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Energy-level displacement of excited np states of kaonic deuterium in a Faddeev-equation approach
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We calculate the energy-level displacement of the excited np state of kaonic deuterium in terms of the p-wave
scattering length of K−d scattering. We solve the Faddeev equations for the amplitude of K−d scattering in
the fixed-center approximation and derive the complex p-wave scattering length of K−d scattering in terms of
the s-wave and p-wave scattering lengths of K̄N scattering. The estimated uncertainty of the complex p-wave
scattering length is of about 15 %. For the calculated width �2p = 10.203 meV of the excited 2p state of kaonic
deuterium we evaluate the yield YK−d = 0.27% of x rays for the Kα emission line of kaonic deuterium. Using
the complex s-wave and p-wave scattering lengths of K̄N scattering, calculated in B. Borasoy, R. Nißler, and
W. Weise [Eur. Phys. J. A 25, 79 (2005)] and W. Weise and R. Härtle [Nucl. Phys. A 804, 173 (2008)], we get the
width �2p = 2.675 meV of the excited 2p state and the yield YK−d = 1.90% of x rays for the Kα emission line of
kaonic deuterium. The results obtained in this paper can be used for planning experiments on the measurements of
the energy-level displacement of the ground state of kaonic deuterium, caused by strong low-energy interactions.
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I. INTRODUCTION

The consistent analysis of the complex s-wave scattering
length ã

(0)
K−d of K−d scattering has been carried out in [1] by

means of the solution of the Faddeev equations in the fixed-
center approximation. The complex s-wave scattering length
ã

(0)
K−d of K−d scattering has been expressed in terms of the

complex s-wave scattering lengths of K̄N scattering [1] as

follows:

ã
(0)
K−d = md

mK + md

∫
d3x|�d (�r)|2Â(0)

K−d (r), (1)

where �d (�r) is the wave function of the deuteron in the
ground state [2]. The complex function Â

(0)
K−d (r) is defined by

Â
(0)
K−d (r) = Â(0)

p (r) + Â(0)
n (r). The functions Â(0)

p (r) and Â(0)
n (r)

are the solutions of the Faddeev equations in the fixed-center
approximation. They are equal to [1]

Â(0)
p (r) =

â(0)
p + â(0)

p â0(0)
n

r
+ â(0)

p â(0)
n − (â(0)

x )2

r
+ â(0)

n [â(0)
p â(0)

n − (â(0)
x )2]

r2

1 + â0(0)
n

r
− â(0)

p â(0)
n

r2
− â(0)

n [â(0)
p â0(0)

n − (â(0)
x )2]

r3

,

(2)

Â(0)
n (r) = â(0)

n + â(0)
n

r
Â(0)

p (r), Âx(0)
n (r) =

â(0)
x + â(0)

x â(0)
n

r
+ â(0)

x â(0)
n

r2
Â(0)

p (r)

1 + â0(0)
n

r

,

where the complex s-wave scattering lengths of K̄N scattering
â(0)

p , â(0)
n , â(0)

x , and â0(0)
n are defined by [1]

â(0)
p =

(
1+ mK

mN

)
ãK−p(K−p), â(0)

n =
(

1+ mK

mN

)
ãK−n(K−n),

(3)
â(0)

x =
(

1+ mK

mN

)
ãK−p(K̄0n), â0(0)

n =
(

1+ mK

mN

)
ãK̄0n(K̄0n).
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According to [1], the Faddeev equations for the complex
s-wave scattering length of K−d scattering length take the
form

T (0)
p = t (0)

p + t (0)
p G0T

(0)
n + tx(0)

p G0T
x(0)
n ,

T (0)
n = t (0)

n + t (0)
n G0T

(0)
p , (4)

T x(0)
n = tx(0)

n + t0(0)
n G0T

x(0)
n + tx(0)

n G0T
(0)
n .

As has been pointed out in [1], these equations describe pure
elastic and charge-exchange processes and require as input
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only the amplitudes and propagators, where G0 is the free
kaon propagator, t (0)

p and t (0)
n are the T matrices for K−p

and K−n elastic scattering, respectively, and t0(0)
n is the T

matrix of K̄0n scattering K̄0n → K̄0n. For the proton partition
T (0)

p there is also a contribution from the charge-exchange
channel K−p → K̄0n with the elementary T matrices T x(0)

p

and T x(0)
n , describing K̄0nn → K−pn transition, including

the multiple rescattering in the intermediate inelastic states.
In the approximation, proposed in [1], tx(0)

p = tx(0)
n and,

correspondingly, T x(0)
n = T x(0)

p .
In this paper, following the technique developed in [1],

we derive the Faddeev equations for the p-wave amplitude of
K−d scattering. We solve these equations in the fixed-center
approximation and calculate the complex p-wave scattering
length of K−d scattering. We express the energy-level dis-
placement of the excited np state of kaonic deuterium in terms
of the complex p-wave scattering length of K−d scattering.

This paper is organized as follows. In Sec. II we derive
the Faddeev equations for the p-wave amplitude of K−d

scattering. Solving the Faddeev equations in the fixed-center
approximation, we obtain the complex p-wave scattering
length of K−d scattering in terms of the complex s-wave and
p-wave scattering lengths of K̄N scattering. The numerical
values of the complex s-wave and p-wave scattering lengths
of K̄N scattering are given in Sec. III. The calculation of
the complex s-wave and p-wave scattering lengths of K̄N

scattering is carried out within the SU(3) coupled-channel
approach and chiral Lagrangians with derivative
meson-baryon couplings invariant under chiral SU(3) ×
SU(3) symmetry. In Sec. IV we calculate the numerical values
of the complex s-wave and p-wave scattering lengths of K−d

scattering and the energy-level displacement of the kaonic
deuterium in the excited np state, caused by strong low-energy
interactions. We give the numerical values for the s-wave and
p-wave scattering lengths of K−d scattering and the energy-
level displacements of the ground 1s state and the excited
2p state of kaonic deuterium. The complex s-wave scattering
length of K−d scattering is in reasonable agreement with the
results obtained in [1]. In Sec. V, using our prediction for the

width �2p = 10.203 meV of the excited 2p state of kaonic
deuterium and the quantum-classical Monte Carlo cascade
model, developed in [3], we calculate the yield YK−d = 0.27%
of x rays for the Kα emission line of kaonic deuterium. In the
Conclusion we discuss the obtained results and the estimate
of the uncertainty of our solution for the complex p-wave
scattering length of K−d scattering, which is about 15%.
We calculate the complex s-wave and p-wave scattering
lengths of K−d scattering and the energy-level displacements
of the ground 1s and excited 2p states of kaonic deuterium for
the complex s-wave and p-wave scattering lengths obtained
in [4,5]. We get �2p = 2.675 meV for the width of the
excited 2p state and YK−d = 1.90% for the yield of x rays
for the Kα emission line of kaonic deuterium. In Appendix
A we give a detailed calculation of the contributions of the
single (impulse) and double scattering to the complex p-wave
scattering length of K−d scattering. In Appendix B we outline
the calculation of the complex s-wave and p-wave scattering
lengths of K̄N scattering.

II. FADDEEV EQUATIONS FOR p-WAVE AMPLITUDE OF
K−d SCATTERING AND p-WAVE SCATTERING

LENGTH OF K−d SCATTERING IN THE
FIXED-CENTER APPROXIMATION

For the p-wave scattering T matrices we use the index
(1). This defines t (1)

p , t (1)
n , tx(1)

n , t0(1)
n , T (1)

p , T (1)
n , and T x(1)

n ,
respectively. In this notation the Faddeev equations for the
p-wave amplitude of K−d scattering read

T (1)
p = t (1)

p + t (1)
p G0T

(0)
n + t (0)

p G0T
(1)
n + tx(1)

p G0T
x(0)
n

+ tx(0)
p G0T

x(1)
n ,

T (1)
n = t (1)

n + t (1)
n G0T
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p + t (0)

n G0T
(1)
p ,

T x(1)
n = tx(1)

n + t0(1)
n G0T

x(0)
n + t0(0)

n G0T
x(1)
n + tx(1)

n G0T
(0)
n

+ tx(0)
n G0T

(1)
n . (5)

In the fixed-center approximation the Faddeev equations (5)
reduce to the system of algebraical equations for the ampli-
tudes T (1)

p → A(1)
p (r), T (1)

n → A(1)
n (r), and T x(1)

n → Ax(1)
n (r):

Â(1)
p (r) = â(1)

p + 1

6
â(1)

p

1

r
Â(0)

n (r) + 1

6
â(0)

p

1

r
Â(1)

n (r) − 1

6
â(1)

x

1

r
Âx(0)

n (r) − 1

6
â(0)

x

1

r
Âx(1)

n (r),

Â(1)
n (r) = â(1)

n + 1

6
â(1)

n

1

r
Â(0)

p (r) + 1

6
â(0)

n

1

r
Â(1)

p (r), (6)

Âx(1)
n (r) = â(1)

x − 1

6
â0(1)

n

1

r
Âx(0)

n (r) − 1

6
â0(0)

n

1

r
Âx(1)

n (r) + 1

6
â(1)

x

1

r
Â(0)

n (r) + 1

6
â(0)

x

1

r
Â(1)

n (r),

where â(1)
p , â(1)

n , and â(1)
x are the complex p-wave scattering lengths of K̄N scattering, defined by analogy with a(0)

p , a(0)
n , and a(0)

x

of Eq. (3). The p-wave scattering length of K−d scattering is equal to

ã
(1)
K−d = md

mK + md

∫
d3x|�d (�r)|2Â(1)

K−d (r), (7)
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where Â
(1)
K−d (r) = Â(1)

p (r) + Â(1)
n (r). The amplitudes Â(1)

p (r) and Â(1)
n (r) are the solutions of Eq.(6). They are equal to

Â(1)
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â(0)
x

)2]
r3

)
= â(1)
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n â(0)

p

r
− 1

6
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â(1)
x â(0)
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216
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where Â(0)
p (r), Â(0)

n (r), and Âx(0)
n (r) are solutions of the

Faddeev equations in the fixed-center approximation for
the complex s-wave scattering length of K−d scattering
equation (2) [1].

Expanding the amplitudes Â(1)
p (r) and Â(1)

n (r) in powers of
1/r and keeping only the terms of order of 1/r , one arrives
at the complex p-wave scattering length of K−d scattering in
the single- and double-scattering approximations:

ã
(1)
K−d = md

mK + md

[
â(1)

p + â(1)
n + 1

3

(
â(1)

p â(0)
n + â(1)

n â(0)
p

− â(1)
x â(0)

x

) ∫
d3x

r
|�d (�r)|2 + . . .

]
. (9)

This result is confirmed in Appendix A by a direct calculation
in the effective low-energy quantum field theory.

III. COMPLEX s-WAVE AND p-WAVE SCATTERING
LENGTHS OF K̄ N SCATTERING

For the evaluation of the numerical value of the complex
p-wave scattering length of K−d scattering and the energy-
level displacement of the excited np state of kaonic deuterium,
we have to calculate the numerical values of the complex
s-wave and p-wave scattering lengths of K̄N scattering. A
detailed procedure of the calculation of the complex s-wave
and p-wave scattering lengths is given in Appendix B. Their
numerical values are equal to

ã
(0)
K−p(K−p) = −0.680 + i0.639 fm, ã

(1)
K−p(K−p) = −0.069 + i0.179 fm3,

ã
(0)
K−p(K̄0n) = +0.980 − i0.543 fm, ã

(1)
K−p(K̄0n) = −0.053 + i0.176 fm3,

(10)
ã

(0)
K−n(K−n) = +0.300 + i0.096 fm, ã

(1)
K−n(K−n) = −0.122 + i0.355 fm3,

ã
(0)
K̄0n

(K̄0n) = −0.680 + i0.639 fm, ã
(1)
K̄0n

(K̄0n) = −0.069 + i0.179 fm3.

We have calculated the complex s-wave and p-wave scattering lengths of K̄N scattering within the SU(3) coupled-channel
approach [4], chiral dynamics with chiral SU(3) × SU(3) invariant low-energy meson-baryon interactions with derivative
couplings [4,6,7], and accounting for the contributions of baryon resonances [8] and scalar-meson resonances [9,10]. The chiral
Lagrangian of low-energy interactions of the ground-state baryon octet B(x) with the octet of pseudoscalar mesons P (x) invariant
under SU(3) × SU(3) chiral symmetry is [4]

L(x) = 〈B̄(x)(iγ μ∂μ − m0)B(x)〉 + 〈B̄(x)iγ μ[sμ(x), B(x)]〉 − gA(1 − αD)〈B̄(x)γ μ[pμ(x), B(x)]〉
+αD〈B̄(x)γ μ{pμ(x), B(x)}〉 + 1

4
bD〈B̄(x){χ+(x), B(x)}〉 + 1

4
bF 〈B̄(x)[χ+(x), B(x)]〉 + 1

4
b0〈B̄(x)〈χ+(x)〉B(x)〉

+ 1

2
d1〈B̄(x){pμ(x), [pμ(x), B(x)]}〉 + 1

2
d2〈B̄(x)[pμ(x), [pμ(x), B(x)]]〉 + 1

2
d3〈B̄(x)pμ(x)〉〈pμ(x)B(x)〉

+ 1

2
d4〈B̄(x)〈pμ(x)pμ(x)〉B(x)〉 + . . . ,

sμ(x) = 1

2
[U †(x), ∂μU (x)] , pμ(x) = 1

2i
{U †(x)∂μU (x)} , χ+(x) = 2B0(U †(x)MU †(x) + U (x)MU (x)), (11)
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where B(x) = (N,�0, 	,
) is the ground-state baryon octet
[11], U 2(x) = e

√
2iγ 5P (x)/Fπ , P (x) = (π, η,K, K̄) and Fπ =

92.4 MeV are the octets of low-lying pseudoscalar mesons
and the partial conservation of axial-vector current (PCAC)
constant [12], 〈· · ·〉 are the traces over the SU(3) indices,
gA = 1.275 [13,14], αD = 0.635, and m0 is the baryon mass
for a current quark mass of zero. M = diag(mu,md,ms) is
a diagonal 3 × 3 matrix with current quark masses mq for
q = u, d, and s, respectively, and B0 = −〈q̄q〉/F 2

π , where
〈q̄q〉 is the quark condensate. The current quark masses and
the quark condensate are defined at the normalization scale
μ = 1 GeV [15]. The ellipsis denotes the contributions of the
derivative couplings of the �(1405) resonance, the baryon
decuplet 10 = (,	∗, . . .), and other baryon resonances [8]
with quantum numbers JP = 1

2
+

, belonging to octets of
SU(3)f symmetry [11], with the octet of pseudoscalar mesons
and the ground-state baryon octet invariant under chiral SU(3)
× SU(3) symmetry and also chiral SU(3) × SU(3) invariant
interactions of the ground-state baryon octet with the nonet
of scalar-meson resonances [9,10] (see Appendix B). The
parameters bD and bF define the mass splitting of the ground-
state baryons m	 − m�0 = 4

3bD(m2
K − m2

π ) and m
 − m	 =
(bD + bF )(m2

π − m2
K ). They are equal to bD = +0.051 fm and

bF = −0.158 fm. The parameter b0 determines the σπN term
of πN scattering 2σπN = −m2

π (2b0 + bD + bF ). It is equal
to b0 = −0.561 fm, calculated in terms of the experimental
value σ

(exp)
πN = 61 MeV [16], which agrees well with the

theoretical one, σ
(th)
πN = 60 MeV [17]. The amplitudes M

of low-energy K̄N scattering are determined in the SU(3)
coupled-channel approach by the matrix equation M−1 =
M−1

0 − G, where M0 are the amplitudes of K̄N scattering,
calculated with the chiral Lagrangian (14) and other La-
grangians, adduced in Appendix B, in the tree approximation
[4]. Since we are interested in the scattering lengths, we
calculate the matrix elements of the diagonal matrix G, given
by the meson-baryon loop diagrams, in the nonrelativistic
approximation within the dimensional regularization. As a
result, the matrix elements are imaginary and proportional
to k and k3 for the s-wave and p-wave K̄N scattering,
respectively, for kinematically opened channels, where k

is a momentum transfer. The complex s-wave scattering
length of K−p scattering we set equal to the preliminary
experimental value by the SIDDHARTA Collaboration [18].
In our approach the imaginary parts of the complex s-
wave and p-wave scattering lengths of K̄N scattering are
defined by the contributions of the �(1405) and 	(1385)
resonances. This agrees well with the analysis of low-energy
K̄N interactions in the s-wave and p-wave states, carried
out for the investigation of the properties of antikaon-nuclear
quasibound states in [5]. For the coupling constants dj (j =
1, 2, 3, 4), which are input parameters, we have obtained
the following values: d1 = −0.389 fm, d2 = −0.709 fm,
d3 = +2.816 fm, and d4 = −0.619 fm. As has been found, the
contribution of the scalar-meson resonances is not essential for
reasonable values of coupling constant of the interactions of
scalar-meson resonances with the ground-state baryons (see
Appendix B).

IV. ENERGY-LEVEL SHIFT AND WIDTH OF EXCITED np
STATE OF KAONIC DEUTERIUM

Following [8] we define the shift and width of the energy
level of the excited np state of kaonic deuterium, where n is the
principal quantum number, in terms of the complex p-wave
scattering length ã

(1)
K−d (K−d) of K−d scattering. We get

εnp = −2
α5

n3

(
1 − 1

n2

)(
mKmd

mK + md

)4

Reã(1)
K−d ,

(12)

�np = 4
α5

n3

(
1 − 1

n2

)(
mKmd

mK + md

)4

Imã
(1)
K−d ,

where α = 1/137.036 is the fine-structure constant.
Using the numerical values of the complex s-wave and

p-wave scattering lengths, evaluated in Sec. III, we obtain
the following numerical values of the s-wave and p-wave
scattering lengths of K−d scattering:

ã
(0)
K−d = −1.273 + i2.435 fm,

(13)
ã

(1)
K−d = −0.352 + i0.432 fm3.

They give the following energy-level displacements of the
ground 1s and excited 2p states of kaonic deuterium:

ε1s = 0.766 keV, �1s = 2.933 keV,
(14)

ε2p = 4.158 meV, �2p = 10.203 meV.

The numerical value of the complex s-wave scattering length
of K−d scattering agrees reasonably well with the results
obtained in [1]. The uncertainty of the complex p-wave
scattering length of K−d scattering, which is estimated as
15%, will be discussed in the Conclusion.

V. YIELD OF X RAYS FOR THE Kα EMISSION LINE OF
KAONIC DEUTERIUM

The results of the calculation of the yields of x rays of the
Kα emission lines for kaonic hydrogen and deuterium depend
considerably on the values of the widths of the excited 2p state
of kaonic atoms [19]. Using the calculation scheme based on
the quantum-classical Monte Carlo cascade model developed
in [3], we obtain the following yields of the Kα emission lines:

YK−p = 1.80%, �1p = 1.979 meV,
(15)

YK−d = 0.27%, �2p = 10.203 meV,

for kaonic hydrogen and deuterium, respectively.
Our result �2p = 1.979 meV for the width of the excited

2p state of kaonic hydrogen agrees well with �2p = 2 meV
obtained in [8]. The theoretical value YK−p = 1.80% is in
good agreement with the experimental one, YK−p = 1.5(5)%
[20]. The theoretical value YK−d = 0.27% can be used for
planning experiments on the measurement of the energy-level
displacement of the ground 1s state of kaonic deuterium.

VI. CONCLUSION

We have investigated the properties of exotic atom–kaonic
deuterium in the excited np state, where n is the principal
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quantum number, relative to strong low-energy interactions,
described by chiral Lagrangians with derivative meson-baryon
couplings invariant under chiral SU(3) × SU(3) symmetry.
We have calculated the energy-level shift and width of the
excited np state in terms of the complex p-wave scatter-
ing length of K−d scattering. Since K−d scattering is a
three-body into three-body reaction, the most appropriate
tool for the investigation of the p-wave amplitude of K−d

scattering is the Faddeev equations [1]. Following [1], where
the Faddeev equations for the s-wave amplitude of K−d

scattering have been solved in the fixed-center approximation,
we have calculated the Faddeev equations for the p-wave
amplitude of low-energy K−d scattering in the fixed-center
approximation. In such an approximation the complex s-wave
and p-wave scattering lengths of K−d scattering are expressed
in terms of the complex s-wave and p-wave scattering lengths
of K̄N scattering. The calculation of the complex s-wave
and p-wave scattering lengths of K̄N scattering is carried
out within the SU(3) coupled-channel approach and chiral
Lagrangians with derivative meson-baryon couplings invariant
under chiral SU(3) × SU(3) symmetry. The complex s-wave
scattering length of K−p scattering has been set equal to
the recent experimental value measured by the SIDDHARTA
Collaboration [18].

We note that our result for the real part of the complex
p-wave scattering length of K−p scattering, obtained in this
paper, differs by a sign from that calculated in [8]. Such a
discrepancy is caused by different dynamics that are used
in [8] and in the present paper. Indeed, for the calculation of the
complex p-wave scattering length in the present paper we use
chiral Lagrangians with derivative meson-baryon couplings,
derived within nonlinear realization of chiral SU(3) × SU(3)
symmetry [6], which contain also additional interactions with
the coupling constants dj for (j = 1, 2, 3, 4) and b� for
� = 0,D, F [4]. In [8] the calculation of the complex p-wave
scattering length of K−p scattering has been carried out with
chiral Lagrangians, derived within linear realization of chiral
SU(3) × SU(3) symmetry. These chiral Lagrangians do not
contain the interactions with the coupling constants dj for
(j = 1, 2, 3, 4) and b� for � = 0,D, F , which are specific
for the nonlinear realization of chiral symmetry and have no
analogy within its linear realization. Since the imaginary part
of the complex p-wave scattering length is defined by the
dominant contribution of the 	(1385) resonance, the values
of the imaginary parts, calculated in the present paper and
in [8], agree well.

The numerical value of the complex s-wave scattering
length of K−d scattering equation (13) agrees reasonably well
with the results obtained in [1]. We note that the complex
s-wave scattering length of K−d scattering has been also
investigated within the effective-field-theory approach [21,22].
In [21] the solution of the Faddeev equations, obtained in the
fixed-center approximation, for the complex s-wave scattering
length has been confirmed within the effective-field-theory
approach. In [22] the effective-field-theory approach has been
applied to the calculation of the nucleon-recoil corrections
to the double-scattering contribution to the complex s-wave
scattering length of K−d scattering, obtained in the fixed-

center approximation. As has been found in [22], the nucleon-
recoil corrections make up about 10%–15%.

Now let us discuss the uncertainty of the proposed solution
of the Faddeev equations for the complex p-wave scattering
length of K−d scattering, obtained in the fixed-center approx-
imation. As has been pointed out by Gal [23], the uncertainty
of the solution of the Faddeev equations for the complex
s-wave scattering length of K−d scattering, calculated in
the fixed-center approximation, is about 10%–25%. Such an
estimate has been deduced from the comparison of the solution
found in [1] with other solutions of the Faddeev equations
applied to the calculation of the complex s-wave scattering
length of K−d scattering [24–26]. Of course, the lack of the
experimental data on the complex s-wave scattering length
of K−d scattering does not allow us to understand the real
uncertainty of theoretical schemes.

Since the calculation of the complex p-wave scattering
length of K−d scattering has not been yet carried out in the
literature, we have no possibility to compare our solution with
any others. Thus, for the estimate of the theoretical uncertainty
of our solution of the Faddeev equations for the complex p-
wave scattering length of K−d scattering we follow the results
obtained in [22]. As has been shown in [22], the nucleon-recoil
correction to the double-scattering contribution of the static
solution of the Faddeev equations makes up about 15%. Since
we neglect the nucleon recoil, one can accept 15% as the
uncertainty of our static solution of the Faddeev equations.

Such an estimate of the uncertainty, applied to the total
solution of the Faddeev equations in the fixed-center approxi-
mation, can be supported by a convergence of the expansion of
our solution for the complex p-wave scattering length of K−d

scattering in powers of 1/r . As we have shown in Appendix A,
the contribution of the single and double scattering ã

(1)
K−d =

(ã(1)
K−d )s.sc. + (ã(1)

K−d )d.sc. = −0.262 + i0.548 fm3 dominates in
the complex p-wave scattering length of K−d scattering. The
account for the contribution of the triple scattering ã

(1)
K−d =

(ã(1)
K−d )s.sc. + (ã(1)

K−d )d.sc. + (ã(1)
K−d )tr.sc. = −0.277 + i0.525 fm3

obtained from the expansion of the exact solution of the
Faddeev equations corroborates only such a dominance.
The contributions of higher multiple scattering are equal to
δã

(1)
K−d = −0.075 − i0.072 fm3. They make up about 21% and

17% of the real and imaginary parts of the total complex
p-wave scattering length, respectively. Of course, a proof of the
convergence by means of the calculation of the contributions
of higher n-multiple scattering for n � 4, proportional to
the higher powers of 1/r (n−1), averaged with the deuteron
wave function |�d (�r)|2 as

∫
d3x|�d (�r)|2/r (n−1) = 〈1/r (n−1)〉,

stumbles against the problem of the regularization and renor-
malization of these averaged values [27]. The solution of
this problem goes beyond the scope of this paper. We are
planning to carry out this analysis in a future presentation.
We note that without truncation the evaluation of the complex
p-wave scattering length equation (8), caused by the multiple
scattering, does not suffer from divergences at r → 0. This
agrees well with the results obtained in [1].

Using the numerical value of the complex p-wave scattering
length of K−d scattering Eq. (13), we have calculated the
width of the excited 2p state �2p = 10.203 meV. This result
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plays an important role for the theoretical analysis of the yield
YK−d of x rays of the Kα emission line of kaonic deuterium.
Using the quantum-classical Monte Carlo cascade model
[3], we have obtained YK−d = 0.27% for the width �2p =
10.203 meV of the excited 2p state of kaonic deuterium. For
the yield of x rays of the Kα emission line of kaonic hydrogen
we have obtained the value YK−p = 1.80%, which agrees well
with the experimental data YK−p = 1.5(5)% [20].

Concluding this discussion, we would like to note that the
complex s-wave scattering length of elastic K−n scattering
ã

(0)
K−n(K−n) = 0.300 + i0.096 fm or the complex s-wave

scattering length of K̄N scattering in the state with isospin
I = 1, i.e., ãI=1 = ã

(0)
K−n(K−n), calculated in our approach

to K̄N scattering (see Appendix B) and given in Eq. (12),
possesses a small imaginary part Imã

(0)
K−n(K−n) = 0.096 fm.

This does not contradict some estimates of the complex s-wave
scattering length of K̄N scattering in the state with isospin
I = 1 obtained in [21] from the complex s-wave scattering
length of K−d scattering. Nevertheless, the theoretical analysis
of K̄N scattering carried out in [4,28] shows that the imaginary
part of the complex s-wave scattering length of elastic K−n

scattering is commensurable with the imaginary part of the
complex s-wave scattering length of elastic K−p scattering.
As has been found in [4], the complex s-wave scattering
length of elastic K−n scattering is equal to ã

(0)
K−n(K−n) =

0.49 + i0.70 fm, which agrees well with the empirical result
ã

(0)
K−n(K−n) = 0.37 + i0.60 fm obtained in [29] and the

theoretical estimates in [28]. Thus, for the completeness of
our numerical predictions for the complex p-wave scattering
length of K−d scattering we take into account the complex
s-wave scattering lengths of K̄N scattering calculated in [4]
and the complex p-wave scattering lengths of K̄N scattering
calculated in [5]. We get

ã
(0)
K−d = −1.951 + i0.996 fm,

(16)
ã

(1)
K−d = −0.174 + i0.113 fm3.

The calculation is performed for a
(0)
I=0(K̄N ) = −1.63 + i0.42

fm and a
(0)
I=1(K̄N ) = 0.49 + i0.70 fm [4] and a

(1)
I=0(K̄N ) = 0

and a
(1)
I=1(K̄N ) = −0.114 + i0.098 fm3 [5]. The energy-level

displacements of the ground 1s and excited 2p states of kaonic
deuterium, calculated in terms of the complex s-wave and
p-wave scattering lengths, Eq. (16), are equal to

ε1s = 1.175 keV, �1s = 1.200 keV,
(17)

ε2p = 2.053 meV, �2p = 2.675 meV.

In this case the yield of the x rays of the Kα emission line for
kaonic deuterium is

YK−d = 1.90%, �2p = 2.675 meV. (18)

Our results for the yields of x rays of the Kα emission line
and the energy-level displacements of kaonic deuterium in
the ground 1s state, calculated for the complex s-wave and
p-wave scattering lengths of K̄N scattering, obtained in this
paper and in [4,5,28], can be used for planning experiments
on the measurements of the energy-level displacement of the
ground 1s state of kaonic deuterium. The results obtained in
this paper can be also used by the SIDDHARTA Collaboration,
measuring currently the energy-level displacement of the
ground 1s state of kaonic deuterium [30,31].
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APPENDIX A: COMPLEX p-WAVE SCATTERING LENGTH
OF K−d SCATTERING: SINGLE- AND

DOUBLE-SCATTERING CONTRIBUTIONS

In this Appendix we give a detailed calculation of the
complex p-wave scattering length of K−d scattering, keeping
the contributions of the single (impulse) and double scattering
only. The p-wave amplitude M (1)(K−d → K−d) of low-
energy elastic K−d scattering relates to the complex p-wave
scattering length a

(1)
K−d as follows:

M (1)(K−d → K−d) = 24π (mK + md )a(1)
K−d (�k′ · �k), (A1)

where �k and �k′ are momenta of a relative motion of the K−d

pair in the initial and final states. They are related by |�k| = |�k′|.
In turn, the p-wave amplitude M (1)(K−d → K−d) is defined
in terms of the matrix element of the T (1) matrix as

〈K−d|T (1)|K−d〉 = (2π )4δ(4)(k′
d + k′ − kd + k)

×M (1)(K−d → K−d), (A2)

where (kd, k) and (k′
d , k

′) are four-momenta of the deuteron
and K− meson in the initial and final states, respectively.

For the calculation of the matrix elements of the T matrix
we use the following effective Lagrangian:

Lint(x) = L(0)
int (x) + L(1)

int (x), (A3)

where the effective Lagrangians L(0)
int (x) and L(1)

int (x) define
low-energy K−d interactions in the s-wave and p-wave states.
They are given by

L(0)
int (x) = 4π

[
â(0)

p K−†(x)K−(x)p̄(x)p(x) + â(0)
x K̄0†(x)K−(x)n̄(x)p(x)

] + 4π
[
â(0)

n K−†(x)K−(x)n̄(x)n(x)

+â(0)
x K−†(x)K̄0(x)p̄(x)n(x)

] + 4π
[
â0(0)

n K̄0†(x)K̄0(x)n̄(x)n(x)
]

(A4)
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and

L(1)
int (x) = 12π

[
â(1)

p 	 K−†(x) · 	K−(x)p̄(x)p(x) + â(1)
x 	 K̄0†(x) · 	K−(x)n̄(x)p(x)

]
+ 12π

[
â(1)

n 	 K−†(x) · 	K−(x)n̄(x)n(x) + â(1)
x 	 K−†(x) · 	K̄0(x)p̄(x)n(x)

]
+ 12π

[
â0(1)

n 	 K̄0†(x) · 	K̄0(x)n̄(x)n(x)
]
. (A5)

The s-wave and p-wave scattering lengths are determined as shown in Eq. (3). The matrix elements of these Lagrangians define
the s-wave and p-wave amplitudes of low-energy K̄N scattering, expressed in terms of the s-wave and p-wave scattering lengths.

Using the effective Lagrangian Eq. (A4), one reproduces the solution of the Faddeev equations in the fixed-center approximation
for the complex s-wave scattering length of K−d scattering, given by Eq. (2) and obtained in [1].

For the calculation of the contributions of the single and double scattering to the complex p-wave scattering length of
K−d scattering we will use both Lagrangians (A4) and (A5). The T (1) matrix for low-energy K−d scattering, describing the
contributions of the single and double scattering, is defined by

T (1) =
∫

d4xL(0)
int (x) + i

∫
d4x1d

4x2T
[
L(0)

int (x1)L(1)
int (x2)

] + . . . , (A6)

where T is the time-ordering operator and the ellipsis denotes the triple-scattering contributions and so on. The p-wave amplitude
of low-energy K−d scattering, caused by the single and double scattering, is

M (1)(K−d → K−d) = M (1)(K−d → K−d)s.sc. + M (1)(K−d → K−d)d.sc., (A7)

where M (1)(K−d → K−d)s.sc. and M (1)(K−d → K−d)d.sc. are the amplitudes of the single and double scattering, respectively.
They are given by

M (1)(K−d → K−d)s.sc. = 〈K−d|L(0)
int (0)|K−d〉,

M (1)(K−d → K−d)d.sc. = i

∫
d4x〈K−d|T [L(0)

int (x)L(1)
int (0)]|K−d〉. (A8)

For the calculation of the matrix element 〈K−d|T (1)|K−d〉 we use the wave functions of the initial and final states:

|K−d〉 = c
†
K− (�k)|d(−�k, λ)〉,

〈K−d| = 〈d(−�k′, λ)|cK−(�k′), (A9)

where �k and �k′ are the relative momenta of the K−d pairs in the initial and final states, respectively, and c
†
K− (�k) and cK− (�k′)

are operators of creation and annihilation of the K− mesons with three-momenta �k and �k′, respectively. They obey standard
relativistic covariant commutation relations [32]. The wave function of the deuteron |d(−�k, λ)〉 is taken in the momentum and
particle number representation. It reads [32]

|d(−�k, λ)〉 =
√

2Ed (�k)

(2π )3

∫
d3kp√

2EN (�kp)

d3kn√
2EN (�kn)

δ(3)(�k + �kp + �kn)�̃d

( �kp − �kn

2

)
a†

p(�kp, σp)a†
n(�kn, σn)|0〉, (A10)

where Ed (�k), EN (�kp), and EN (�k) are the total energies of the deuteron, proton, and neutron, respectively; �̃d (�q) is the wave
function of the ground state of the deuteron in the momentum representation; a

†
p(�kp, σp) and a

†
n(�kn, σn) are the operators of

creation of the proton and the neutron with three-momenta �kp and �kn and polarizations σp = ± 1
2 and σn = ± 1

2 , respectively, and
they obey standard relativistic covariant anticommutation relations [32]; λ = σp + σn is the polarization of the deuteron; and
|0〉 is the vacuum wave function. For the deuteron polarization states with λ = ±1 and λ = 0 the product a

†
p(�kp, σp)a†

n(�kn, σn)
should be replaced by a

†
p(�kp,± 1

2 )a†
n(�kn,± 1

2 ) and 1√
2
[a†

p(�kp, σp)a†
n(�kn,−σp) + a

†
p(−�kp, σp)a†

n(�kn, σp)], respectively [32].

The p-wave amplitude of the single K−d scattering is equal to

M (1)(K−d → K−d)s.sc. = 〈K−d|L(0)
int (0)|K−d〉 = 24πmd

(
â(1)

p + â(1)
n

)
(�k′ · �k)

∫
d3q

(2π )3
�̃∗

d

(
�q + 1

2
�k′

)
�̃d

(
�q + 1

2
�k
)
. (A11)

The momentum integral defines the form factor Fd ( �Q) of the deuteron [1]:∫
d3q

(2π )3
�̃∗

d

(
�q + 1

2
�k′

)
�̃d

(
�q + 1

2
�k
)

=
∫

d3x|�d (�r)|2ei �Q·�r = Fd ( �Q), (A12)

where �Q = 1
2 (�k′ − �k) is the momentum transfer. Since the form factor of the deuteron is normalized to unity at �Q = 0 [1], the

complex p-wave scattering length, calculated in the single-scattering approximation, is equal to(
ã

(1)
K−d

)
s.sc. = md

mK + md

(
â(1)

p + â(1)
n

) = −0.231 + i0.645 fm3, (A13)
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where we have used the numerical values of the p-wave scattering lengths of K−p and K−n scattering, adduced in Eq. (13).
The amplitude M (1)(K−d → K−d)d.sc. of the double scattering is defined by the matrix element

M (1)(K−d → K−d)d.sc. = i

∫
d4x〈K−d|T (L(0)

int (x)L(1)
int (0)|K−d〉

= 48π2i

∫
d4x〈K−d|{â(0)

p â(1)
n [p̄(x)p(x)]T [K−†(x)K−(x)∇K−†(0) · ∇K−(0)][n̄(0)n(0)]

+ â(0)
n â(1)

p [n̄(x)n(x)]T [K−†(x)K−(x)∇K−†(0) · ∇K−(0)][p̄(0)p(0)]

+ â(0)
x â(1)

x [p̄(x)n(x)]T [K−†(x)K̄0(x)∇K̄0†(0) · ∇K−(0)][n̄(0)p(0)]

+ â(0)
x â(1)

x [n̄(x)p(x)]T [K̄0†(x)K−(x)∇K−†(0) · ∇K̄0(0)][p̄(0)n(0)]
}|K−d〉. (A14)

Having calculated the matrix element between the K−-meson states, we arrive at the expression

M (1)(K−d → K−d)d.sc. = 48π2i

∫
d4x

{
â(0)

p â(1)
n 〈d|[p̄(x)p(x)][n̄(0)n(0)]|d〉

( ∫
d4q

(2π )4i

(�k · �q)e−i(q−k′)·x

m2
K − q2 − i0

+
∫

d4q

(2π )4i

(�k′ · �q)e+i(q−k)·x

m2
K − q2 − i0

)
+ â(0)

n â(1)
p 〈d|[n̄(x)n(x)][p̄(0)p(0)]|d〉

(∫
d4q

(2π )4i

(�k · �q)e−i(q−k′)·x

m2
K − q2 − i0

+
∫

d4q

(2π )4i

(�k′ · �q)e+i(q−k)·x

m2
K − q2 − i0

)
+ â(0)

x â(1)
x 〈d|[p̄(x)n(x)][n̄(0)p(0)]|d〉

∫
d4q

(2π )4i

(�k · �q)e−i(q−k′)·x

m2
K − q2 − i0

+ â(0)
x â(1)

x 〈d|[n̄(x)p(x)][p̄(0)n(0)]|d〉
∫

d4q

(2π )4i

(�k′ · �q)e+i(q−k)·x

m2
K − q2 − i0

}
. (A15)

The matrix elements of the products of the nucleon field operators between the deuteron states, calculated in the nonrelativistic
approximation, are equal to

〈d|[p̄(x)p(x)][n̄(0)n(0)]|d〉 = 〈d|[n̄(x)n(x)][p̄(0)p(0)]|d〉 = −〈d|[p̄(x)n(x)][n̄(0)p(0)]|d〉 = −〈d|[n̄(x)p(x)][p̄(0)n(0)]|d〉
= 2md

∫
d3q ′

(2π )3

d3q

(2π )3
�̃∗

d

(
�q ′ + 1

2
�k′

)
�̃d

(
�q + 1

2
�k
)
e−i(�q ′−�q)·�r = 2md |�d (�r)|2ei 1

2 (�k′−�k)·�r . (A16)

Substituting Eq. (A16) into Eq. (A15) and integrating over time, we transcribe the right-hand side (rhs) of Eq. (A15) into the
form

M (1)(K−d → K−d)d.sc. = 96π2md

∫
d3x|�d (�r)|2ei 1

2 (�k′−�k)·�r(â(0)
p â(1)

n + â(0)
n â(1)

p − â(0)
x â(1)

x

)

×
( ∫

d4q

(2π )3
δ(q0 − mK )

(�k · �q)e+i(�q−�k′)·�r

m2
K − q2 − i0

+
∫

d4q

(2π )3
δ(q0 − mK )

(�k′ · �q)e−i(�q−�k)·�r

m2
K − q2 − i0

)
, (A17)

where we have neglected the contributions of the kinetic energies of the K− mesons with respect to their masses in the initial
and final states. Having integrated over q0 we obtain the rhs of Eq. (A17) in the following form:

M (1)(K−d → K−d)d.sc. = 96π2md

∫
d3x|�d (�r)|2

(
â(0)

p â(1)
n + â(0)

n â(1)
p − â(0)

x â(1)
x

)

×
(

e−i 1
2 (�k′+�k)·�r

∫
d3q

(2π )3

(�k · �q)

�q 2
e+i �q·�r + e+i 1

2 (�k′+�k)·�r
∫

d3q

(2π )3

(�k′ · �q)

�q 2
e−i �q·�r

)

= 96π2md

∫
d3x|�d (�r)|2

(
â(0)

p â(1)
n + â(0)

n â(1)
p − â(0)

x â(1)
x

)
e−i 1

2 (�k′+�k)·�r (�k′ + �k) · (−i∇)
∫

d3q

(2π )3

e+i �q·�r

�q 2

= 24πmd

∫
d3x|�d (�r)|2

(
â(0)

p â(1)
n + â(0)

n â(1)
p − â(0)

x â(1)
x

)
e−i 1

2 (�k′+�k)·�r i(�k′ + �k) · �r
r3

, (A18)

where we have made a change of variables �r → −�r in the second term and have used |�d (−�r)|2 = |�d (�r)|2.
Expending the exponential e−i 1

2 (�k′+�k)·�r in powers of 1
2 (�k′ + �k) · �r , we obtain the contribution of the double scattering to p-wave

amplitude of K−d scattering in the form

M (1)(K−d → K−d)d.sc. = 24πmd

1

3

(
â(0)

p â(1)
n + â(0)

n â(1)
p − â(0)

x â(1)
x

)
(�k′ · �k)

∫
d3x

r
|�d (�r)|2, (A19)
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where we have omitted the terms proportional to |�k′|2 and |�k|2, which have no relation to K−d scattering in the p-wave state. The
terms may contribute to the s-wave amplitude of K−d scattering, defining the effective range of K−d scattering in the s-wave
state, but they vanish in the complex s-wave scattering length of K−d scattering, calculated at �k, �k′ → 0.

The contribution of the double scattering to the complex p-wave scattering length of K−d scattering is

(
ã

(1)
K−d

)
d.sc. = md

mK + md

1

3

(
â(0)

p â(1)
n + â(0)

n â(1)
p − â(0)

x â(1)
x

) ∫
d3x

r
|�d (�r)|2 = −0.031 − i0.097 fm3, (A20)

where we have used the numerical values of the s-wave and p-wave scattering lengths of K̄N scattering, adduced in Eq. (13).
Thus, the complex p-wave scattering length of K−d scattering, defined by the contributions of the single and double scattering,
is equal to

ã
(1)
K−d = md

mK + md

[
â(1)

p + â(1)
n + 1

3

(
â(0)

p â(1)
n + â(0)

n â(1)
p − â(0)

x â(1)
x

) ∫
d3x

r
|�d (�r)|2

]
= −0.262 + i0.548 fm3. (A21)

We obtain the contribution of the triple scattering by using the exact solution. It reads

(ã(1)
K−d )tr.sc. = md

mK + md

1

36

(
â(1)

p

[
7â(0)

p â(0)
n + (â(0)

n )2 − (â0(0)
n )2

] + â(1)
n

{
7
[
â(0)

p â(0)
n − (â(0)

x )2
] + â(0)

p

(
â(0)

n + â0(0)
n

)
− 2â(0)

n â(0)
x

} + â(1)
x â(0)

x

(
â0(0)

n − â(0)
n

) + â0(1)
n

(
â(0)

x )2
) ∫

d3x

r2
|�d (�r)|2 = −0.015 − i0.023 fm3. (A22)

The complex p-wave scattering length of K−d scattering,
accounting for the contributions of the single, double, and
triple scattering, is equal to ã

(1)
K−d = (ã(1)

K−d )s.sc. + (ã(1)
K−d )d.sc. +

(ã(1)
K−d )tr.sc. = −0.277 + i0.525 fm3. The discrepancy of this

value with the complex p-wave scattering length, defined
by the solution of the Faddeev equations (8), is δã

(1)
K−d =

−0.075 − i0.072 fm3. It makes up about 21% and 17% of the
real and imaginary parts of the total complex p-wave scattering
length, respectively.

APPENDIX B: COMPLEX s-WAVE AND p-WAVE
SCATTERING LENGTH OF K̄ N SCATTERING

In this Appendix we outline our procedure for the calcula-
tion of the complex s-wave and p-wave scattering lengths of
K̄N scattering. Following [4], the amplitude M0(K̄N → PB)
for the K̄N → PB reaction, where P is a pseudoscalar meson
and B is a ground-state baryon, we calculate in the tree
approximation. For this aim we use the chiral Lagrangian (14)
and the chiral Lagrangians

Lint[�
∗(x), B(x), P (x)] = g�∗�̄∗(x)γ μγ 5〈pμ(x)B(x)〉,

Lint[Bj (x), B(x), P (x)] = 〈B̄j (x)iγ μ[sμ(x), B(x)]〉−gAj
(1−αDj

)〈B̄j (x)γ μ[pμ(x), B(x)]〉 − gAj
αDj

〈B̄j (x)γ μ{pμ(x), B(x)}〉,
(B1)

describing the low-energy interactions invariant under chiral SU(3) × SU(3) symmetry of the �(1405) resonance, defined by the
field operator �∗(x), and the baryon resonances Bj (8), defined by the field operators Bj (x) for j = 1, 2 [8], with the ground-state
baryon octet B(x) and the octet P (x) of pseudoscalar mesons.

In addition we take into account the interactions, invariant under chiral SU(3) × SU(3) symmetry, of the (1232) resonance
and 	(1385) resonance, defined by the field operators Dabc

μ (x), with the ground-state baryon octet B(x) and the octet P (x) of
pseudoscalar mesons. They are defined by the chiral Lagrangian

Lint[D(x), B(x), P (x)] =
√

2gD̄abc
μ (x)�μνγ 5(pν(x))daB

e
b(x)εcde + H.c., (B2)

where the tensor �μν is given in [33]: �μν = gμν − (Z + 1/2)γ μγ ν , where the parameter Z is arbitrary. There is no consensus
on the exact value of Z. From theoretical point of view Z = 1/2 is preferred [33]. Phenomenological studies give only the bound
|Z| � 1/2 [34,35]. For the components of the decuplet Dabc(x) we use the following definition:

D111(x) = ++(x), D112(x) = 1√
3
+(x), D122(x) = 1√

3
0(x), D222(x) = −(x),

D113(x) = 1√
3
	∗+(x), D123(x) = 1√

6
	∗0(x), D223(x) = 1√

3
	∗−(x), (B3)

D133(x) = 1√
3

∗0(x), D233(x) = 1√

3

∗−(x), D333(x) = �−(x).

064314-9



M. FABER et al. PHYSICAL REVIEW C 84, 064314 (2011)

According to [11], baryon resonances B1(8) =
[N (1440),�(1600), 	(1660)] and B2(8) = [N (1710),
�(1810), 	(1880)] belong to octets of SU(3)f symmetry [11]
with the coupling constants gA1 = 0.62, αD1 = 0.85 and
gA2 = 0.12, αD2 = −1.55. The experimental value of g is
g

exp
 = (1.11 ± 0.04)gA [36], where gA = 1.2750 [13,14].

We take the coupling constant of the �(1405) resonance
equal to g�∗ = 0.504. It defines the width ��∗ = 40 MeV,
which fits well the imaginary part of the complex s-wave
scattering length of K−p scattering, measured recently by the
SIDDHARTA Collaboration [18].

The scalar resonances f0(980) and a0(980) with quantum
numbers I (JP ) = 0(0+) and I (JP ) = 1(0+) [11], respec-
tively, give contributions to the t channels of elastic and
inelastic K̄N scattering. According to Jaffe [9], the scalar
mesons f0(980) and a0(980) are four-quark states (or K̄K

molecule), which belong to an SU(3)flavor nonet. According
Ecker et al. [10], the interaction of the scalar-meson resonances
with octets of pseudoscalar mesons with derivative couplings
invariant under chiral SU(3) × SU(3) symmetry takes the form

LS(x) = 2
√

2gS tr[S(x)∂μU †∂μU (x)]. (B4)

Here S(x) is a nonet of scalar qqq̄q̄ mesons, defined by [9]

Sb
a =

⎛
⎜⎜⎜⎜⎜⎜⎝

a0
0√
2

− ε

2
a+

0 κ+

a−
0 − a0

0√
2

− ε

2
κ0

κ− κ̄0 − f0√
2

+ ε

2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B5)

where gS is a phenomenological coupling constant.
The components of the nonet Eq. (B5) have the

following quark structures: �a0 = (a+
0 , a0

0, a
−
0 ) = [ss̄ud̄,

ss̄(uū − dd̄)/
√

2, dūss̄] is the isotriplet of a0(980)
mesons, κ = (κ+, κ0) = (us̄dd̄, ds̄uū) and κ̄ = (κ̄0,−κ−) =
(sd̄uū,−sūdd̄) are doublets of strange scalar four-quark
states, f0 = ss̄(uū − dd̄)/

√
2 is the f0(980) meson, and ε

is the isoscalar scalar ε(700) meson with quark structure
ε = ud̄dū and mass mε = 700 MeV [9]. The nonet S(x) is
constructed in such a way that the f0(980) meson decouples
from the ππ states, whereas the ε(700) meson couples to the
ππ states but decouples from the K̄K states [9]. This implies
that the ε(700) meson does not contribute to the amplitude
of K−p scattering. The value of the coupling constant gS

can be defined from the experimental values of the width
of the a0πη decay �

exp
a0 = (50/100) MeV and the κ → Kπ

decay �κ = (290 ± 21) MeV if we identify the scalar-meson
resonance κ with the scalar meson K∗

0 (1430) having mass
mK∗

0
= (1414 ± 6) MeV [11]. We get gS = 28 MeV, which

gives the width of the a0πη decay equal to �a0 = 59 MeV.
This agrees well with the experimental data �

exp
a0 = (50/100)

MeV [11].
We define the interaction of the scalar-meson resonances

S(x) with ground-state baryon octets as

LSBB(x) = gDtr{B̄(x){B(x),S(x)}} + gF tr{B̄(x)[B(x),S(x)]},
(B6)

where gD and gF are the phenomenological coupling constants
of the symmetric and antisymmetric SBB interactions. The
coupling constant gF should be set zero gF = 0 since the
ε(700) meson does not couple to the N̄N pair [9].

The amplitude of the K̄N → PB reaction, calculated in
the tree approximation with the Lagrangians (14), (B1), (B2),
(B3), (B4), and (B6), takes the form

M0(K̄N → PB) = M (c)(K̄N → PB) + M (b)(K̄N → PB) + M (WT)(K̄N → PB) + M
(s)
�∗ (K̄N → PB)

+M
(s)

JP = 1
2
+(K̄N → PB) + M

(u)

JP = 1
2
+(K̄N → PB) + M

(s)

JP = 3
2
+ (K̄N → PB) + M

(u)

JP = 3
2
+(K̄N → PB)

+M
(t)
JP =0+ (K̄N → PB), (B7)

where the first two amplitudes are defined by the interactions
with the coupling constants dj for j = 1, 2, 3, 4 and b� for
� = 0,D, F , respectively, the third amplitude is caused by the
Weinberg-Tomozawa interactions, and the other amplitudes
are defined by the exchange of the �(1405) resonance, the
ground-state baryons, the baryon resonances Bj (8) for j =
1, 2, the 	(1385) and (1232) resonances, and the scalar-
meson resonances, respectively, in the s, u, and t channels.

Expanding the amplitudes in Eq. (B7) in powers of relative
momenta �k and �k′ and keeping only the terms independent of
relative momenta and proportional to the scalar product �k′ · �k,
we define the contributions to the complex s-wave and p-wave
scattering lengths of K̄N scattering. Using the matrix equation

M−1 = M−1
0 − G, we obtain the unitarized amplitudes of the

reactions K̄N → PB in terms of the complex s-wave scatter-
ing lengths of all scattering channels K̄N → PB for PB =
K̄N and πY , where Y = 	,�0 hyperons. The input parame-
ters of the approach dj for j = 1, 2, 3, 4 and gD are fitted from
the experimental data on the complex s-wave scattering length
of the SIDDHARTA Collaboration, the ratios of the cross sec-
tions of inelastic K−p scattering in the s-wave state, measured
at threshold of the K−p → πY reactions [37,38], and the
experimental cross sections of elastic and inelastic K−p scat-
tering [39–43]. The cross sections for elastic and inelastic K−p

scattering are calculated at the account for the pure Coulomb
scattering and the Coulomb interactions for the pairs of
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charged particles in the initial and final states. As a result of this
fit we get the following numerical values for the input parame-
ters: d1 = −0.389 fm, d2 = −0.709 fm, d3 = +2.816 fm, and
d4 = −0.619 fm. As has been found, the contribution of the
scalar-meson resonances is not essential for reasonable values
of the coupling constant gD . The calculated complex s-wave
scattering lengths of K̄N scattering describe reasonably well
the experimental data on elastic and inelastic K−p scattering
in the low-energy region [39–43] not far above the threshold of
the production of the K̄0n pair, which is equal to k0 � 58 MeV

in the center-of-mass frame. Using the numerical values of
the input parameters d1 = −0.389 fm, d2 = −0.709 fm, d3 =
+2.816 fm, and d4 = −0.619 fm, we evaluate the complex
s-wave scattering lengths and, correspondingly, the complex
p-wave scattering lengths of K̄N scattering. The imaginary
parts of the s-wave and p-wave scattering lengths are defined
by the dominant contributions of the �(1405) and 	(1385)
resonances, which agrees well with the analysis of low-energy
K̄N interactions in the s-wave and p-wave states applied to
the problem of antikaon-nuclear quasibound states [5].
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[5] W. Weise and R. Härtle, Nucl. Phys. A 804, 173 (2008).
[6] B. W. Lee, Phys. Rev. 170, 1359 (1968).
[7] J. Gasser, V. E. Lyubovitskij, and A. Rusetsky, Phys. Rep. 456,

167 (2008), and references therein.
[8] A. N. Ivanov et al., Phys. Rev. A 71, 052508 (2005).
[9] R. L. Jaffe, Phys. Rev. D 15, 267 (1977).

[10] G. Ecker et al., Nucl. Phys. B 321, 311 (1989).
[11] K. Nakamura et al. (Particle Data Group), J. Phys. G 37, 075021

(2010).
[12] S. L. Adler and R. F. Dashen, in Current Algebras and

Applications to Particle Physics (Benjamin, New York,
1968).

[13] H. Abele, Prog. Part. Nucl. Phys. 60, 1 (2008).
[14] M. Faber et al., Phys. Rev. C 80, 035503 (2009).
[15] J. Gasser and H. Leutwyler, Phys. Rep. 87, 77 (1982).
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