearing in the expansion. As it provides an
immediate insight to physical processes associated with the
various contributions, the diagrammatic expansion is of great
help when choosing a suitable approximation. It is relevant
to discuss diagrammatic rules in some detail here given that
there exist differences compared to rules applicable to the
diagrammatic expansion involving normal contractions only.

In the present work, antisymmetrized interaction matrix
elements are represented by a dashed line labeled by four
single-particle indices,

V̄abcd ≡
c d

a b
. (B1)

Single-particle unperturbed propagators, i.e., Green’s func-
tions associated with the unperturbed Hamiltonian �U intro-
duced in Eq. (31), are depicted as solid lines labeled by two
indices and one energy flowing from the second to the first
index

G
11 (0)
ab (ω) ≡ ↑ ω

b

a

, (B2a)

G
12 (0)
ab (ω) ≡ ↑ ω

b̄

a

, (B2b)

G
21 (0)
ab (ω) ≡ ↑ ω

b

ā

, (B2c)

G
22 (0)
ab (ω) ≡ ↑ ω

b̄

ā

. (B2d)

One should notice that, as opposed to traditional graphical
representations of Dyson’s propagator, Gorkov’s propagators
carry two arrows specifying whether a given propagator
results from the contraction of two creation operators, of two
annihilation operators, or of one creation (annihilation) and
one annihilation (creation) operator.

With building blocks (B1) and (B2) one can construct, order
by order, the (diagrammatic) perturbative expansion for each
of the four Gorkov propagators (22). To obtain all terms of the
expansion at a certain order m and for one of the four Gorkov
propagators, the following rules are employed:

(i) Draw all topologically distinct connected direct dia-
grams with m horizontal interaction lines (with 4 single-
particle indices) and 2m + 1 directed propagation lines
(with 2 single-particle indices each, connecting the 4m

indices of the interaction and the 2 external ones).
Notice that exactly two incoming and two outgoing
lines must be attached to a given interaction vertex,
i.e., the left diagram in Fig. 6 is allowed while right
diagram is not. Topologically distinct diagrams cannot
be transformed into each other by any translation
(in the two-dimensional plane) of any of the vertices
without disconnecting or reconnecting propagation

c

a

d

b

c

a

d

b

FIG. 6. Allowed (left) and forbidden (right) interaction lines.
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d̄ h

c f̄

b

ī

j

ā

g

ē

d h̄

c̄ f

i

j̄

b

ḡ

e

ā

FIG. 7. Example of topologically equivalent second-order
diagrams.

lines. For example, second-order diagrams in Fig. 7
are topologically equivalent, while the ones in Fig 8
are not. Connected diagrams are diagrams in which it
is possible to go from each interaction line to any other
by moving along propagation lines. For example, the
(first-order) left diagram in Fig. 9 is connected while
right diagram is disconnected. For a given diagram,
exchange diagrams are derived by exchanging the end
points of two propagation lines coming in or out of
one or more interaction vertices. Since we are using
antisymmetrized matrix elements in Eq. (B1), it follows
that for each set of diagrams obtainable from one
another by means of such exchanges, one must only
retain one representative diagram, arbitrarily chosen
and denoted as direct, and discard all the other ones.
For example, if one considers left diagram in Fig. 8 as
direct (the choice of the present work) it follows that
one must discard the right diagram in Fig. 8. In cases

d̄ h̄

c f

b

ī

j

ā

ḡ

e

d h

c f̄

b

i

j

ā

g

ē

FIG. 8. Example of second-order diagrams topologically differ-
ing from the ones in Fig. 7. Right diagram is the exchange of left
diagram.

ē f

b

c̄ d

ā

f
c d̄

b

ā

ē

FIG. 9. Example of connected (left) and disconnected (right) first-
order diagrams.

where it is unclear whether diagrams are topologically
distinct, one can always resort to a direct application of
Wick’s theorem.

(ii) Assign an energy to all propagation lines such that the
energy in each interaction is conserved (the energy en-
tering a vertex must be equal to the energy exiting). As
a result, an m-order diagram will have m-independent
internal energies and the incoming external energy
will be equal to the outgoing external one. For each
independent energy, multiply by a factor 1/2π .

(iii) Write down a V̄ (with corresponding single-particle
indices) for each interaction line and a Gg1g2 (with
corresponding single-particle indices and energy) for
each propagation line6 according to representation
(B2). If the energy ω flowing along the propagator
has the opposite direction than in definition (B2), the
associated term is Gg1g2 (−ω).

(iv) Write an overall factor im.
(v) Write a factor 1/2 for each pair of equivalent prop-

agation lines, i.e., pairs of lines starting at the same
interaction vertex and ending at the same interaction
vertex and corresponding to the same type of Gorkov
propagator. This factor is due to the antisymmetrization
of the potential, i.e., to the fact that exchanging
the incoming lines of two interactions connected by
equivalent lines yields the same diagram. For example
diagrams in Fig. 8 have a pair of equivalent lines, while
the diagram in Fig. 10 has none.

(vi) Write a factor 1/2 for each anomalous propagator
starting and ending at the same interaction vertex. This
factor appears for the reason discussed in point 5 and
applies, e.g., to left diagram in Fig. 9.

(vii) Write a factor (−1)Nc+Na where Nc is the number
of closed fermionic loops and Na is the number of
anomalous contractions.

6Any normal propagtion line can be interpreted either as G11 or
G22. The choice of the present work consists in identifying normal
lines with G11 in the expansions of G11, G12, and G21 while using
G22 in the expansion of G22.
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d h̄

c f

b

i

j

a

ḡ

e

FIG. 10. Example of second-order diagram with no equivalent
lines.

(viii) Interpret equal-time propagators as

lim
t ′→t

G11
ab(t, t ′) = G11

ab(0,−η), (B3a)

lim
t ′→t

G12
ab(t, t ′) = G12

ab(0,−η), (B3b)

lim
t ′→t

G21
ab(t, t ′) = G21

ab(0,−η), (B3c)

lim
t ′→t

G22
ab(t, t ′) = G22

ab(0,+η), (B3d)

which implies that integrations over ω are performed in
the complex energy plane, either by closing the contour
in the upper (C ↑) or in the lower (C ↓) half plane as∫

dω G11
ab(ω) →

∫
C↑

dω G11
ab(ω), (B4a)∫

dω G12
ab(ω) →

∫
C↑

dω G12
ab(ω), (B4b)∫

dω G21
ab(ω) →

∫
C↑

dω G21
ab(ω), (B4c)∫

dω G22
ab(ω) →

∫
C↓

dω G22
ab(ω). (B4d)

When equal-time propagators appear the ordering of
the annihilation and creation operators must be as in
the starting Hamiltonian. Hence limits (B3a) and (B3d)
must be taken in opposite ways. Since the operators
in G12 and G21 anticommute the remaining two limits
can be arbitrarily interpreted, as long as they are taken
consistently.

(ix) Sum over all internal single-particle indices and inte-
grate over all internal energies. External indices and
energy refer to the Gorkov propagator being expanded.

Once the expansions of the four one-body Gorkov prop-
agators are written down, one can derive the corresponding
expansions for the self-energies by simply stripping off
external propagation lines. For example, in Fig. 11 right
diagram is the self-energy contribution corresponding to left
diagram.

d

c e
↓ ω

↑ ω b

↑ ω a

f

d f

c e
↓ ω

FIG. 11. Example of first-order diagram (left) and corresponding
self-energy contribution (right).

All self-energy contributions can be divided into two types:
one-line reducible and irreducible self-energies. Irreducible
self-energies are constituted by diagrams that cannot be
separated into two parts by cutting one propagation line. For
example, diagrams in Fig. 7 are reducible while diagrams
in Fig. 8 are irreducible. Irreducible contributions can be
further divided into skeleton and composed diagrams. Skeleton
(composed) self-energies are obtained by keeping, at a given
order order, only those terms that cannot (can) be generated by
successive insertions of irreducible self-energy terms of lower
order. At first order, all diagrams are irreducible by definition.
An example at second order is given by the two diagrams in
Fig. 12: The upper one is a skeleton diagram while the lower
one can be generated by two successive insertions of first-order
self-energy term of Fig. 11.

Once this distinction is made, one can demonstrate that
the complete propagator expansion is generated by keeping
irreducible skeleton self-energy diagrams only and by replac-
ing accordingly in such diagrams all unperturbed propagators
by dressed ones. Dressed propagators are Green’s functions
that are solution of Gorkov’s equations: Their appearance
in the self-energy expansion generates the self-consistency
characterizing the method.

It thus follows that only irreducible skeleton self-energy
diagrams with dressed propagators have to be computed. Such
dressed propagators are depicted as solid double lines and are
labeled by two indices as well as by an energy, just as for

↑ ω ↑ ω

j g

↓ ω

i f

d

c

h

e

c i e g
↓ ω

← ω

d j f h

→ ω

FIG. 12. Example of skeleton (upper) and composed (lower)
second-order self-energy diagrams.
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unperturbed ones, i.e.,

G11
ab(ω) ≡ ↑ ω

b

a

, (B5a)

G12
ab(ω) ≡ ↑ ω

b̄

a

, (B5b)

G21
ab(ω) ≡ ↑ ω

b

ā

, (B5c)

G22
ab(ω) ≡ ↑ ω

b̄

ā

. (B5d)

Diagrammatic rules to compute irreducible self-energies are
the same as for reducible ones, with the only difference
that dressed propagators (B5) have to be used instead of
unperturbed ones.

2. Self-energies

The present section addresses the derivation of first- and
second-order self-energy diagrams.

a. First order

The first normal contribution corresponds to the standard
Hartree-Fock self-energy. It is depicted as

Σ11 (1)
ab (ω) =

b

c

d

a
↓ ω , (B6)

and reads

�
11 (1)
ab (ω) = −i

∫
C↑

dω′

2π

∑
cd

V̄acbd G11
dc(ω′), (B7)

where the energy integral is to be performed in the upper
half of the complex energy plane, according to the convention
introduced in Rule 8. Inserting the Lehmann form (38a) of the

propagator one obtains

�
11 (1)
ab (ω) = −i

∫
C↑

dω′

2π

∑
cd,k

V̄acbd

U k
d U k∗

c

ω′ − ωk + iη

− i

∫
C↑

dω′

2π

∑
cd,k

V̄acbd

V̄k∗
d V̄k

c

ω′ + ωk − iη

=
∑
cd,k

V̄acbd V̄k∗
d V̄k

c , (B8)

where the residue theorem has been used, i.e., the first term,
with +iη in the denominator, contains no pole in the upper
plane and thus cancels out. As in the standard case the Hartree-
Fock self-energy is energy independent.

Similarly, one computes the other normal self-energy term

Σ22 (1)
ab (ω) =

b̄

c̄

d̄

ā
↓ ω , (B9)

which reads

�
22 (1)
ab (ω) = −i

∫
C↓

dω′

2π

∑
cd

V̄b̄d̄āc̄ G22
dc(ω′)

= −i

∫
C↓

dω′

2π

∑
cd,k

V̄b̄d̄āc̄

Vk
d Vk∗

c

ω′ − ωk + iη

− i

∫
C↓

dω′

2π

∑
cd,k

V̄b̄d̄āc̄

Ū k∗
d Ū k

c

ω′ + ωk − iη

= −
∑
cd,k

V̄b̄d̄āc̄ Vk
d Vk∗

c

= −
∑
cd,k

V̄b̄cād V̄k
c V̄k∗

d

= −�
11 (1)
b̄ā

= −[�11 (1)
āb̄

]∗
. (B10)

The anomalous contributions to the self-energy at first order
are

Σ12 (1)
ab (ω) =

b̄

← ω

a
c d̄

,
(B11)

Σ21 (1)
ab (ω) = d

← ω

c̄
ā b

,
(B12)

and are written, respectively, as

�
21 (1)
ab (ω) = − i

2

∫
C↑

dω′

2π

∑
cd

V̄ab̄cd̄ G12
cd (ω′)

= − i

2

∫
C↑

dω′

2π

∑
cd,k

V̄ab̄cd̄

U k
c Vk∗

d

ω′ − ωk + iη
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− i

2

∫
C↑

dω′

2π

∑
cd,k

V̄ab̄cd̄

V̄k∗
c Ū k

d

ω′ + ωk − iη

= 1

2

∑
cd,k

V̄ab̄cd̄ V̄k∗
c Ū k

d (B13)

and

�
21 (1)
ab (ω) = − i

2

∫
C↑

dω′

2π

∑
cd

V̄c̄dāb G21
cd (ω′)

= − i

2

∫
C↑

dω′

2π

∑
cd,k

V̄c̄dāb

Vk
c U k∗

d

ω′ − ωk + iη

− i

2

∫
C↑

dω′

2π

∑
cd,k

V̄c̄dāb

Ū k∗
c V̄k

d

ω′ + ωk − iη

= 1

2

∑
cd,k

V̄c̄dāb Ū k∗
c V̄k

d

= 1

2

∑
cd,k

V̄ ∗
bācd̄

Ū k∗
d V̄k

c

= [�12 (1)
ba

]∗
, (B14)

where the same integration technique as in Eq. (B8) has been
used.

b. Second order

Let us now proceed to the computation of the second-order
contributions. The first term is the standard second-order self-
energy

Σ11 (2 )
ab (ω) = ↑ ω ↑ ω

d g

↓ ω

c f

b

a

h

e

(B15)

reading

�
11 (2′)
ab (ω) = 1

2

∫
dω′

2π

dω′′

2π
dω′′′ ∑

cdefgh

V̄aecf V̄dgbh G11
cd (ω′) G11

fg(ω′′) G11
he(ω′′′) δ(ω − ω′ − ω′′ + ω′′′)

= 1

2

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄aecf V̄dgbh G11
cd (ω′) G11

fg(ω′′) G11
he(ω′ + ω′′ − ω) . (B16)

Notice that the minus sign coming from rule 4 is canceled by a minus sign coming from the presence of a closed loop (rule 7).
The integrations over the two energy variables are performed in this case using two successive applications of the formula

I (E) =
∫ +∞

−∞

d E′

2πi

{
F1

E′ − f1 + iη
+ B1

E′ − b1 − iη

} {
F2

E′ − E − f2 + iη
+ B2

E′ − E − b2 − iη

}

=
{

F1B2

E − (f1 − b2) + iη
− F2B1

E + (f2 − b1) − iη

}
. (B17)

The above integral, defined on the real axis, is computed by extending the integration to a large semicircle in the upper or lower
complex half plane of E′ (this can be done since the integrand behaves as |E′|−2 for |E′| → ∞ and this branch does not contribute
to the integral) and then by using the residue theorem. Of the four terms, two have poles in the same half-plane and yield zero as
the contour can be closed in the other half. Applying this formula to the integral (B15) one obtains

�
11 (2′)
ab (ω) = −1

2

∫
dω′

2πi

dω′′

2πi

∑
cdefgh,k1k2k3

V̄aecf V̄dgbh

{
U k1

c U k1∗
d

ω′ − ωk1 + iη
+ V̄k1∗

c V̄k1
d

ω′ + ωk1 − iη

}

×
{

U k2
f U k2∗

g

ω′′ − ωk2 + iη
+ V̄k2∗

f V̄k2
g

ω′′ + ωk2 − iη

} {
U k3

h U k3∗
e

ω′ + ω′′ − ω − ωk3 + iη
+ V̄k3∗

h V̄k3
e

ω′ + ω′′ − ω + ωk3 − iη

}

= 1

2

∑
cdefgh,k1k2k3

V̄aecf V̄dgbh

{
U k1

c U k1∗
d U k2

f U k2∗
g V̄k3∗

h V̄k3
e

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ V̄k1∗

c V̄k1
d V̄k2∗

f V̄k2
g U k3

h U k3∗
e

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
. (B18)
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With the same technique one can evaluate all other terms contributing to the second-order self-energy. One has

Σ11 (2 )
ab (ω) = ↑ ω ↑ ω

d h̄

↓ ω

c f

b

a

ḡ

e

, (B19)

reading

�
11 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄aecf V̄dḡbh̄ G11
cd (ω′) G12

f h(ω′′) G21
ge(ω′ + ω′′ − ω)

= −
∑

cdefgh,k1k2k3

V̄aecf V̄dḡbh̄

{
U k1

c U k1∗
d U k2

f Vk2∗
h Ū k3∗

g V̄k3
e

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ V̄k1∗

c V̄k1
d V̄k2∗

f Ū k2
h Vk3

g U k3∗
e

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
(B20)

The two diagrams of the other normal self-energy �22 are, respectively,

Σ22 (2 )
ab (ω) = ↑ ω ↓ ω

d̄ ḡ

↑ ω

c̄ f̄

b̄

ā

h̄

ē

, (B21)

yielding

�
22 (2′)
ab (ω) = 1

2

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄c̄f̄ āē V̄b̄h̄d̄ḡ G22
cd (ω′) G22

fg(ω′′) G22
he(ω′ + ω′′ − ω)

= 1

2

∑
cdefgh,k1k2k3

V̄c̄f̄ āē V̄b̄h̄d̄ḡ

{
Vk1

c Vk1∗
d Vk2

f Vk2∗
g Ū k3∗

h Ū k3
e

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ Ū k1∗

c Ū k1
d Ū k2∗

f Ū k2
g Vk3

h Vk3∗
e

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
, (B22)

and

Σ22 (2 )
ab (ω) = ↑ ω ↓ ω

d̄ ḡ

↑ ω

c̄ e

b̄

ā

h̄

f

, (B23)

reading

�
22 (2′′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄c̄f āe V̄b̄h̄d̄ḡ G22
cd (ω′) G12

eg(ω′′) G21
hf (ω′ + ω′′ − ω)

= −
∑

cdefgh,k1k2k3

V̄c̄f āe V̄b̄h̄d̄ḡ

{
Vk1

c Vk1∗
d U k2

e Vk2∗
g Ū k3∗

h V̄k3
f

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ Ū k1∗

c Ū k1
d V̄k2∗

e Ū k2
g Vk3

h U k3∗
f

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
. (B24)

The first of the anomalous self-energy is

Σ12 (2 )
ab (ω) = ↑ ω ↑ ω

d̄ h

↓ ω

c f

b̄

a

g

e

, (B25)
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for what concerns the first contribution, which reads

�
12 (2′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄aecf V̄hb̄gd̄ G12
cd (ω′) G11

f h(ω′′) G11
ge(ω′ + ω′′ − ω)

= −
∑

cdefgh,k1k2k3

V̄aecf V̄hb̄gd̄

{
U k1

c Vk1∗
d U k2

f U k2∗
h V̄k3∗

g V̄k3
e

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ V̄k1∗

c Ū k1
d V̄k2∗

f V̄k2
h U k3

g U k3∗
e

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
(B26)

and

Σ12 (2 )
ab (ω) = ↑ ω ↑ ω

d̄ ḡ

↓ ω

c f

b̄

a

h̄

e

, (B27)

for the second contribution, yielding

�
12 (2′′)
ab (ω) = 1

2

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄aecf Vh̄b̄ḡd̄ G12
cd (ω′) G12

fg(ω′′) G21
he(ω′ + ω′′ − ω)

= 1

2

∑
cdefgh,k1k2k3

V̄aecf Vh̄b̄ḡd̄

{
U k1

c Vk1∗
d U k2

f Vk2∗
g Ū k3∗

h V̄k3
e

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ V̄k1∗

c Ū k1
d V̄k2∗

f Ū k2
g Vk3

h U k3∗
e

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
. (B28)

Finally,

Σ21 (2 )
ab (ω) = ↑ ω ↑ ω

d g

↓ ω

c̄ e

b

ā

h

f

, (B29)

reads as

�
21 (2′)
ab (ω) = −

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄c̄f āe V̄gdhb G21
cd (ω′) G11

eg(ω′′) G11
hf (ω′ + ω′′ − ω)

= −
∑

cdefgh,k1k2k3

V̄c̄f āe V̄gdhb

{
Vk1

c U k1∗
d U k2

e U k2∗
g V̄k3∗

h V̄k3
f

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ Ū k1∗

c V̄k1
d V̄k2∗

e V̄k2
g U k3

h U k3∗
f

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
, (B30)

while

Σ21 (2 )
ab (ω) = ↑ ω ↑ ω

d h̄

↓ ω

c̄ e

b

ā

ḡ

f

, (B31)

is expressed as

�
21 (2′′)
ab (ω) = 1

2

∫
dω′

2π

dω′′

2π

∑
cdefgh

V̄c̄f āe V̄ḡdh̄b G21
cd (ω′) G12

eh(ω′′) G21
gf (ω′ + ω′′ − ω)

= 1

2

∑
cdefgh,k1k2k3

V̄c̄f āe V̄ḡdh̄b

{
Vk1

c U k1∗
d U k2

e Vk2∗
h Ū k3∗

g V̄k3
f

ω − (ωk1 + ωk2 + ωk3 ) + iη
+ Ū k1∗

c V̄k1
d V̄k2∗

e Ū k2
h Vk3

g U k3∗
f

ω + (ωk3 + ωk1 + ωk2 ) − iη

}
. (B32)
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APPENDIX C: J� = 0+ STATES

The present section specifies the complete set of equations
to J� = 0+ states.

1. Time-reversal invariant systems

Let us define the time-reversal operator as

T ≡ eiπSy K, (C1)

where K is an operator that associates to a wave function
its complex conjugate and Sy is the y-axis spin-projection
operator of the N -body system. The time-reversal operator is
antiunitary (unitary and antilinear) and displays the following
properties:

T †T = 1, (C2a)

T 2 = (−1)N, (C2b)

(a| T ) |b) = [(a| (T |b)]∗ , (C2c)

(a|(T †|b) = (b| (T |a). (C2d)

One can also introduce the time-reversal operator acting
in Fock space. This is done by specifying its transformation
rules on standard creation and annihilation operators defined
on the tensorial product of spatial (represented by the vector
�r), spin (represented by the spin projection mσ ), and isospin
(represented by the isospin projection q) one-body Hilbert
spaces

T † a
†
�rmσ q

T = 2 mσ a
†
�rm̃σ q

, (C3a)

T a
†
�rmσ q

T † = 2 m̃σ a
†
�rm̃σ q

, (C3b)

T † a�rmσ q T = 2 mσ a�rm̃σ q , (C3c)

T a�rmσ q T † = 2 m̃σ a�rm̃σ q , (C3d)

as well as on the particle vacuum

T |0〉 = |0〉, (C3e)

where the notation m̃σ = −mσ has been used. Given Eq. (C3)
it is easy to prove that for any basis {a†

k} closed under time
reversal, defining

ā
†
k ≡ T a

†
k T †, (C4)

provides a partner basis of the type of Eq. (1). Accordingly,
we define the action of T on one- and two-particle Dirac ket
and bra as

T |a) ≡ ηa |ã) (a| T † ≡ ηa (ã|, (C5a)

T |ab) ≡ ηa ηb |ãb̃) (ab| T † ≡ ηa ηb (ãb̃|. (C5b)

It follows that for kinetic energy, which fulfills
T † T T = T ,

Tāb̄ = (a| T † ) T (T |b)

= [(a| (T † T T |b)]∗

= [(a| T |b)]∗

= T ∗
ab , (C6)

and, similarly, for time-reversal invariant interactions, i.e.,
T † V T = V ,

V̄āb̄c̄d̄ = (ab| T † )V (T { |cd) − |dc)}
= [(ab| (T † V T { |cd) − |dc)}]∗
= [(ab| V { |cd) − |dc)}]∗
= V̄ ∗

abcd . (C7)

Considering a time-reversal invariant system, i.e., a reference
state |�0〉 satisfying T |�0〉 = |�0〉 and 〈�0|T †) = 〈�0|, one
can prove, using property (C2), that in this particular case the
anomalous density matrix (54c) is Hermitian

ρ̃ab = 〈�0|āb aa|�0〉
= 〈�0| T †) (T ab T † aa |�0〉
= −[〈�0| ab (T † T 2 aa T † T |�0〉]∗
= 〈�0| āa ab |�0〉∗
= ρ̃

†
ab. (C8)

2. Single-particle basis

In the remaining of the present section the many-body
system under study is assumed to be in a J� = 0+ state,
where the parity is � = (−1)L. A possible choice for labeling
single-particle basis states in this context is a ≡ (n, �, j,m, q),
where n represents the principal quantum number, � is the
orbital angular momentum, j is the total angular momentum,
m is the projection of the total angular momentum along the
z axis, and q is the isospin projection. The spin σ is omitted
from the single-particle label because trivially σ = 1/2 for
all nucleons. A choice that will appear to be more convenient
below consists of labeling single-particle states according to
a ≡ (n, π, j,m, q), where the parity π = (−1)� substitutes
the orbital angular momentum. Since for a given j , � =
j ± 1

2 are the only possible values, there exists a one-to-one
correspondence between � and π .

Different phase conventions exist to define single-particle
states in such a context. In the present work, spinors are written
as

( �r | a) = ϕa(�r q)

= un�j (r q)

r

∑
m�mσ

Y
m�

� (r̂) C
jm

�m� 1/2 mσ
|mσ )

≡ un�j (rq)

r
��jm(r̂), (C9)

where C denotes a Clebsch-Gordan coefficient according to

CJM
j1m1j2m2

≡ 〈j1m1j2m2|JM〉. (C10)

The �j�m(r̂) are spherical spinors that recouple the angular
part of the wave function to spin-1/2 spinors. They fulfill

�J 2 �j�m(r̂) = h̄2 j (j + 1) �j�m(r̂), (C11a)

�L 2 �j�m(r̂) = h̄2 �(� + 1) �j�m(r̂), (C11b)

�S 2 �j�m(r̂) = h̄2 σ (σ + 1) �j�m(r̂)

= 3
4 h̄2 �j�m(r̂), (C11c)

Jz �j�m(r̂) = h̄ m�j�m(r̂). (C11d)
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Spherical spinors are orthonormal, i.e.,∫ 2π

0
dϕ

∫ π

0
dϑ sin(ϑ) �

†
j�m(ϑ, ϕ) �j ′�′m′(ϑ, ϕ) = δjj ′ δ��′ δmm′ ,

and fulfill
j∑

m=−j

�
†
j�m(r̂) �j�m(r̂) = 2j + 1

4π
, (C12a)

j∑
m=−j

�
†
j�m(r̂) �σ �j�m(r̂) = 0. (C12b)

As shown by Eq. (C11c), the total spin σ is a good quantum
number while its projection is not, since single-particle states
mix mσ = ± 1

2 . If the time-reversal operator (C1) is applied to
a state a belonging to this single-particle basis one can easily
prove, using

Y
m�

�

∗(r̂) = (−1)m� Y
−m�

� (r̂) (C13a)

2mσ = (−1)mσ − 1
2 , (C13b)

as well as standard properties of Clebsh-Gordan coefficients,
that

(T ϕ)n�jm(�r q) = η�jm ϕn�j−m(�r q), (C14)

where η�jm ≡ (−1)�−j−m. Equation (C14) demonstrates that
time-reversal operation connects basis state a, up to a phase, to
state ã ≡ (n, �, j,−m, q) and, thus, constitutes an antiunitary
transformation that can be employed to define the partner basis
{ā†} used to introduce Gorkov Green’s functions. The creation
and annihilation operators introduced in Eq. (1) in this case
take the form

ā
†
n�jmq ≡ η�jm a

†
n�j−mq, (C15a)

ān�jmq ≡ η�jm an�j−mq. (C15b)

Equivalently, one obtains ã ≡ (n, π, j,−m, q) if parity is
chosen to label single-particle basis (which will be our choice
in practice), such that

ā
†
nπjmq ≡ ηπjm a

†
nπj−mq, (C16a)

ānπjmq ≡ ηπjm anπj−mq, (C16b)

with ηπjm ≡ π (−1)j+m. By including ηπjm in the definition
of the building blocks of the theory (e.g., density matrices and
propagators) one can exploit symmetry properties associated
with time-reversal invariance that lead to a simplification of
the formalism.

3. Block-diagonal structure of propagators

It is easy to prove that the operator a
†
n�jmq (a†

nπjmq) is the mth

component of an irreducible tensor of rank j and that the cor-
responding annihilation operator transforms contragrediently,
implying that (−1)maj−m is also the mth component of an
irreducible tensor of rank j . Starting from such a property, one
can demonstrate that, in addition to being diagonal in isospin
space as only proton-proton and neutron-neutron pairing is
considered here, Gorkov propagators possess a block-diagonal

structure relative to quantum numbers π (�) and j and are
independent on m, i.e.,

G
g1g2
ab (ω) = G

g1g2
naja�amaqanbjb�bmbqb

(ω)

= G
g1g2
namaαnbmbβ

(ω)

≡ δmamb
δαβ Gg1g2 [α]

nanb
(ω), (C17)

where the notation α ≡ (ja, πa, qa), i.e., a = (na, α,ma), has
been introduced. Similarly, one writes unperturbed propaga-
tors as

G
g1g2 (0)
ab (ω) ≡ δmamb

δαβ Gg1g2 [α] (0)
nanb

(ω). (C18)

The Lehmann representation also reflects the block-diagonal
form of the propagators. In particular, there exist selection rules
associated with label k = (nk, κ

′,mk), with κ ′ ≡ (jk, πk,Qk),
characterizing many-body states |�k〉 introduced in Eq. (36).
Considering the definition of the spectroscopic amplitudes (39)
and (40) and applying Wigner-Eckart theorem, one finds

U k
a = 〈�0|aa|�k〉

= (−1)ma C00
jkmkj−ma

〈�0||anaα||�nkκ〉

= δjkja
δmkma

(−1)−ja

√
2ja + 1

〈�0||anaα||�nkκ〉

≡ δκα δmkma
Unk

na [α], (C19a)

where κ ≡ (jk, πk,Qk − Q0), with Q0 being the isospin
projection of |�0〉. It is assumed here that, analogously
to angular momentum, |�0〉 has a good isospin projection
and that Qk is determined by the isospin projection of the
creation/annihilation operator acting on |�0〉, i.e., δQk−Q0,qa

.
From parity conservation follows δπkπa

. As the spin of |�k〉
can differ from 1/2, the fact that πk = πa does not imply
�k = �a , hence, the single-particle basis is labeled by a =
(na, πa, ja,ma, qa) from now on. Similarly, one has

Ū k
a = δjkja

δmk−ma

(−1)�a+ma

√
2ja + 1

〈�0||anα||�nkκ〉

= δκα δmk−ma
ηa Unk

na [α], (C19b)

Vk
a = δjkja

δmkma

(−1)�a

√
2ja + 1

〈�0||a†
naα

||�nkκ〉

≡ δκα δmkma
Vnk

na [α], (C19c)

V̄k
a = δjkja

δmk−ma

(−1)ja−ma

√
2ja + 1

〈�0||a†
naα

||�nkκ〉

= δκα δmk−ma
ηã Vnk

na [α]. (C19d)

Inserting Eqs. (C19) into Eqs. (38), the set of Gorkov
Green’s functions can be written according to Eq. (C17) as

G
11 [α]
nn′ (ω) =

∑
nk

{
Unk

n [α] U
nk∗
n′ [α]

ω − ωk + iη
+ Vnk∗

n [α] V
nk

n′ [α]

ω + ωk − iη

}
, (C20a)

G
12 [α]
nn′ (ω) =

∑
nk

{
Unk

n [α] V
nk∗
n′ [α]

ω − ωk + iη
+ Vnk∗

n [α] U
nk

n′ [α]

ω + ωk − iη

}
, (C20b)

G
21 [α]
nn′ (ω) =

∑
nk

{
Vnk

n [α] U
nk∗
n′ [α]

ω − ωk + iη
+ Unk∗

n [α] V
nk

n′ [α]

ω + ωk − iη

}
, (C20c)
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V. SOMÀ, T. DUGUET, AND C. BARBIERI PHYSICAL REVIEW C 84, 064317 (2011)

G
22 [α]
nn′ (ω) =

∑
nk

{
Vnk

n [α] V
nk∗
n′ [α]

ω − ωk + iη
+ Unk∗

n [α] U
nk

n′ [α]

ω + ωk − iη

}
, (C20d)

where only one sum over principal quantum number nk

remains.

4. Matrix elements of the nuclear potential

Let us consider two-body interaction antisymmetrized
matrix elements V̄abcd introduced in Eq. (4), which depend
on angular momenta ja, jb, jc, jd of the two incoming and
two outgoing nucleons as well as on their third components
ma,mb,mc,md . Writing all indices explicitly they read

V̄naαmanbβmbncγmcndδmd
≡ (1 : (na α ma); 2 : (nb β mb)|V NN|1 : (nc γ mc); 2 : (nd δ md ))

− (1 : (na α ma); 2 : (nb β mb)|V NN|1 : (nd δ md ); 2 : (nc γ mc))

≡ 〈1 : (na α ma); 2 : (nb β mb)|V NN|1 : (nc γ mc); 2 : (nd δ md )〉. (C21)

One can go from such a representation, referred to as the m scheme, to the jj -coupled scheme or J scheme, in which incoming
and outgoing two-nucleon states are labeled by total angular momenta J to which individual angular momenta are recoupled.
Two-particle (non-anti-symmetrized) states in the two representations are connected through

|1 : (na α ma); 2 : (nb β mb)) =
∑
JM

CJM
jamajbmb

|1 : (na α); 2 : (nb β); JM), (C22a)

|1 : (na α); 2 : (nb β); JM) =
∑
mamb

CJM
jamajbmb

|1 : (na α ma); 2 : (nb β mb)). (C22b)

The corresponding relations between the antisymmetrized states are

|(na α ma); (nb β mb)〉 = √1 + δαβ δnanb

∑
JM

CJM
jamajbmb

|(na α); (nb β); JM〉, (C23a)

|(na α); (nb β); JM〉 = 1√
1 + δαβ δnanb

∑
mamb

CJM
jamajbmb

|(na α ma); (nb β mb)〉, (C23b)

where the factor
√

1 + δαβ δnanb
ensures the correct normalization of the antisymmetrized state |1 : (na α); 2 : (na α); JM〉, which

is nonzero for integer values of J . Antisymmetrized potential matrix elements in the J scheme are, thus, related to those in the
m scheme by means of

V̄ JMJ ′M ′
naαnbβncγ ndδ = 1√

1 + δαβ δnanb

1√
1 + δγ δ δncnd

∑
mambmcmd

CJM
jamajbmb

CJ ′M ′
jcmcjdmd

V̄abcd , (C24)

and, conversely,

V̄abcd =
∑

JMJ ′M ′

√
1 + δαβ δnanb

√
1 + δγ δ δncnd

CJM
jamajbmb

CJ ′M ′
jcmcjdmd

V̄ JMJ ′M ′
naαnbβncγ ndδ. (C25)

Since nuclear potentials are rotationally invariant, they do not depend on M or M ′ and are nonzero only for J = J ′, such that
one can define

V̄ JMJ ′M ′
naαnbβncγ ndδ ≡ δJJ ′ δMM ′ V̄ J [αβγ δ]

nanbncnd
, (C26)

which allows rewriting Eq. (C25) according to

V̄abcd =
∑
JM

√
1 + δαβ δnanb

√
1 + δγ δ δncnd

CJM
jamajbmb

CJM
jcmcjdmd

V̄ J [αβγ δ]
nanbncnd

. (C27a)

Similarly, one has

V̄ab̄cd̄ =
∑
JM

√
1 + δαβ δnanb

√
1 + δγ δ δncnd

ηbηd CJM
jamajb−mb

CJM
jcmcjd−md

V̄ J [αβγ δ]
nanbncnd

, (C27b)

V̄āb̄c̄d̄ =
∑
JM

√
1 + δαβ δnanb

√
1 + δγ δ δncnd

ηaηbηcηd CJM
ja−majb−mb

CJM
jc−mcjd−md

V̄ J [αβγ δ]
nanbncnd

. (C27c)

064317-26



Ab INITIO SELF-CONSISTENT GORKOV-GREEN’s . . . PHYSICAL REVIEW C 84, 064317 (2011)

5. Block-diagonal structure of self-energies

a. First order
The goal of this subsection is to discuss how the block-diagonal form of the propagators and interaction matrix elements

reflects in the various self-energy contributions, starting with the first-order normal self-energy �11 (1). Substituting Eqs. (C27a)
and (C19) into Eq. (B7), and introducing the factor

f
nanbncnd

αβγ δ ≡ √1 + δαβ δnanb

√
1 + δγ δ δncnd

, (C28)

one obtains

�
11 (1)
ab =

∑
cd,k

V̄acbd V̄k∗
d V̄k

c

=
∑

ncndnk

∑
γ

∑
mc

∑
JM

f
nancnbnd

αγβγ CJM
jamajcmc

CJM
jbmbjcmc

V̄ J [αγβγ ]
nancnbnd

Vnk∗
nd [γ ] V

nk

nc [γ ]

= δαβ δmamb

∑
ncnd

∑
γ

∑
J

f nancnbnd

αγαγ

2J + 1

2ja + 1
V̄ J [αγαγ ]

nancnbnd
ρ[γ ]

ndnc

≡ δαβ δmamb
�11 [α] (1)

nanb

≡ δαβ δmamb
�[α]

nanb
, (C29)

where the block-diagonal normal density matrix is introduced through ρab ≡ δαβ δmamb
ρ[α]

nanb
, such that

ρ[α]
nanb

=
∑
nk

Vnk

nb [α] V
nk∗
na [α], (C30)

and properties of Clebsch-Gordan coefficients has been used. The fact that the interaction conserves parity and charge yields
δπaπb

and δqaqb
, leading to δαβ = δjajb

δπaπb
δqaqb

. Similarly, for �22 (1),

�
22 (1)
ab = −

∑
cd,k

V̄b̄cād V̄k
c V̄k∗

d

= −δαβ δmamb

∑
ncnd

∑
γ

∑
J

f nbncnand

αγαγ

2J + 1

2ja + 1
V̄ J [αγαγ ]

nbncnand
ρ[γ ]

ndnc

≡ δαβ δmamb
�22 [α] (1)

nanb

= −δαβ δmamb
�[α]

nbna

= −δαβ δmamb

[
�[α]

nanb

]∗
. (C31)

Let us consider the anomalous contributions to the first-order self-energy. Substituting Eqs. (C27b) and (C19) into Eq. (B12) one
derives

�
12 (1)
ab = 1

2

∑
cd,k

V̄ab̄cd̄ V̄k∗
c Ū k

d

= −1

2

∑
ncndnk

∑
γ

∑
mc

∑
JM

f
nanbncnd

αβγ γ ηbηc CJM
jamajb−mb

CJM
jcmcjc−mc

V̄ J [αβγ γ ]
nanbncnd

Vnk∗
nc [γ ] U

nk

nd [γ ]

= −1

2

∑
ncnd

∑
γ

∑
mc

∑
J

f
nanbncnd

αβγ γ ηbηc CJ0
jamajb−mb

CJ0
jcmcjc−mc

V̄ J [αβγ γ ]
nanbncnd

ρ̃[γ ]
ncnd

= −1

2

∑
ncnd

∑
γ

f
nanbncnd

αβγ γ ηbπc(−1)2jc C00
jamajb−mb

√
2jc + 1 V̄ 0 [αβγ γ ]

nanbncnd
ρ̃[γ ]

ncnd

= δαβ δmamb

1

2

∑
ncnd

∑
γ

f nanbncnd

ααγ γ πa πc(−1)2jc

√
2jc + 1√
2ja + 1

V̄ 0 [ααγ γ ]
nanbncnd

ρ̃[γ ]
ncnd

≡ δαβ δmamb
�12 [α] (1)

nanb

≡ δαβ δmamb
h̃[α]

nanb
, (C32)

where the block-diagonal anomalous density matrix is introduced through ρ̃ab ≡ δαβ δmamb
ρ̃[α]

nanb
, such that

ρ̃[α]
nanb

=
∑
nk

Unk

nb [α] V
nk∗
na [α]. (C33)
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It is interesting to note that the first-order anomalous self-energies involve only J = 0 matrix elements as a direct result of dealing
with a J = 0 many-body state. The other anomalous term is similarly obtained from Eq. (B13) and reads

�
21 (1)
ab = 1

2

∑
cd,k

V̄c̄dāb Ū k∗
c V̄k

d

= −1

2

∑
ncndnk

∑
γ

∑
mc

∑
JM

f
nanbncnd

αβγ γ ηaηc CJM
jc−mcjcmc

CJM
ja−majbmb

V̄ J [γ γαβ]
ncndnanb

Unk

nc [γ ] V
nk∗
nd [γ ]

= δαβ δmamb

1

2

∑
ncndnk

∑
γ

f nanbncnd

ααγ γ πa πc(−1)2jc

√
2jc + 1√
2ja + 1

V̄ 0 [γ γαα]
ncndnanb

ρ̃[γ ]
ndnc

≡ δαβ δmamb
�21 [α] (1)

nanb

= δαβ δmamb
h̃[α] †

nanb
. (C34)

b. Second order

Block-diagonal forms of second-order self-energy contributions (77) and (79) can be obtained by considering explicitly the
angular momentum couplings of the three quasiparticles to their total momentum Jtot, separately for the six objects M, N , P ,
Q, R, and S. One proceeds first coupling particles 1 and 2 to some momentum Jc, which is afterward coupled to particle 3 to
give Jtot. The recoupled M term is computed as follows:

Mk1k2k3
a (JcJtot)

=
∑

m1m2m3Mc

C
JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

Mk1k2k3
a

=
∑

m1m2m3Mc

∑
rst

C
JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

V̄atrs U k1
r U k2

s V̄k3
t

=
∑

m1m2m3Mc

∑
rst

∑
JvMv

δκ1ρ δmk1 mr
δκ2σ δmk2 ms

δκ3τ δmk3 −mt
(−ηt ) f nant nrns

ατρσ

×C
JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

C
JvMv

jamajtmt
C

JvMv

jrmrjsms
V̄ Jv [ατρσ ]

nant nrns
Unk1

nr [ρ] U
nk2
ns [σ ] V

nk3
nt [τ ]

=
∑

m1m2m3Mc

∑
nrnsnt

∑
JvMv

ηk3 f nantnrns

ακ3κ1κ2
C

JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

C
JvMv

jamajk3 −mk3
C

JvMv

jk1 mk1 jk2 mk2
V̄ Jv [ακ3κ1κ2]

nant nrns
Unk1

nr [κ1] U
nk2
ns [κ2] V

nk3
nt [κ3]

=
∑
m3Mc

∑
nrnsnt

ηk3 f nantnrns

ακ3κ1κ2

√
2Jc + 1√
2ja + 1

(−1)Jc+2jk3 −jaC
JtotMtot
JcMcjk3 mk3

C
jama

JcMcjk3 mk3
V̄ Jc[ακ3κ1κ2]

nant nrns
Unk1

nr [κ1] U
nk2
ns [κ2] V

nk3
nt [κ3]

= −δJtotja
δMtotma

∑
nrnsnt

πk3 f nantnrns

ακ3κ1κ2

√
2Jc + 1√
2ja + 1

(−1)Jc+jk3 −ja V̄ Jc[ακ3κ1κ2]
nant nrns

Unk1
nr [κ1] U

nk2
ns [κ2] V

nk3
nt [κ3]

≡ δJtotja
δMtotma

Mnk1 nk2 nk3
na [ακ3κ1κ2] Jc

, (C35)

where general properties of Clebsch-Gordan coefficients have been used. Similarly, one derives the N term

N k1k2k3
a (JcJtot)

= δJtotja
δMtotma

∑
nrnsnt

πk3 f nantnrns

ακ3κ1κ2

√
2Jc + 1√
2ja + 1

(−1)Jc+jk3 −ja V̄ Jc[ακ3κ1κ2]
nant nrns

Vnk1
nr [κ1] V

nk2
ns [κ2] U

nk3
nt [κ3]

≡ δJtotja
δMtotma

N nk1 nk2 nk3
na [ακ3κ1κ2] Jc

. (C36)

One can show that the same result is obtained by recoupling directly N̄ as follows:

N̄ k1k2k3
a (JcJtot)

=
∑

m1m2m3Mc

C
JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

N̄ k1k2k3
a

=
∑

m1m2m3Mc

∑
rst

C
JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

V̄āt̄ r̄ s̄ V̄k1
r V̄k2

s U k3
t

=
∑

m1m2m3Mc

∑
rst

∑
JvMv

δκ1ρ δmk1 −mr
δκ2σ δmk2 −ms

δκ3τ δmk3 mt
ηaηt f

nant nrns

ατρσ

×C
JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

C
JvMv

ja−majt−mt
C

JvMv

jr−mrjs−ms
V̄ Jv [ατρσ ]

nant nrns
Vnk1

nr [ρ] V
nk2
ns [σ ] U

nk3
nt [τ ]
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=
∑

m1m2m3Mc

∑
nrnsnt

∑
JvMv

ηa ηk3 f nantnrns

ακ3κ1κ2
C

JcMc

jk1 mk1 jk2 mk2
C

JtotMtot
JcMcjk3 mk3

C
JvMv

ja−majk3 −mk3
C

JvMv

jk1 mk1 jk2 mk2
V̄ Jv [ακ3κ1κ2]

nant nrns
Vnk1

nr [κ1] V
nk2
ns [κ2] U

nk3
nt [κ3]

=
∑
m3Mc

∑
nrnsnt

ηa ηk3 f nantnrns

ακ3κ1κ2
C

JtotMtot
JcMcjk3 mk3

C
JcMc

ja−majk3 −mk3
V̄ Jc[ακ3κ1κ2]

nant nrns
Vnk1

nr [κ1] V
nk2
ns [κ2] U

nk3
nt [κ3]

=
∑
m3Mc

∑
nrnsnt

ηa πk3 f nant nrns

ακ3κ1κ2

√
2Jc + 1√
2ja + 1

(−1)ja+jk3 −JcC
JtotMtot
JcMcjk3 mk3

C
ja−ma

JcMcjk3 mk3
V̄ Jc[ακ3κ1κ2]

nant nrns
Vnk1

nr [κ1] V
nk2
ns [κ2] U

nk3
nt [κ3]

= δJtotja
δMtot−ma

∑
nrnsnt

ηa πk3 f nantnrns

ακ3κ1κ2

√
2Jc + 1√
2ja + 1

(−1)Jc−jk3 −ja V̄ Jc[ακ3κ1κ2]
nant nrns

Vnk1
nr [κ1] V

nk2
ns [κ2] U

nk3
nt [κ3]

= −δJtotja
δMtot−ma

ηa N
nk1 nk2 nk3
na [ακ3κ1κ2] Jc

, (C37)

which recovers relation (72a). The remaining quantities [see Eqs. (69) and (70)] are related to M and N by permutations of
{k1, k2, k3} indices and can be obtained from Eqs. (C35) and (C36) by taking into account the different recoupling of jk1 , jk2 and
jk3 to Jtot and Jc as follows:

Pk1k2k3
a (JcJtot)

=
∑
Jd

(−1)Jc+Jd+jk2 +jk3

√
2Jc + 1

√
2Jd + 1

{
jk2 jk1 Jc

jk3 Jtot Jd

}
Mk1k3k2

a (JdJtot)

= −δJtotja
δMtotma

∑
nrnsnt

∑
Jd

πk2 f nantnrns

ακ2κ1κ3

√
2Jc + 1√
2ja + 1

(2Jd + 1) (−1)Jd+jk3 +ja

{
jk2 jk1 Jc

jk3 Jtot Jd

}

× V̄ Jd [ακ2κ1κ3]
nant nrns

Unk1
nr [κ1] U

nk3
ns [κ3] V

nk2
nt [κ2]

≡ δJtotja
δMtotma

Pnk1 nk2 nk3
na [ακ3κ1κ2] Jc

, (C38)

Qk1k2k3
a (JcJtot)

=
∑
Jd

(−1)Jc+Jd+jk2 +jk3

√
2Jc + 1

√
2Jd + 1

{
jk2 jk1 Jc

jk3 Jtot Jd

}
N k1k3k2

a (JdJtot)

= δJtotja
δMtotma

∑
nrnsnt

∑
Jd

πk2 f nantnrns

ακ2κ1κ3

√
2Jc + 1√
2ja + 1

(2Jd + 1) (−1)Jd+jk3 +ja

{
jk2 jk1 Jc

jk3 Jtot Jd

}

× V̄ Jd [ακ2κ1κ3]
nant nrns

Vnk1
nr [κ1] V

nk3
ns [κ3] U

nk2
nt [κ2]

≡ δJtotja
δMtotma

Qnk1 nk2 nk3
na [ακ3κ1κ2] Jc

, (C39)

Rk1k2k3
a (JcJtot)

=
∑
Jd

(−1)2j1+2Jd

√
2Jc + 1

√
2Jd + 1

{
jk1 jk2 Jc

jk3 Jtot Jd

}
Mk3k2k1

a (JdJtot)

= −δJtotja
δMtotma

∑
nrnsnt

∑
Jd

πk1 f nantnrns

ακ1κ3κ2

√
2Jc + 1√
2ja + 1

(2Jd + 1) (−1)Jd+jk1 +ja

{
jk1 jk2 Jc

jk3 Jtot Jd

}

× V̄ Jd [ακ1κ3κ2]
nant nrns

Unk3
nr [κ3] U

nk2
ns [κ2] V

nk1
nt [κ1]

≡ δJtotja
δMtotma

Rnk1 nk2 nk3
na [ακ3κ1κ2] Jc

, (C40)

Sk1k2k3
a (JcJtot)

=
∑
Jd

(−1)2j1+2Jd

√
2Jc + 1

√
2Jd + 1

{
jk1 jk2 Jc

jk3 Jtot Jd

}
N k3k2k1

a (JdJtot)

= δJtotja
δMtotma

∑
nrnsnt

∑
Jd

πk1 f nantnrns

ακ1κ3κ2

√
2Jc + 1√
2ja + 1

(2Jd + 1) (−1)Jd+jk1 +ja

{
jk1 jk2 Jc

jk3 Jtot Jd

}

× V̄ Jd [ακ1κ3κ2]
nant nrns

Vnk3
nr [κ3] V

nk2
ns [κ2] U

nk1
nt [κ1]

≡ δJtotja
δMtotma

Snk1 nk2 nk3
na [ακ3κ1κ2] Jc

. (C41)

These terms are finally put together to form the different contributions to second-order self-energies. Let us consider �
11 (2′)
ab as

an example [see Eq. (75)]. By inserting Eqs. (C35) and (C36) and summing over all possible total and intermediate angular
momenta, one has

�
11 (2′)
ab = 1

2

∑
JtotMtotJc

∑
k1k2k3

{ Mk1k2k3
a (JcJtot)

(
Mk1k2k3

b (JcJtot)

)∗
ω − (ωk1 + ωk2 + ωk3

)+ iη
+

N k1k2k3
a (JcJtot)

(
N k1k2k3

b (JcJtot)

)∗

ω + (ωk3 + ωk1 + ωk2

)− iη

}
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= δαβ δmamb

1

2

∑
J

∑
nk1 nk2 nk3

∑
κ1κ2κ3

{
Mnk1 nk2 nk3

na [ακ3κ1κ2] Jc

(
Mnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

)∗
ω − (ωk1 + ωk2 + ωk3

)+ iη
+ N nk1 nk2 nk3

na [ακ3κ1κ2] Jc

(
N nk1 nk2 nk3

nb [ακ3κ1κ2] Jc

)∗
ω + (ωk3 + ωk1 + ωk2

)− iη

}

≡ δαβ δmamb
�11 [α] (2′)

nanb
. (C42)

Proceeding similarly for the other terms and defining

Cnk1 nk2 nk3
na [ακ3κ1κ2] Jc

≡ 1√
6

[
Mnk1 nk2 nk3

na [ακ3κ1κ2] Jc
− Pnk1 nk2 nk3

na [ακ3κ1κ2] Jc
− Rnk1 nk2 nk3

na [ακ3κ1κ2] Jc

]
, (C43a)

Dnk1 nk2 nk3
na [ακ3κ1κ2] Jc

≡ 1√
6

[
N nk1 nk2 nk3

na [ακ3κ1κ2] Jc
− Qnk1 nk2 nk3

na [ακ3κ1κ2] Jc
− Snk1 nk2 nk3

na [ακ3κ1κ2] Jc

]
, (C43b)

one finally writes

�11 [α] (2)
nanb

=
∑

nk1 nk2 nk3

∑
Jc

∑
κ1κ2κ3

{
Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc

(
Cnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

)∗
ω − (ωk1 + ωk2 + ωk3

)+ iη
+
(
Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗
Dnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

ω + (ωk3 + ωk1 + ωk2

)− iη

}
, (C44a)

�12 [α] (2)
nanb

=
∑

nk1 nk2 nk3

∑
Jc

∑
κ1κ2κ3

{
Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc

(
Dnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

)∗
ω − (ωk1 + ωk2 + ωk3

)+ iη
+
(
Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗ Cnk1 nk2 nk3
nb [ακ3κ1κ2] Jc

ω + (ωk3 + ωk1 + ωk2

)− iη

}
, (C44b)

�21 [α] (2)
nanb

=
∑

nk1 nk2 nk3

∑
Jc

∑
κ1κ2κ3

{
Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc

(
Cnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

)∗
ω − (ωk1 + ωk2 + ωk3

)+ iη
+
(
Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗
Dnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

ω + (ωk3 + ωk1 + ωk2

)− iη

}
, (C44c)

�22 [α] (2)
nanb

=
∑

nk1 nk2 nk3

∑
Jc

∑
κ1κ2κ3

{
Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc

(
Dnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

)∗
ω − (ωk1 + ωk2 + ωk3

)+ iη
+
(
Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗
Cnk1 nk2 nk3

nb [ακ3κ1κ2] Jc

ω + (ωk3 + ωk1 + ωk2

)− iη

}
. (C44d)

6. Block-diagonal structure of Gorkov’s equations

In the previous subsections it has been proven that all single-particle Green’s functions and all self-energy contributions entering
Gorkov’s equations display the same block-diagonal structure if the systems is in a 0+ state. Defining

Tab − μδab ≡ δαβ δmamb

[
T [α]

nanb
− μ[qa ] δnanb

]
, (C45)

introducing block-diagonal forms for amplitudes W and Z through

Wk1k2k3
k (JcJtot)

≡ δJtotjk
δMtotmk

Wnk1 nk2 nk3
nk [κ3κ1κ2] Jc

, (C46a)

Zk1k2k3
k (JcJtot)

≡ −δJtotjk
δMtot−mk

ηk Z
nk1 nk2 nk3
nk [κ3κ1κ2] Jc

, (C46b)

with (
ωk − Ek1k2k3

)
Wnk1 nk2 nk3

nk [κ3κ1κ2] Jc
≡
∑
naα

[(
Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗ Unk

na [α] + (Dnk1 nk2 nk3
na [ακ3κ1κ2] Jc

)∗ Vnk

na [α]

]
, (C47a)

(
ωk + Ek1k2k3

)
Znk1 nk2 nk3

nk [κ3κ1κ2] Jc
≡
∑
naα

[
Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc
Unk

na [α] + Cnk1 nk2 nk3
na [ακ3κ1κ2] Jc

Vnk

na [α]

]
, (C47b)

and using Eqs. (C29), (C31), (C32), (C34), and (C44), one finally writes Eqs. (81) as

ωk Unk

na [α] =
∑
nb

[(
T [α]

nanb
− μ[qa ] δnanb

+ �[α]
nanb

)
Unk

nb [α] + h̃[α]
nanb

Vnk

nb [α]

]

+
∑

nk1 nk2 nk3

∑
κ1κ2κ3

∑
Jc

[
Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc
Wnk1 nk2 nk3

nk [κ3κ1κ2] Jc
+ (Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗ Znk1 nk2 nk3
nk [κ3κ1κ2] Jc

]
, (C48a)

ωk Vnk

na [α] =
∑
nb

[−(T [α]
nanb

− μ[qa ] δnanb
+ �[α] ∗

nanb

)
Vnk

nb [α] + h̃[α] †
nanb

Unk

nb [α]

]

+
∑

nk1 nk2 nk3

∑
κ1κ2κ3

∑
Jc

[
Dnk1 nk2 nk3

na [ακ3κ1κ2] Jc
Wnk1 nk2 nk3

nk [κ3κ1κ2] Jc
+ (Cnk1 nk2 nk3

na [ακ3κ1κ2] Jc

)∗ Znk1 nk2 nk3
nk [κ3κ1κ2] Jc

]
. (C48b)
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The latter four equations constitute the block-diagonal form of Gorkov’s equations. Note that pole energies ωk depend
only on nk and κ , i.e., they display a degeneracy with respect to the magnetic quantum number mk .

APPENDIX D: � FUNCTIONAL

1. Connection between � and self-energies
Performing the trace over Gorkov space, the n-th order � functional defined in Eq. (111) reads

�(n)[G, V ] = − 1

4n
TrH1,ω

{
�11 (n) G11 + �12 (n) G21 + �21 (n) G12 + �22 (n) G22

}
= − 1

4n
TrH1,ω

{
2 �11 (n) G11 + �12 (n) G21 + �21 (n) G12

}
, (D1)

where Eqs. (46a) and (49a) have been used to express G22 and �22 in terms of G11 and �11.
Let us differentiate expression (D1) with respect to the normal propagator G11. One finds

δ�(n)[G, V ]

δG11
ji (ω)

= − 1

4n

{∑
ab

∫
dω′

2 π

[
2
δ�

11 (n)
ab (ω′)

δG11
ji (ω)

G11
ba(ω′) + δ�

12 (n)
ab (ω′)

δG11
ji (ω)

G21
ba(ω′) + δ�

21 (n)
ab (ω′)

δG11
ji (ω)

G12
ba(ω′)

]
+ 2 �

11 (n)
ij (ω)

}

= − 1

4n

{
(4n − 2) �

11 (n)
ij (ω) + 2 �

11 (n)
ij (ω)

}
= −�

11 (n)
ij (ω), (D2)

The factor (4n − 2) comes from all possible ways of cutting one normal propagation line G11 in an n-th order self-energy diagram
�g1g2 (n) and reconstructing �11 (n) by performing the convolution with the multiplied propagator Gg2g1 . Notice that such a result
is not a straightforward generalization of the standard proof of Ref. [80] as the reconstructed self-energy �11 (n) [second line in
Eq. (D2)] has contributions from all self-energy types [first line in Eq. (D2)], each containing a different number of G11 lines.

Similarly, one can work out the derivative with respect to G12, obtaining

δ�(n)[G, V ]

δG12
ji (ω)

= − 1

4n

{∑
ab

∫
dω′

2 π

[
2
δ�

11 (n)
ab (ω′)

δG12
ji (ω)

G11
ba(ω′) + δ�

12 (n)
ab (ω′)

δG12
ji (ω)

G21
ba(ω′) + δ�

21 (n)
ab (ω′)

δG12
ji (ω)

G12
ba(ω′)

]
+ �

21 (n)
ij (ω)

}

= − 1

4n

{
(2n − 1) �

11 (n)
ij (ω) + �

21 (n)
ij (ω)

}
= −1

2
�

21 (n)
ij (ω). (D3)

The factor 2 between the normal and the anomalous case can be intuitively understood as follows. In a closed diagram, whenever
a G12 is present, a corresponding G21 must appear. To a G11, on the other hand, always corresponds another G11, yielding twice
as many possibilities of cutting such a line.

Summing over n on both sides of Eqs. (D2) and (D3), together with the analogous ones for G21 and G22, one recovers
Eqs. (112).

2. Derivation of �(1) from �(1)

At first order, the � functional is the sum of two diagrams

Φ(1)[G, V ] = ↓ ω ↓ ω
a c

b d +
b̄

→ ω

← ω

a
c d̄ .

(D4)

Using diagrammatic rules outlined in Appendix B1 one can write the corresponding expression

�(1)[G, V ] = i

2

∫
dω′

2π

dω′′

2π

∑
abcd

[
V̄acbd G11

dc(ω′) G11
ba(ω′′)

]+ i

4

∫
dω′

2π

∑
abcd

[
V̄ab̄cd̄ G12

cd (ω′) G21
ba(ω′)

]
. (D5)
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Applying Eqs. (112) and employing Eq. (46a) one can recover
first-order self-energy terms computed in Appendix B2a

�
11 (1)
ij (ω) = −δ�(1)[G, V ]

δG11
ji (ω)

= − i

2

∫
dω′

2π

{∑
cd

[
V̄jcid G11

dc(ω′)
]

+
∑
ab

[
V̄ajbi G11

ba(ω′)
] }

= −i

∫
dω′

2π

∑
ab

V̄ajbi G11
ba(ω′), (D6a)

�
12 (1)
ij (ω) = −2

δ�(1)[G, V ]

δG21
ji (ω)

= − i

2

∫
dω′

2π

∑
cd

V̄ij̄cd̄ G12
dc(ω′), (D6b)

�
21 (1)
ij (ω) = −2

δ�(1)[G, V ]

δG12
ji (ω)

= − i

2

∫
dω′

2π

∑
cd

V̄ab̄j ī G21
ba(ω′), (D6c)

�
22 (1)
ij (ω) = −δ�(1)[G, V ]

δG22
ji (ω)

= − i

2

δ

δG22
ji (ω)

{∫
dω′

2π

dω′′

2π

×
∑
abcd

[
V̄acbd G11

dc(ω′) G11
ba(ω′′)

] }

= − i

2

δ

δG22
ji (ω)

{∫
dω′

2π

dω′′

2π

×
∑
abcd

[
V̄acbd G22

c̄d̄
(−ω′) G22

āb̄
(−ω′′)

] }

= −i

∫
dω′

2π

∑
ab

V̄āj̄ b̄ī G
22
ab(ω′). (D6d)
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[12] V. Somà and P. Bożek, Phys. Rev. C 78, 054003 (2008).
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