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Meaning of antiparallel proton and neutron angular momenta at low spins
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The meaning of the fact that the angular momenta of protons and neutrons are oriented in opposite directions,
shown by Otsuka [Phys. Rev. Lett. 71, 1804 (1993)] for the angular-momentum-projected Nilsson wave functions,
is reexamined using a two-rotor model. It is shown that this fact does not necessarily mean an unphysical situation
that proton and neutron ellipsoids are rotating freely in opposite directions. On the contrary, it originates in a
close binding of the two ellipsoids, which is accompanied by a large spreading of the relative angular momentum
due to the uncertainty principle. It is also demonstrated that the elimination of the spurious center-of-mass motion
does not substantially change the situation.
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I. INTRODUCTION

Rotational motion is one of the most basic collective modes
in nuclei, and well-deformed nuclei exhibit the ideal pattern
almost perfectly. This motion has been described as the rotation
of an ellipsoid [1]. Because the nucleus consists of protons and
neutrons, it is of interest to study the structure of the rotational
states in terms of proton-neutron degrees of freedom.

In this paper we revisit the analysis of the correlation
between the motion of a proton ellipsoid and that of a neutron
ellipsoid presented for the ground-state rotational band in
Refs. [2–4]. In fact, it was shown in Refs. [2–4] that the
total angular momentum of a proton ellipsoid, Jp, and that
of a neutron ellipsoid, Jn, are correlated in completely
(nearly) opposite directions in the ground (low-spin) state of
deformed nuclei. The total angular momentum is defined as
J = Jp + Jn from Jp and Jn, with their magnitudes J , Jp,
and Jn, respectively. The aforementioned correlation means
that for the states with J = 0 (low J values), Jp and Jn are
pointing exactly (nearly) in opposite directions [2].

Regarding the relative motion between the proton and
neutron ellipsoids, the scissors mode has been known as an
excitation on top of the ground state of deformed nuclei, apart
from the rotational excitation. The scissors mode is viewed
as an isovector-type oscillation of the relative angle between
these ellipsoids. The scissors mode was predicted, for instance,
in Ref. [5] and observed for the first time in Ref. [6] for
156Gd. Since then, scissors-type M1 excitations have been
observed in many nuclei, including the most recent one in 232Th
[7]. The photon scattering facilities both at the S-DALINAC
and HIGS at Duke University have produced and are still
producing a wealth of data on the scissors mode and related
phenomena. One finds many past and on-going developments
in a review [8], as well as recent theoretical works (for example,
Refs. [9,10]). The scissors mode can be of high interest in
neutron-rich exotic nuclei as discussed later in this section.
Furthermore, the importance of the scissors mode is underlined
by the fact that it is also found in other many-body systems
such as trapped Bose-Einstein condensates [8]. A consistent
picture of the scissors mode and the above-mentioned Jp-Jn

correlation will be shown in some detail below.

The classical-mechanical picture of the rotational band is
very different from the one with the opposite Jp-Jn correlation.
Namely, the lowest-energy state for a given total angular
momentum (yrast state) is constructed by simply dividing J

into Jp and Jn in the ratio of the moments of inertia. In such
states, the angular momentum vector of protons and that of
neutrons are parallel, and Jp = Jn = 0 holds for the J = 0
ground state.

In quantum mechanics, however, one has to consider
large magnitudes and fluctuations of Jp and Jn caused by
deformed shapes of the ellipsoids which are consequences
of self-consistent deformed mean fields. To be more precise,
when a state with a good J value is expressed in the laboratory
frame by a superposition of components of good Jp and Jn

values, components with various large values of Jp and Jn

are included significantly even in the states of J ∼ 0. In such
states, Jp and Jn are coupled in (almost) opposite directions
due to the requirement that their vector sum is of small
magnitude. This situation is shown schematically in Fig. 1.
Figure 1(a) indicates how the rotation of the proton ellipsoid
is coupled with the rotation of the neutron ellipsoid in the
J = 0 ground state. The angular momentum vectors Jp and
Jn have been introduced above. The vectors shown in Fig. 1 are
schematic images of a representative situation (or snapshots).
On the other hand, the total angular momentum is fixed to
its magnitude J and z component Jz in Fig. 1, as for instance
J = Jz = 0 in Fig. 1(a). Figure 1(a) implies that both ellipsoids
are rotating about the y axis, i.e., Jp and Jn are on the y axis,
but they should also be rotated as a whole about the z axis. The
latter rotation is implemented already in the axially symmetric
intrinsic wave function. We thus generate the J = 0 state in
the laboratory frame, keeping the present Jp- Jn correlation for
their relative relation. This is consistent with the usual method
of angular momentum projection. We mention once more that
Fig. 1 is a schematic illustration of a representative portion of
the whole wave function.

The change from Figs. 1(a) to 1(b) implies a transition from
the J = 0 ground state to an excited state in the rotational
band with a low J value. In this state, the Jp- Jn correlation
is maintained to a similar extent to the one in the J = 0
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FIG. 1. (Color online) Schematic illustration of angular momentum coupling between proton (left, red) and neutron (right, blue) ellipsoids,
for the ground state, rotational excitation, and scissors-mode excitation. The angular momenta of proton and neutron ellipsoids are shown by
arrows Jp and Jn, respectively. The short arrows (in green) in (b) and (c) represent the rotational angular momentum J , while the one in
(d) indicates the scissors-mode K quantum number. Thin vectors in (b) indicate components of Jp and Jn, perpendicular to J . The angular
momentum vector patterns shown here indicate schematically representative components of actual wave functions.

state, while the low J value is generated mainly by tilting
the two axial vectors, resulting in the rotational excitation [2].
In Ref. [2], the lengths Jp and Jn, and the angle between
Jp and Jn are depicted using mean values obtained, for
the state of a given J , from expectation values of operators
( Ĵp · Ĵp), ( Ĵn · Ĵn), and ( Ĵp · Ĵn), where ( · ) means a scalar
product. Figure 1 is nothing but a schematic illustration of
these quantities. The right part of Fig. 1(b) exhibits how the
coupling of Jp and Jn is made: the vector sum becomes
J , and we put it, for the sake of simplicity, so that Jz = J .
(Note that the direction of J can be easily changed by making
the lengths of the two vectors slightly different.) There are
components perpendicular to this summed vector, as shown by
thin horizontally placed vectors in the right part of Fig. 1(b).
They represent the present Jp- Jn correlation for this particular
state. The amount of this correlation changes as a function
of J .

The rotational excitation is thus made by coherent changes
of Jp and Jn, on top of the Jp- Jn correlation in the ground
state. The changes are partly due to the tilting of these vectors
toward the positive direction of the z axis and partly due to the
changes of the magnitudes, Jp and Jn. Due to these changes,
the present Jp- Jn correlation becomes weaker in general as
compared to J. This reduction of the Jp- Jn correlation for
higher J values has been confirmed for examples shown
in Ref. [2]. An illustration for a high J value is shown in
Fig. 1(c) schematically. This is closer to the classical image of
the rotation. We point out that both rotational excitation and
reduction of the Jp- Jn correlation occur due to the changes of
Jp and Jn as J increases, while they are always perpendicular
to the symmetry axes in the intrinsic frame.

When the present Jp- Jn correlation was pointed out in Ref.
[2], it was never described as “a free motion.” Nevertheless,
in some cases mentioned below, this correlation seems to have
been misinterpreted as signifying the disappearance of the
strong correlation between the two ellipsoids.

In Ref. [11], it was argued that such a picture (referred to as
“contra-rotation”) was unlikely from physical points of view
and the author of Ref. [11] tried to show that the proton and the
neutron angular momenta would point to the same direction
if they were defined in the center of mass (c.m.) frame rather
than in the laboratory frame as in Ref. [2]. Since then, two
papers [12,13] have cited Ref. [11] as a paper solving the
controversy. In this paper, we first show that such an argument
is applicable only to two-particle (spinless) systems but not
to deformed nuclei, which are composed of many nucleons.
Moreover, in the latter case our classical estimation indicates
that it is not essential whether one defines the angular momenta
in the laboratory frame or in the c.m. frame.

Next, we present insight, by taking a two-rotor system
in two-dimensional space, into the question regarding the
antiparallel coupling between the angular momentum of the
proton rotor and that of neutron one, in states of low total
angular momenta. It will be demonstrated that the present
antiparallel-coupling feature does not necessarily indicate
a free “contra-rotation” but is more like an indispensable
correlation so as to produce the tight mutual binding of the
proton and neutron ellipsoids in rotational bands.

We now discuss how the present Jp- Jn correlation can
be related to the scissors mode. One can conceive another
excitation mode as depicted in Fig. 1(d) schematically. Note
that there is a minus sign in Fig. 1(d). This corresponds to the
scissors mode. The scissors excitation can be modeled by the
transition operator Ĵp − Ĵn. The minus sign in Fig. 1(d) is
due to the minus sign in this operator. The additive operator
Ĵp + Ĵn is the total angular momentum, yielding no transition.

The summed B(M1) value to the scissors mode is given
by the expectation value of a scalar product, ( Ĵp − Ĵn)2.

This operator is decomposed as Ĵ
2
p + Ĵ

2
n−2( Ĵp · Ĵn). The

antiparallel coupling of Jp and Jn in the ground state
[Fig. 1(a)] produces a large negative expectation value of
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( Ĵp · Ĵn), giving rise to a large B(M1). Thus, the antiparallel
Jp- Jn correlation can be viewed as the zero-point oscillation,
or the ground-state correlation, of the scissors mode, enhancing
its strength. The B(M1) strength to the scissors mode has in
fact been analyzed in Ref. [4] in connection to the present
Jp- Jn correlation, and the resultant B(M1) value (∼4(μ2

N ) for
156Sm [4]) is in a reasonable agreement with the systematic
behavior of the observed B(M1) sum rule [8,14].

What we want to stress is that rotational states and the
scissors mode are closely related to this antiparallel Jp- Jn

correlation. Rotational states are built on this correlation. The
B(M1) value of the scissors mode vanishes if this correlation
vanishes. In general, the scissors-like oscillation arises on
top of the antiparallel correlation of the angular momenta of
partial systems. In this sense, it is very important to settle the
present issue and fill a pitfall in the road to future research and
generalizations of the scissors mode.

Among future perspectives of studies on the scissors
mode, a possibility to make use of measured magnetic
dipole strengths as a new indicator of sudden shape phase
transitions is mentioned in Ref. [8]. This idea is based on the
proportionality of the summed M1 strength to the square of the
nuclear deformation parameter [15]. A deeper understanding
of the present issue may provide us with a way to understand
this proportionality. Namely, the summed M1 strength is
proportional to the expectation value of ( Ĵp − Ĵn)2 with
respect to the ground state [4], which, in turn, includes a
term proportional to the mean square value of the angle
between the axes of proton and neutron ellipsoids. For stronger
deformation, the ellipsoids become thinner, and an attractive
interaction between the two ellipsoids makes this angle smaller
because an increase of the angle results in a decrease of the
overlap, i.e., the attraction. Thus, one is led to a larger B(M1)
value for a stronger deformation.

One of the current interests in nuclear physics is the scissors
mode in neutron-rich exotic nuclei. The neutron skin may
change the shape of the ellipsoid and also the correlation
between the proton and neutron ellipsoids. This can affect
both the rotational properties and the scissors mode, but
the latter can be more sensitive because the strength of the
mode is directly linked to the proton-neutron difference of the
angular momentum contents. In this sense, a comprehensive
understanding of the rotation and scissors mode is very
important for future nuclear physics [8].

Further clarification of the antiparallel coupling of proton
and neutron rotations and its consequence in the M1 excitation
therefore seems to be of vital and wide interest.

II. EFFECTS OF REMOVAL OF THE
CENTER-OF-MASS MOTION

Let us consider a system of N (�2) particles, composed
of Np (�1) protons and Nn (=N − Np � 1) neutrons. The
position and linear momentum of the ith (1 � i � N ) particle
are denoted as r i and pi , respectively. For the sake of simplicity
we regard the mass of a proton and that of a neutron as equal
and we do not consider the intrinsic spin. These simplifications
will not alter the conclusion of this section.

The total angular momentum of the N particles defined in
the laboratory frame is denoted as

l =
∑

i

r i × pi , (1)

while that in the c.m. frame is

l̃ =
∑

i

r̃ i × p̃i , (2)

where

r̃ i = r i − 1

N

∑
j

rj (3)

and

p̃i = pi − 1

N

∑
j

pj . (4)

The summation over i or j in Eqs. (1)–(4) should be taken
over 1 � i � N or 1 � j � N . In this section, as in Ref. [11],
vectors with a tilde over them mean those defined in the c.m.
frame of the total system. The total angular momentum can be
divided into the proton and the neutron contributions,

l = lp + ln, l̃ = l̃p + l̃n. (5)

In this paper, the subscript p or n indicates, respectively,
quantities related to the proton system or the neutron system
and will be denoted collectively by τ (=p, n). The quantities on
the right-hand sides of Eqs. (5) are then defined by restricting
the summations in Eqs. (1) and (2),

∑
i = ∑Np+Nn

i=1 , to either

protons,
∑

i∈p = ∑Np

i=1, or neutrons,
∑

i∈n = ∑Np+Nn

i=Np+1. We
here introduce the angular momentum due to the c.m. motion
of the proton (or neutron) system,

Lτ = Rτ × Pτ , (6)

where Rτ denotes the position of the c.m. of the type-τ nucleon
system given by

Rτ = 1

Nτ

∑
i∈τ

r i , (7)

and Pτ means the total momentum of the system written as

P τ =
∑
i∈τ

pi . (8)

We then express lτ as

lτ = Lτ + �τ , (9)

where �τ is nothing but the angular momentum of the type-τ
nucleon system in its own c.m. frame,

�τ =
∑
i∈τ

(r i − Rτ ) ×
(

pi − 1

Nτ

Pτ

)
. (10)

Note that, if Nτ = 1, �τ = 0 because Rτ is equal to the
position of the sole type-τ nucleon.

Likewise, the angular momentum of the c.m. motion of the
type-τ nucleon system measured from the total c.m. is written
as

L̃τ = R̃τ × P̃τ , (11)
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where R̃τ and P̃τ are defined with respect to the total c.m. but
are otherwise similar to Eqs. (7) and (8):

R̃τ = 1

Nτ

∑
i∈τ

r̃ i (12)

and

P̃τ =
∑
i∈τ

p̃i . (13)

We point out that, from Np R̃p + Nn R̃n = 0 and P̃p + P̃n =
0, an equality can be derived:

Np L̃p = Nn L̃n. (14)

One can also show that �τ of Eq. (10) appears again in the
relation between angular momenta in the c.m. frame,

l̃τ = L̃τ + �τ . (15)

This is because �τ is transformed like intrinsic spins; i.e., it
is independent of the position and the velocity of the origin
of the coordinates. If the system were a rigid body, it would
represent the angular momentum due to the spinning of the
rigid body. Indeed, in order to take into account true intrinsic
spins of type-τ nucleons, one only has to add the spins to �τ

while leaving Lτ and L̃τ unchanged.
In terms of the quantities defined above, the argument of

Ref. [11] is that, although lp and ln may be antiparallel, l̃p

and l̃n are always parallel. This argument is correct in the case
of two (spinless) particles because �τ = 0 and Eq. (14). In
systems with more than two particles, however, �τ is generally
not zero. On the contrary, according to a classical estimation
shown in the Appendix, �τ ∝ N

1/2
τ is likely to be much larger

than Lτ ∝ N0
τ and L̃τ ∝ N0

τ . Therefore the difference between
lτ and l̃τ is much smaller than either value and both of them
are almost equal to �τ . It follows that, if they are antiparallel
in the laboratory frame, they are also antiparallel in the c.m.
frame.

We mention that L̃p = L̃n = 0 holds in some shell-model
calculations by setting the c.m. motions of protons and
neutrons separately to the nodeless s state, for the purpose of
the removal of spurious motion. This can be fulfilled by taking
a full LS valence shell (e.g., sd shell), and we can confirm the
same antiparallel relation between proton and neutron angular
momenta.

III. ANALYSIS WITH A TWO-ROTOR MODEL

Next, we discuss the implication of the opposite orientations
of the proton and the neutron angular momenta using a two-
rotor model. One of the rotors represents all the protons while
the other represents neutrons. They are constrained to rotate
about a space-fixed axis. In other words, the rotors rotate in
the two-dimensional space perpendicular to this axis. Thus,
in this model, there are just two dynamical variables, ϕp and
ϕn, which are the azimuthal angles to specify the orientations
of the proton and the neutron rotors, respectively. They are
restricted to a domain −π � ϕp,n � π : We do not impose
“R1 symmetry” (invariance of the wave function as for a π

rotation [1]) for the sake of simplicity.

We first introduce an intrinsic wave function containing the
quantum fluctuations of the orientations of the two rotors. This
wave function corresponds to the Nilsson-BCS wave function
used in Ref. [2]. The present intrinsic wave function is written
as

ψ(ϕp, ϕn) = fp(ϕp)fn(ϕn), (16)

where fp (fn) is the proton (neutron) intrinsic wave function.
As the effect of the restoration of the rotational symmetry is the
issue, this simple wave function is sufficient for the following
discussion. We choose fp = fn = f for simplicity. To make
them localized around ϕ = 0, we assume the following form:

f (ϕ) =
∞∑

m=−∞
fmeimϕ, fm = Nνe

−|am|ν , (17)

where ν is a parameter taking on positive real values. Nν is a
normalization factor such that∫ π

−π

|f (ϕ)|2dϕ = 1, (18)

or, equivalently,
∞∑

m=−∞
|fm|2 = 1

2π
. (19)

With larger values of ν, one can reduce more sharply contribu-
tions from components with higher angular momenta in f (ϕ).
For ν = 2, fm is a Gaussian function with 〈m2〉 = (1/2a)2. We
set a = 0.1 throughout this paper. When a is much smaller than
π , f (ϕ), too, is to a good approximation a Gaussian function
with 〈ϕ2〉 = a2. In similar approximations, one finds f (ϕ) ∝
(ϕ2 + a2)−1 for ν = 1 and f (ϕ) ∝ sin(ϕ/a)/ϕ for ν → ∞.
We regard ν = 2 as the most reasonable value because the
distribution of m coincides with that of the thermodynamic
equilibrium exp(−εm/kT ), where εm ∝ m2. Later, we also
consider a case of a finite number of angular momentum
components by restricting the summation in Eq. (17) to −15 �
m � 15 for ν = 2.

We introduce an operator P̂M which projects ψ(ϕp, ϕn) onto
the eigenspace belonging to the eigenvalue M of the total
(two-dimensional) angular momentum

M̂ = 1

i

(
∂

∂ϕp
+ ∂

∂ϕn

)
. (20)

The operator P̂M eliminates the components with mp + mn 	=
M:

P̂Mψ(ϕp, ϕn) =
∞∑

mp=−∞

∞∑
mn=−∞

δmp+mn,Mfmpfmne
impϕpeimnϕn .

(21)

By applying a linear transformation of the variables,


 = 1
2 (ϕp + ϕn), φ = ϕp − ϕn, (22)

one can decouple the motions between the total rotation and
the relative motion:

P̂Mψ(ϕp, ϕn) = eiM

∑

μ

f 1
2 M+μf 1

2 M−μeiμφ, (23)
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where

M = mp + mn, μ = 1
2 (mp − mn) (24)

denote, respectively, the eigenvalues of i−1∂/∂
 and i−1∂/∂φ,
being the momentum operators conjugate to angles 
 and φ.
When M is an even (odd) integer, μ runs through integers
(half-integers).

If an observable O is a function of mp and mn (or M

and μ), its expectation value in a state projected onto angular
momentum M is expressed as

〈O〉M = 〈P̂Mψ |O|P̂Mψ〉
〈P̂Mψ |P̂Mψ〉

=
∑

mp

∣∣fmpfM−mp

∣∣2O(mp,mn = M − mp)∑
mp

∣∣fmpfM−mp

∣∣2 (25)

or

〈O〉M =
∑

μ

∣∣f 1
2 M+μf 1

2 M−μ

∣∣2O(M,μ)∑
μ

∣∣f 1
2 M+μf 1

2 M−μ

∣∣2 . (26)

Using these equations one obtains

〈
m2

p

〉
M

= 〈
m2

n

〉
M

= (
1
2M

)2 + 〈μ2〉M, (27)

〈mpmn〉M = (
1
2M

)2 − 〈μ2〉M. (28)

For ν = 2, f 1
2 M+μf 1

2 M−μ on the right-hand side of Eq. (23)

is proportional to exp(−a2M2/2 − 2a2μ2) so that 〈μ2〉M
becomes (1/23/2a)2, a constant independent of M . In this
case, the right-hand side of Eq. (28) when plotted versus
M expresses a parabola with a negative minimum at M =
0. Similar curves are obtained for ν > 1 from numerical
calculations. These curves resemble those in Fig. 1 of
Ref. [2].

As a different way of presentation, we plot the values of
〈mpmn〉M/〈m2

p〉M versus M for ν = 1.5, 2, and 3 in Fig. 2.
At M = 0, the value is −1, indicating that mp and mn have
opposite signs. It increases with increasing M and converges
to 1, which means that mp and mn have the same sign, at large
M . This trend holds good for ν > 1 and is in agreement with
the way in which two vectors Jπ and Jν gradually align as J

increases in Fig. 3 of Ref. [2]. (Numerical calculations indicate
that this quantity converges to 1

2 for ν = 1 and zero for ν < 1
in the limit of large M .) Therefore, provided ν > 1, which
is satisfied by the most reasonable value of ν = 2, our model
seems to include the essential ingredients to analyze the results
of Ref. [2].

Does this oppositeness of the signs of mp and mn at small
M mean a free contra-rotation? With our simple model, we
now show that it does not necessarily mean such a situation.
If one approves the picture of the free contra-rotation, one
expects a large fluctuation in the scissors mode. The size of
this fluctuation can be measured by 〈φ2〉M .

Some caution is necessary about 〈φ2〉M . When an observ-
able O is a function of ϕp and ϕn, its expectation value in state

FIG. 2. The correlation between the signs of proton and neutron
angular momenta. The values of 〈mpmn〉M/〈m2

p〉M are plotted with
four types of symbols vs the total angular momentum M . Different
symbols correspond to different angular momentum distributions
fm ∝ exp(−|am|ν) in the wave function before projection. The result
for a finite number of components (|m| � 15) is also displayed for
ν = 2. The correspondence is indicated in the figure. The symbols
are connected by lines to guide the eyes.

P̂Mψ is expressed as

〈O〉M =
∫ π

−π
dϕp

∫ π

−π
dϕn|P̂Mψ(ϕp, ϕn)|2O(ϕp, ϕn)∫ π

−π
dϕp

∫ π

−π
dϕn|P̂Mψ(ϕp, ϕn)|2 . (29)

However, one should not use Eq. (29) for O = φ2 because
the domain of φ corresponding to −π � ϕp,n � π is −2π �
φ � 2π . Since the relative location of the two rotors is
exactly the same between φ and φ ± 2π , the variable φ

does not seem adequate to measure the difference of the
directions between them. Instead, we choose to replace φ in
the expression 〈φ2〉M by φ′ = ϕp − ϕn + 2nπ , where n is an
integer chosen such that −π � φ′ < π . This replacement of
φ with φ′ is equivalent to a change of the domain to −π �

 � π and −π � φ � π , with which the expectation value is
redefined as

〈O〉M =
∫ π

−π
d


∫ π

−π
dφ|P̂Mψ |2O(
,φ)∫ π

−π
d


∫ π

−π
dφ|P̂Mψ |2 , (30)

for which the replacement of φ with φ′ is not necessary. In
numerical calculations, we have used Eq. (30) because Eq. (29)
makes integrals less precise because of the discontinuity of the
derivative of φ′ inside the integral domain.

For ν = 2, one can show, using a � π ,

P̂Mψ(ϕp, ϕn) = 1

2π
e−a2M2/2eiM
e−(φ/23/2a)2

, (31)
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FIG. 3. The fluctuation in the scissors mode 〈φ2〉M vs the total
angular momentum M . It is independent of M for ν = 2. For
ν > 2 (ν < 2), it increases (decreases) with increasing M . With
a finite number of components (|m| � 15), the band termination
occurs at M = 30, where 〈φ2〉M takes on the uncorrelated-rotation
value 1

3 π 2.

which indicates 〈φ2〉M = 2a2. It is much smaller than 1
3π2,

which is expected for free contra-rotation or uncorrelated
rotations. In Fig. 3, 〈φ2〉M is plotted for ν = 1.5, 2, and
3. In every case, the fluctuation in φ is ∼a at small M

where 〈mpmn〉M is negative. Even by increasing ν to infinity,
we observe that 〈φ2〉M remains less than 0.1 for M �
7. This fact is incompatible with the free contra-rotation
picture. One can also see by comparing Fig. 2 and Fig. 3
that 〈φ2〉M is much more sensitive than 〈mpmn〉M to the
angular momentum distribution of the wave function before
projection.

When the number of angular momentum components is
finite (|mp,n| � 15), the fluctuation can become very large at
high spins, reaching 1

3π2 at the maximum possible angular
momentum M = 30 (see Fig. 3). This enhancement at high
spins is associated with the band termination phenomenon
[16], i.e., with free rotations in the same direction, not with the
free contra-rotation.

In Fig. 4, 〈μ2〉M is plotted for ν = 1.5, 2, and 3. By
comparing this figure with Fig. 3, one can confirm the
complementarity between μ̂ = i−1∂/∂φ and φ imposed by
the uncertainty principle.

Another way to see clearly how the angular momentum
projection produces such strongly correlated states out of
the completely uncorrelated state fp(ϕp)fn(ϕn) is to express
the projection as an integral over the angle 
 [17]. By a
substitution

δmp+mn,M = 1

2π

∫ π

−π

ei(M−mp−mn)
d
 , (32)

FIG. 4. The mean square value of the relative angular momentum
〈μ2〉M vs the total angular momentum M . For ν = 2 it is a constant,
while for ν > 2 (ν < 2) it decreases (increases) with increasing M .
With a finite number of components (|m| � 15), it becomes zero at
the band termination (M = 30).

one can rewrite Eq. (21) as

P̂Mψ = 1

2π

∫ π

−π

eiM

∑
mp

∑
mn

fmpfmne
imp(ϕp−
)eimn(ϕn−
)d
,

(33)

and using Eqs. (16) and (17),

P̂Mfp(ϕp)fn(ϕn) = 1

2π

∫ π

−π

eiM
fp(ϕp − 
)fn(ϕn − 
)d
.

(34)

Equation (34) means that the projected state is a superposition
of states obtained by rotating the two rotors by the same angle,
i.e., moving the two rotors together.

From the discussions given in this section, we conclude
that the fact that the angular momentum of protons and
that of neutrons are oriented in opposite directions does not
indicate that the ellipsoids of the protons and the neutrons
are freely rotating in the opposite sense. On the contrary, it
is a consequence of the close binding of the protons and the
neutrons: At small angular momentum M , the fluctuation in
the scissors mode 〈φ2〉M is as small as in the wave function
before the projection. To achieve this, however, the uncertainty
principle imposes a large spreading of the conjugate angular
momentum μ = 1

2 (mp − mn). When M = mp + mn is much

smaller than 〈μ2〉1/2
M , it inevitably holds mp ∼ −mn.

In other words, the picture of a free contra-rotation
may be appropriate for a wave function consisting of a
single component exp(imϕp − imϕn). By adding up many
components satisfying mp + mn = M , however, one obtains
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a very different wave function in which protons and neutrons
are bound together closely rather than rotating freely in the
opposite sense.

In this paper, we have introduced a wave function without
specifying the underlying Hamiltonian, giving a new and more
precise insight of nuclear rotation at low rotational frequency.
The dynamical aspect regarding the M1 sum rule discussed
briefly in Ref. [4] can be nicely implemented into the present
two-dimensional model as reported elsewhere.

A way to advance further is to allow the ellipsoids to
rotate three-dimensionally. In this case, the angular momentum
vectors of the two ellipsoids can be at angles other than 0◦
or 180◦, where the latter corresponds to the ground state.
As the angle decreases gradually from 180◦, spatial overlap
between the wave function of the proton ellipsoid and that of
neutron ellipsoid becomes smaller, resulting in less energy gain
from the attractive proton-neutron interaction. Reference [2]
presented rather extensive discussions on this mechanism, but
not on the contra-rotation picture. It is of interest to examine
further to what extent such a mechanism plays an important
role in generating rotational spectra.
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APPENDIX

In this Appendix we estimate the root-mean-square values
of Lτ , L̃τ , and �τ in classical mechanics.

Our estimation is for the state before the angular momentum
projection, in which nucleons are moving in a space-fixed
deformed potential like the Nilsson potential. We assume that
the nucleons move independently of one another and that
the momentum distribution is locally isotropic. Namely, the
distribution function in the N -body phase space is given by

F (r1, . . . , rN, p1, . . . , pN ) =
∏

i

Fsp(r i , | pi |), (A1)

with which the expectation value of an observable
Q(r1, . . . , rN, p1, . . . , pN ) is calculated as

〈Q〉 =
∫

F (r1, . . . , pN )Q(r1, . . . , pN )
∏

i

d3rid
3pi. (A2)

Using different Fsp between protons and neutrons would not
bring about essential difficulties to the following estimations.

The function F affects the final results only through three
single-particle expectation values,

r̄2 = 〈r2〉sp, (A3)

p̄2 = 〈 p2〉sp, (A4)

α = 〈r2 p2〉sp

r̄2p̄2
− 1, (A5)

where

〈Q〉sp =
∫

Fsp(r, | p|)Q(r, p)d3rd3p. (A6)

The value of α is probably much smaller than one because
it becomes zero if Fsp(r, | p|) can be factorized into a form
F1(r)F2(| p|), which is true in the Thomas-Fermi approxima-
tion for a potential having a flat bottom and a sharp surface,
i.e., a very simplified nuclear potential.

Our aim is to evaluate the expectation values of three
observables,

〈
L2

τ

〉 = 1

N2
τ

∑
ijkl∈τ

〈(r i × pj ) · (rk × pl)〉, (A7)

〈
L̃

2
τ

〉 = 1

N2
τ

∑
ijkl∈τ

〈(r̃ i × p̃j ) · (r̃k × p̃l)〉, (A8)

〈
�2

τ

〉 = 〈
l2
τ − 2lτ · Lτ + L2

τ

〉
. (A9)

The last equation requires the evaluation of two additional
quantities,

〈
l2
τ

〉 =
∑
ij∈τ

〈(r i × pi) · (rj × pj )〉, (A10)

〈lτ · Lτ 〉 = 1

Nτ

∑
ijk∈τ

〈(r i × pi) · (rj × pk)〉. (A11)

Equations (A7), (A10), and (A11) include terms of the form

〈(r i × pj ) · (rk × pl)〉 = 〈(r i · rk)( pj · pl)〉
− 〈(r i · pl)(rk · pj )〉. (A12)

The two terms on the right-hand side of Eq. (A12) can be
calculated as phase-space integrals according to Eqs. (A1) and
(A2). By noting ∫

F (r i , | pi |) piκ d3pi = 0, (A13)
∫

F (r i , | pi |) piμpiν d3pi ∝ δμν, (A14)

where κ, μ, ν = x, y, z and pi = (pix, piy, piz), one can
obtain

〈(r i · rj )( pk · pl)〉 = δij δkl(1 + αδik)r̄2p̄2, (A15)

〈(r i · pj )(rk · pl)〉 = 1
3δikδjl(1 + αδij )r̄2p̄2, (A16)

and thus

〈(r i × pj ) · (rk × pl)〉 = 2
3δikδjl(1 + αδij )r̄2p̄2. (A17)

Using Eq. (A17), one obtains

〈
L2

τ

〉 = 2

3

(
1 + α

Nτ

)
r̄2p̄2, (A18)

〈
l2
τ

〉 = 2

3
Nτ (1 + α)r̄2p̄2, (A19)

〈lτ · Lτ 〉 = 2

3
(1 + α)r̄2p̄2. (A20)
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Substituting terms in Eq. (A9) with Eqs. (A18)–(A20), one
finds

〈
�2

τ

〉 = 2

3

[
Nτ − 1 + αNτ

(
1 − 1

Nτ

)2]
r̄2p̄2. (A21)

Equation (A8) includes a term of the form

〈(r̃ i × p̃j ) · (r̃k × p̃l)〉 = 〈(r̃ i · r̃k)( p̃j · p̃l)〉
− 〈(r̃ i · p̃l)(r̃k · p̃j )〉. (A22)

Terms like the first one on the right-hand side of Eq. (A22) can
be calculated using Eq. (A15) as

〈(r̃ i · r̃j )( p̃k · p̃l)〉

=
〈(

r i − 1

N

∑
i ′

r i ′

)
·
(

rj − 1

N

∑
j ′

rj ′

)

×
(

pk − 1

N

∑
k′

pk′

)
·
(

pl − 1

N

∑
l′

pl′

)〉
(A23)

= 〈(r i · rj )( pk · pl)〉 − 1

N

∑
i ′

〈(r i ′ · rj )( pk · pl)〉

+ (14 terms) (A24)

= δij δkl(1 + αδik)r̄2p̄2 − 1

N
δkl(1 + αδjk)r̄2p̄2

+ (14 terms). (A25)

A similar 16-term expression can be obtained for
terms like 〈(r̃ i · p̃j )(r̃k · p̃l)〉. Using such expressions, one
obtains

〈
L̃

2
τ

〉 = 2

3

(
1 − Nτ

N

)

×
[

1 − Nτ

N
+ α

Nτ

(
1 − 3

Nτ

N
+ 3

N2
τ

N2

)]
r̄2p̄2.

(A26)

Because 1 � Nτ < N for typical rotational nuclei, one can
conclude 〈L̃

2
τ 〉 ∼〈L2

τ 〉 �〈�2
τ 〉.

What we have shown above is not an estimation for the
state after the projection to an angular momentum of zero,
which requires a much more difficult task of restricting the
N -particle phase space to a manifold defined by l = 0 or l̃ = 0.
However, we do not think that it would change the conclusion
substantially because low angular momentum components
have large probabilities in the state before projection.

[1] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New
York, 1975), Vol. 2.

[2] T. Otsuka, Phys. Rev. Lett. 71, 1804 (1993).
[3] T. Otsuka, T. Mizusaki, and M. Honma, Nucl. Phys. A 570, 265c

(1994).
[4] T. Otsuka and J. N. Ginocchio, Nucl. Phys. A 577, 197c (1994).
[5] N. Lo Iudice and F. Palumbo, Phys. Rev. Lett. 41, 1532 (1978).
[6] D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. Lo

Iudice, F. Palumbo, and O. Scholten, Phys. Lett. B 137, 27
(1984).

[7] A. S. Adekola, C. T. Angell, S. L. Hammond, A. Hill, C. R.
Howell, H. J. Karwowski, J. H. Kelley, and E. Kwan, Phys. Rev.
C 83, 034615 (2011).

[8] K. Heyde, P. von Neumann-Cosel, and A. Richter, Rev. Mod.
Phys. 82, 2365 (2010).

[9] W. Bentz, A. Arima, J. Enders, A. Richter, and J. Wambach,
Phys. Rev. C 84, 014327 (2011).

[10] K. Hatada, K. Hayakawa, and F. Palumbo, Phys. Rev. C 84,
011302 (2011).

[11] E. R. Marshalek, Phys. Rev. C 50, R5 (1994).
[12] Y. Sun, C.-L. Wu, K. Bhatt, M. Guidry, and D. H. Feng, Phys.

Rev. Lett. 80, 672 (1998).
[13] D. R. Bes and O. Civitarese, Phys. Rev. C 63, 044323

(2001).
[14] W. Ziegler, N. Huxel, P. von Neumann-Cosel, C. Rangacharyulu,

A. Richter, C. Spieler, C. De Coster, and K. Heyde, Nucl. Phys.
A 564, 366 (1993).

[15] W. Ziegler, C. Rangacharyulu, A. Richter, and C. Spieler, Phys.
Rev. Lett. 65, 2515 (1990).

[16] S. G. Nilsson and I. Ragnarsson, Shapes and Shells in
Nuclear Structure (Cambridge University Press, Cambridge,
1995).

[17] P. Ring and P. Schuck, The Nuclear Many-Body Problem
(Springer, New York, 1980).

064316-8

http://dx.doi.org/10.1103/PhysRevLett.71.1804
http://dx.doi.org/10.1016/0375-9474(94)90291-7
http://dx.doi.org/10.1016/0375-9474(94)90291-7
http://dx.doi.org/10.1016/0375-9474(94)90855-9
http://dx.doi.org/10.1103/PhysRevLett.41.1532
http://dx.doi.org/10.1016/0370-2693(84)91099-2
http://dx.doi.org/10.1016/0370-2693(84)91099-2
http://dx.doi.org/10.1103/PhysRevC.83.034615
http://dx.doi.org/10.1103/PhysRevC.83.034615
http://dx.doi.org/10.1103/RevModPhys.82.2365
http://dx.doi.org/10.1103/RevModPhys.82.2365
http://dx.doi.org/10.1103/PhysRevC.84.014327
http://dx.doi.org/10.1103/PhysRevC.84.011302
http://dx.doi.org/10.1103/PhysRevC.84.011302
http://dx.doi.org/10.1103/PhysRevC.50.R5
http://dx.doi.org/10.1103/PhysRevLett.80.672
http://dx.doi.org/10.1103/PhysRevLett.80.672
http://dx.doi.org/10.1103/PhysRevC.63.044323
http://dx.doi.org/10.1103/PhysRevC.63.044323
http://dx.doi.org/10.1016/0375-9474(93)90510-5
http://dx.doi.org/10.1016/0375-9474(93)90510-5
http://dx.doi.org/10.1103/PhysRevLett.65.2515
http://dx.doi.org/10.1103/PhysRevLett.65.2515

