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The collective bosonic Hamiltonian is derived from the microscopic nucleonic Hamiltonian by the generalized
density matrix method. Independent parameters in the collective Hamiltonian are fixed completely, solutions are
given in detail. The random phase approximation corresponds to the harmonic potential of the current approach.
The full solution (very close to the exact diagonalization) is obtained over the whole region of parameters
including and beyond the instability point of the random phase approximation. The method is tested in the simple
Lipkin model.
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I. INTRODUCTION

The effective bosonic Hamiltonian has long been used
to describe collective excitations in nuclear physics, most
frequently in the form of the geometric Bohr Hamiltonian [1,2]
and in the interacting boson model [3]. Broad sets of nuclear
data are described with a few parameters that change smoothly
across the nuclear chart. Such models provide a qualitative
picture of low-lying collective motion, especially important in
heavy nuclei where the full shell-model calculations are hardly
feasible. To put the phenomenological theory on solid grounds,
serious efforts were devoted to calculating these parameters
microscopically from the underlying nucleonic Hamiltonian.
But the complete microscopic theory is still missing after
several decades. The original formulation [4] in terms of direct
boson expansion of fermionic operators had practical problems
related to convergence, see detailed review [5].

In this work it is shown that the microscopic theory based
on the generalized density matrix (GDM) fixes the collective
bosonic Hamiltonian completely. This method was proposed
long ago [6–8] and was applied to nuclear rotation [7,9,10]
and large-amplitude collective motion [11–13]. Recently the
general construction of the GDM method was reexamined [14],
but only one constraint was found in each even order of the
anharmonic collective Hamiltonian, which seemed insufficient
to fix the latter completely. In this work we show that the GDM
method is actually self-sufficient: with the renormalization of
collective operators, the redundant degrees of freedom in the
collective Hamiltonian are removed, and the theory is left with
truly independent parameters whose number is equal to the
number of the constraints imposed by the GDM method. In
this way, the whole procedure of calculating the collective
Hamiltonian becomes clear.

Section II introduces the renormalization of collective
variables and identifies the independent parameters in the
collective Hamiltonian. Then we show in detail how to fix
them by the GDM method in Sec. III. In Sec. IV the GDM
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procedure is tested in the Lipkin model with perfect agreement.
Section V discusses future working directions.

II. EQUIVALENT REPRESENTATION OF BOSONIC
HAMILTONIAN

In what follows, for simplicity of notations we omit all
details related to the angular momentum vector coupling. This
part is necessary in realistic calculations but does not contain
principal difficulties. The collective bosonic Hamiltonian
is first constructed as an expansion over all time-reversal
invariant combinations of the collective coordinate α and
collective momentum π ,

H = ω2 α2

2
+ π2

2
+ �(30) α

3

3!
+ �(12) {α, π2}

4
+ �(40) α

4

4!

+�(22) {α2, π2}
8

+ �(04) π
4

4!
+ �(50) α

5

5!
+ · · · . (1)

Here and below, the curly brackets denote anticommutator,
{A,B} = AB + BA. Microscopic estimates of quite general
type [15] show that �(mn) ∼ �−(m+n−2)/2, where � is the
collectivity factor, the effective number of simple quasiparticle
excitations contributing to the collective mode. The solvable
Lipkin model and quadrupole plus pairing model confirm these
estimates [14]. In the case of strong collectivity, � � 1. In
Eq. (1) all terms with the right symmetry are kept thus the
expansion is complete. However, it is overcomplete. Different
expansions are equivalent if they are related by canonical
transformations of collective variables α and π . The number
of independent parameters of H should be the number of
possible combinations as in Eq. (1) minus the number of
allowed transformations.

Let us count the number of transformations (α, π ) →
(ᾱ, π̄ ),

α =
∑

m�0,n�0

x(mn) 1

2

{ᾱm, π̄n}
m!n!

,

(2)

π =
∑

m�0,n�0

y(mn) 1

2

{ᾱm, π̄n}
m!n!

,
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which preserve the commutator algebra,

[α, π ] = [ᾱ, π̄ ] = i. (3)

The transformation parameters x(mn), y(mn) being of the order
�−(m+n−1)/2 will not change the dependence of �(mn) in Eq. (1)
on �. The constant terms, x(00) and y(00), corresponding to a
trivial translation of origin are not needed as this choice is
already made by selecting �(10) = �(01) = 0 in the collective
Hamiltonian (1); in the case of a multipole collective mode
such terms would violate rotational symmetry. In the linear
terms we can set x(10) = y(01) = 1, which would correspond
to a rescaling of α or π [�(02) = 1 in Eq. (1)]. The parameters
x(mn) and y(mn) vanish for odd and even n, respectively, because
of the wrong time-reversal symmetry.

Using Eqs. (2) and (3) we have

[α, π ] = i

2

∑

rsmn

x(mn)y(r−m,s−n)

× [m(s − n) − n(r − m)]

m!n!(r − m)!(s − n)!
{ᾱr−1, π̄ s−1}, (4)

where in the coefficient of {ᾱr−1, π̄ s−1} we keep only the
leading terms in 1/�, that is, terms ∼�−(r+s−2)/2. The sum-
mation runs over r � m and s � n, and as seen from the
numerator, r � 1 and s � 1. In addition, s is odd, otherwise
x(mn)y(r−m,s−n) vanishes. The starting term, r = s = 1, gives
correctly i. The terms with r + s � 3 and an odd s should
vanish,

0 =
∑

mn

x(mn)y(r−m,s−n) m(s − n) − n(r − m)

m!n!(r − m)!(s − n)!
. (5)

These relations constrain x(mn) and y(mn) in the transforma-
tions (2).

Let us identify the independent parameters in the collective
Hamiltonian (1), removing the redundant degrees of freedom
related to the transformations (2). In the quadratic order,
the transformations (2) do not change the harmonic terms
ω2

2 α2 + 1
2π2; thus, there is one independent parameter ω2.

In the cubic order, the transformations (2) with nonzero x(20),
x(02), and y(11) influence the Hamiltonian parameters �(30) and
�(12) through the harmonic terms; there is one constraint (5)
with (rs) = (21). Thus, the renormalization of the collective
variables removes the skew terms: �(30) and �(12) can be set to
zero and there remains no independent parameter in this order.
In the quartic order, the transformations (2) with nonzero x(30),
x(12), y(21), and y(03) influence �(40), �(22), and �(04); and there
are two constraints (5) with (rs) = (31) and (13). Thus, there
is one independent parameter; we can, for example, choose it
to be �(40), and set �(22) and �(04) to zero.

This process continues to anharmonic terms of higher
orders. There is one independent parameter in each even
order (we can choose it to be �(n0) excluding all momentum-
dependent high-order terms), and there are no independent
parameters in odd orders. In summary, the independent
parameters in the collective Hamiltonian (1) can be identified

in the following form:

H = 1

2
π2 + V (α2),

(6)

V (α2) = ω2 α2

2
+ �(40) α

4

4!
+ �(60) α

6

6!
+ �(80) α

8

8!
+ · · · .

In Ref. [14] we have shown that the GDM method gives one
constraint in each even order of anharmonicity, thus fixes all the
independent parameters in Eq. (6). In this sense the collective
Hamiltonian is completely determined. In the next section
we rewrite the GDM equations and solutions derived in
Ref. [14] in a compact form valid up to an arbitrary order.

III. GENERALIZED DENSITY MATRIX FORMALISM

Starting from the antisymmetrized fermionic Hamiltonian,

H =
∑

12

ε12a
†
1a2 + 1

4

∑

1234

V1234a
†
1a

†
2a3a4, (7)

we calculate the equations of motion for the one-body density
matrix operators, R12 ≡ a

†
2a1,

[R12,H ] = [ε, R]12 − 1

2

∑

345

V5432a
†
5a

†
4a3a1

+ 1

2

∑

345

V1345a
†
2a

†
3a4a5. (8)

Here and below the numerical indices 1, 2, . . . combine all
single-particle quantum numbers. On the right hand side
[ε, R]12 = ∑

3(ε13R32 − R13ε32).
It is assumed that there exists a subspace of the full

spectrum of the original Hamiltonian (7), corresponding to
the experimental “band” of collective states interconnected by
large transition rates. We map the exact equations of motion (8)
onto this collective subspace. Inside the collective subspace
the dynamics of the GDM operators R12 is assumed to be
generated by the expansion over collective operators α and π ,

R12 �
∑

m�0,n�0

r
(mn)
12

1

2

{αm, πn}
m! n!

, (9)

where “�” means projecting onto the collective subspace. The
first term ρ ≡ r (00) is just the usual single-particle density ma-
trix. The terms with operators α and π generate the interaction
within the band. The original fermionic Hamiltonian is mapped
onto the collective subspace as

H �
m+2l�2∑

m�0,l�0

�(m,2l) 1

2

{αm, π2l}
m!(2l)!

, (10)

where �(20) = ω2, �(02) = 1. Here we changed the numerical
normalization in Eqs. (9) and (10) from 1/(2mn), as used
in Ref. [14], to 1/2/(m!n!), in order to include the case of
zero m or n. The relevant results for the two-body operators
(the so-called “saturation principle” in Ref. [14]) can be
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summarized as

a
†
4a

†
3a2a1 � a

†
4a1 · a

†
3a2 − a

†
4a2 · a

†
3a1, (11)

that is, it factorizes into antisymmetrized products of one-body
GDM operators. The term in Eq. (11) without collective
variables, ρ1234 = ρ14ρ23 − ρ24ρ13, is routinely used to derive
the time-dependent Hartree-Fock equation. We have also
calculated the equations of motion for the two-body operators
a
†
4a

†
3a2a1, and found that Eq. (11) is a consistent solution.
With Eqs. (9)–(11), the equation of motion (8) is mapped

onto the collective subspace,

[R12,H ] � [ε + W {R}, R]12, (12)

where

W {R}12 ≡
∑

34

V1432R34 (13)

is the generalized self-consistent field. The substitution of
Eq. (9) into Eq. (13) gives the mapping of the latter, W {R} �∑

mn w(mn) 1
2

{αm,πn}
m! n! , where w(mn) ≡ W {r (mn)}. On the left hand

side of Eq. (12), the intermediate states (between R12 and H )
are restricted to those of the collective subspace, assuming
large transition amplitudes. Substituting Eqs. (9) and (10)
into Eq. (12), comparing coefficients with the same operator
structure, we come to the final set of GDM equations with
different r � 0, s � 0,

p+2l�2∑

0�p(�r+1),0�2l(�s+1)

2l(r + 1 − p) − (s + 1 − 2l)p

(r + 1 − p)!(s + 1 − 2l)!p!(2l)!
· i�(p,2l)r (r+1−p,s+1−2l)

= 1

r!s!
[ε, r (rs)] +

∑

0�p(�r),0�q(�s)

1

(r − p)!(s − q)!p!q!
[w(r−p,s−q), r (pq)]. (14)

Equation (14) with (rs) = (00) gives the Hartree-Fock (HF) equation,

0 = [ε + W {ρ}, ρ]. (15)

It is natural to use the HF single-particle basis that diagonalizes f {ρ} ≡ ε + W {ρ} and ρ simultaneously, providing the orbital
energies e1 and occupation numbers n1,

f12 = δ12e1, ρ12 = δ12n1. (16)

Later we use e12 ≡ e1 − e2 and n12 ≡ n1 − n2.
For K = r + s � 1 in Eq. (14), we solve a linear set of coupled equations for r (rs)|r+s=K . The formal solution can be written

as

r (mn)|m+n=K = −
∑

r+s=K

p+2l�3∑

0�p(�r+1),0�2l(�s+1)

2l(r + 1 − p) − (s + 1 − 2l)p

(r + 1)(s + 1)
C

p

r+1C
2l
s+1 · i�(p,2l) · η

(mn)
(rs) : r (r+1−p,s+1−2l)

+
∑

r+s=K

p+q�r+s−1∑

0�p(�r),0�q(�s)

Cp
r Cq

s · η
(mn)
(rs) : [w(r−p,s−q), r (pq)], (17)

where C
q
p = p!/[q!(p − q)!], and we have introduced the

“weight” matrix η
(mn)
(rs) so that (η(mn)

(rs) : r)12 = η
(mn)
(rs)12r12. The

matrix η is given by

η
(mn)
(rs) = (

D−1
K

)(rs)
(mn), (18)

where DK is a tridiagonal matrix of dimension K + 1,

(DK )(mn)
(mn) = −e,

(DK )(m+1,n−1)
(mn) = i · n, (19)

(DK )(m−1,n+1)
(mn) = −i · ω2m.

We give as an example the first two η matrices. For K = 1,

η
(mn)
(rs) =

1
e2 − ω2

⎛
⎝

(mn) \ (rs) (01) (10)
(01) −e −i
(10) iω2 −e

⎞
⎠ , (20)

and for K = 2,

η
(mn)
(rs) =

1
−e(e2 − 4ω2)
⎛
⎜⎜⎝

(mn) \ (rs) (02) (11) (20)
(02) e2 − 2ω2 2ie −2
(11) −iω2e e2 ie
(20) −2ω4 −2iω2e e2 − 2ω2

⎞
⎟⎟⎠ .×

(21)

From Eq. (21) we read, for example, η
(20)
(02)12 =

{−2ω4}/{−e12[(e12)2 − 4ω2]}. All η matrices with an
even K have the factor 1/e [see for example Eq. (21)], thus the
e1 = e2 matrix elements of r

(mn)
12 cannot be directly calculated

from the solutions (17). However, if we set n1 = n2 in Eq. (17)
and simplify, the 1/e12 divergence is canceled; the resulting
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expression is used to calculate r
(mn)
12 . The e1 = e2 matrix ele-

ments of r
(mn)
12 are expressed in terms of lower-order quantities.

In each order K , substituting r (mn) from Eq. (17) into
w

(mn)
12 = ∑

34 V1432r
(mn)
34 results in a linear set of coupled

equations for the latter, from which the e1 �= e2 matrix
elements of w

(mn)
12 are solved in terms of lower-order quantities,

which in turn gives the e1 �= e2 matrix elements of r
(mn)
12 by

Eq. (17). However, if K = 2L + 1 is odd, the determinant
for w(mn) is zero. This can be proved as following. Summing
Eq. (14) with proper weights we get

ix = [W {y}, ρ] + [f, y] + · · · ,
(22)

−iω2y = [W {x}, ρ] + [f, x] + · · · ,

where

x =
∑

0�t�L

νt

(2t + 1)!(2L − 2t)!
r (2t+1,2L−2t),

y =
∑

0�t�L

μt

(2t)!(2L + 1 − 2t)!
r (2t,2L+1−2t),

in which μt and νt are solved from (0 � t � L, μL+1 =
ν−1 = 0)

−2L − 2t

2t + 1
ω2μt+1 + μt = 1

2t + 1
νt ,

ω2νt − 2t

2L − 2t + 1
νt−1 = 1

2L + 1 − 2t
ω2μt .

The “· · · ” in Eq. (22) are lower-order quantities. It is seen that
the explicitly shown parts of Eq. (22) have the same structure
as the random phase approximation (RPA) equations: ir (10) =
[w(01), ρ] + [f, r (01)] and −iω2r (01) = [w(10), ρ] + [f, r (10)].
This finishes the proof. The zero determinant means that the
set of equations for w(mn) is linearly dependent, and there is
a constraint in each order of odd K , entering as a solvability
condition. These constraints are the main results of the GDM
formalism, from which the parameters �(pq) of the collective
Hamiltonian are calculated. Then w(mn) is solved from this
zero-determinant set, with only a factor undetermined. This
factor is fixed by the constraint indicated below Eq. (23).

If the GDM formalism is self-consistent, the substitution of
the solutions (17) into Eq. (7) should reproduce the assumed
Hamiltonian (10),

�(mn) = Tr [εr (mn)]

+ 1

2

∑

0�p(�m),0�q(�n)

Cp
mCq

n Tr[r (pq)w(m−p,n−q)]. (23)

In an order of odd K = m + n, all the parameters �(mn) are
checked correctly. In an order of even K = m + n, all but
one �(mn) are checked correctly; this one leftover degree-of-
freedom/constraint is used to fix the remaining “undetermined
factor” mentioned at the end of the last paragraph.

In practical applications, Eq. (6) may not be the most
convenient choice for the independent parameters of the
collective Hamiltonian, which means solving the equations
of motion in the GDM method to infinitely high orders.
Alternatively, we can pick up a certain number (labeled N )
of terms in Eq. (1), putting other terms to zero; in other words,

we assume that the original fermionic Hamiltonian (7) can be
sufficiently accurately mapped onto a collective Hamiltonian
with these N terms. Then in the GDM method we need to
solve the equations of motion up to the (2N )th order, in order
to get N constraints. The quality of the assumption of mapping
can be checked self-consistently within the GDM method: if
the assumption is good, constraints from the orders higher
than 2N should be satisfied automatically. For the realistic
nucleonic Hamiltonian, mapping onto a bosonic Hamiltonian
is guaranteed by the success of old phenomenological studies.
The mapped quadrupole phonon αμ is not necessarily the RPA
phonon that is “proportional” to the real quadrupole moment
Qμ; rather αμ is such a renormalized operator (2) that the
mapping onto a given form (the selected N terms) of the
bosonic Hamiltonian is the “best”. The possibly infinite series
of the bosonic Hamiltonian expanded in the RPA phonon
is “pushed”/resummed into the selected finite-N terms by
the renormalization (2). The expansion of Qμ in terms of
αμ and πμ is obtained by substituting the solution (9) into
Qμ = Tr[qμR].

IV. LIPKIN MODEL

The above GDM formalism is tested in the Lipkin model
(σ = ±1; l = 1, 2, . . . , �):

H =
∑

σ,l

σ

2
a
†
σ,laσ,l + κ

2

∑

σ,l,l′
a
†
σ,la

†
σ,l′a−σ,l′a−σ,l . (24)

The exact solution is well known [5], using

J+ = J
†
− =

∑

l

a
†
+1,la−1,l , Jz = 1

2

∑

σ,l

σa
†
σ,laσ,l, (25)

J+ = A†
√

2J − A†A, Jz = −J + A†A, 2J = �, (26)

A = 1√
2

(iuα + vπ ), A† = 1√
2

(−iuα + vπ ), (27)

u ≈ √
1 + 2κJ , v = − 1

u
, (28)

the Hamiltonian (24) is written in the form (10) with only three
nonzero terms,

ω2 = 1 − (κ�)2,

�(40) = 6κ(1 + κ�)2, (29)

�(04) = −6κ

(1 + κ�)2
.

Equations (29) are accurate in the leading order of 1/�. In
the mapping, the Hamiltonian (24) is first written in terms of
the quasi-spin operators Jz and J± by Eq. (25), then of the
boson operators A† and A by the Holstein-Primakoff transfor-
mation (26). The canonical transformation (27) introduces the
collective coordinate α and momentum π , whose scales are
fixed by Eq. (28), so that �(02) = 1.

Now we apply the GDM formalism to the Hamiltonian (24).
By going up to the sixth order in equations of motion, we get
three constraints to fix ω2, �(40), and �(04), and they agree
with the exact results (29). Hence the GDM method solves the
Lipkin model completely in the leading order of 1/�.
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FIG. 1. (Color online) The excitation energies En − E0 of the first
five excited states as a function of κ in the model (24) with � = 30.
The red dashed-dotted lines are the RPA results (diagonalizing
the harmonic Hamiltonian ω2

2 α2 + 1
2 π 2). The blue dashed lines

are obtained by diagonalizing ω2

2 α2 + 1
2 π 2 + �(40)

4! α4 in the infinite
phonon space {|0 � n < +∞〉}, where ω2 and �(40) are given by
Eq. (29). The black solid lines show the exact results by diagonalizing
the original fermionic Hamiltonian (24) directly.

In Fig. 1, a numerical example is performed for � = 30.
As one can see, the first few excited states of the anharmonic
Hamiltonian agree very well with the exact results, while
the RPA fails very soon as κ increases to the critical point.
For realistic medium and heavy even-even nuclei, only in the

vicinity of magic numbers the low-lying collective excitations
can be sufficiently described by the QRPA; in very many
cases, including the soft-spherical, γ -unstable, and rotational
dynamics, the collective modes lie beyond the critical point of
RPA, so that the higher-order anharmonicities in the collective
Hamiltonian are indispensable.

In Fig. 1, as conventionally done, the bosonic Hamil-
tonian (29) is diagonalized in the infinite phonon space
{|0 � n < +∞〉} (|n〉 is the state with n phonons, A†A|n〉 =
n|n〉), dropping the “divergent” �(04) < 0 term. However,
as discussed in Ref. [14], the Hamiltonian (29) should be
diagonalized in the finite physical space, which is known in
the Lipkin model to be {|0 � n � �〉}. Acting A† more than
� times on the ground state runs out of valence particles thus
gives zero. Within the finite physical space, the �(04) < 0
term does not generate divergences and should be kept. In
order to identify the errors of the “anharmonic” curve in
Fig. 1, we plot the errors of the excitation energies for the
first four excited states in a set of calculations in Fig. 2. The
overlap of curves 1 and 2 means that convergence is reached
for the first few excitation energies in the finite physical
space {|0 � n � �〉}. Going from curve 2 to curve 3, we
remove the error owing to the inaccuracy of the harmonic
potential ω2 in the next-to-leading order in 1/�: We replace
ω2 in Eq. (29) by ω2 = 1 − κ2�(� + 2), which is correct
not only in the leading order but also in the next-to-leading
order of 1/�. Finally in curve 4 the “divergent” term
�(04) < 0 is included. We see that curve 4 is a much better
calculation than curve 1. The little “kink” on curve 4 near
κ = 0.05 coincides with the phase transition of the system,
where the spectrum becomes double-degenerate inside a

0 0.05 0.1
−0.02

0

0.02

0.04

0.06

κ

E
1 e

rr
or

 

 
 1
 2
 3
 4

0 0.05 0.1
−0.2

−0.1

0

0.1

0.2

κ

E
2 e

rr
or

0 0.05 0.1
−0.2

−0.1

0

0.1

0.2

κ

E
3 e

rr
or

0 0.05 0.1
−0.4

−0.2

0

0.2

0.4

κ

E
4 e

rr
or

(a) (b)

)d()c(

FIG. 2. (Color online) The errors of the first four excitation energies E − Eexact as a function of κ in a set of calculations. (a), (b), (c), and
(d) are for the first, second, third, and fourth excitation energy, respectively. Four lines on each panel are obtained by diagonalizing different
collective Hamiltonian in different phonon space. Curve 1 (green dashed line): H = ω2

2 α2 + 1
2 π 2 + �(40)

4! α4 in {|0 � n < +∞〉}. Curve 2 (red

dotted line): H = ω2

2 α2 + 1
2 π 2 + �(40)

4! α4 in {|0 � n � �〉}. Curve 3 (blue dashed-dotted line): H = ω2

2 α2 + 1
2 π 2 + �(40)

4! α4 in {|0 � n � �〉},
but with ω2 = 1 − κ2�(� + 2) replacing that in Eq. (29). Curve 4 (black solid line): H = ω2

2 α2 + 1
2 π 2 + �(40)

4! α4 + �(04)

4! π 4 in {|0 � n � �〉},
also with ω2 = 1 − κ2�(� + 2). Curves 1 and 2 closely overlap and are indistinguishable on the figure.
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well-developed (large enough ω2 < 0) double-well potential
(see Fig. 1).

The microscopically calculated “divergent” terms should
always be kept in the bosonic Hamiltonian when diagonalizing.
Within the finite physical space, they mix nearby states
without causing divergences. Because we are considering
large amplitude (α2) vibrations, the effect of the �(04)π4 < 0
term in the Lipkin model is small. “Divergent” terms with α

will have a bigger effect; also they may influence transition
rates more than energies. In general, the exact finite physical
space, bounded approximately by the collectivity factor �,
is unknown. However, � can be estimated by the number of
effectively nonvanishing one-particle–one-hole excitations in
r

(10)
12 and r

(01)
12 . Changing slightly the boundary of the physical

space, the lowest several states would not change much, as
they were composed mainly of the states with the smallest
phonon numbers and therefore insensitive to the boundary. In
this way the physical effects of the microscopically calculated
“divergent” terms can be included.

From Fig. 2 we see that the next-to-leading order
terms in 1/� of the RPA frequency ω2 could be im-
portant. In realistic nuclei, the critical point ω2 ≈ 0 could
be reached at a relatively small �. For example, 100

46Pd
at the critical point [16] has only eight valence parti-
cles (although pairing increases collectivity). Within the
GDM method, we should calculate the next-to-leading order
terms in 1/� in the RPA equations. Firstly, Eq. (11),
which is equivalent to N [a†

4a
†
3a2a1] � N [a†

4a1]N [a†
3a2] −

N [a†
4a2]N [a†

3a1] by Wick theorem (N [· · · ] is nor-
mal ordering with respect to the HF ground state),
should be replaced by 2N [a†

4a
†
3a2a1] � N [a†

4a1]N [a†
3a2] −

N [a†
4a2]N [a†

3a1] + N [a†
3a2]N [a†

4a1] − N [a†
3a1]N [a†

4a2], be-
cause of the apparent antisymmetry. Secondly, terms in
Eq. (11) that are not factorizable into products of one-body
GDM operators should be taken into account, probably by
calculating the equations of motion of a

†
4a

†
3a2a1.

V. CONCLUSION

In summary, we presented the detailed procedure of micro-
scopic calculations of the collective bosonic Hamiltonian by
the GDM method. The correct rotational symmetry and effects
of pairing for realistic nuclear systems were not discussed here
but they are included in the whole scheme in a straightforward
manner, see Secs. VI and VII of Ref. [14]. The most interesting
realistic problems include the microscopic description of soft
nuclei with large vibrational amplitude and therefore strong
anharmonicity that leads to various group structures of the
dynamics and possible shape instability and coexistence. An-
other type of problems concerns the coupling between various
collective modes, an interesting example of recent experi-
mental observation of clear quadrupole-octupole correlation
in Xe isotopes can be found in Ref. [17]. We can also mention
that the noncollective states not included in the band form an
environment that can be accounted for at least in average using
the statistical approach based on the ideas of quantum chaos
and complexity. The work along these lines is in progress.
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