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The description of nuclei as a system of α particles is considered using a two-variable integrodifferential
equation describing A-boson systems. The method is based on the assumption that two-body forces are the
dominant ones within the system. This allows the expansion of the A-body wave function in Faddeev components
which in turn can be expanded in potential harmonics that result either in a coupled system of differential equations
in the hyper-radius r or, when projected on the rij space, in a single two-variable, integrodifferential equation
that includes the two-body correlations exactly. The formalism can be readily applied to systems of up to
A ∼ 20. Going beyond this number one encounters increasingly difficult numerical problems stemming mainly
from the structure of the kernel in the integral. However, these problems can be eliminated by transforming the
equation, when A → ∞, into a new one having a kernel which has a simple analytical form and is easy to use in
calculations. We employed the transformed equation to investigate the possibility of describing nuclei consisting
of A α particles. It was found that for the Ali-Bodmer potential the A = 5 system, i.e., the 20Ne, is the most
stable while the A = 10 system, i.e., the 40Ca, the binding energy has a maximum. Various aspects concerning
the formation of Aα nuclei are discussed.
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I. INTRODUCTION

Of all possible cluster formations inside nuclei, the α

cluster is the most favored due to its symmetry and the large
binding energy that makes it stable in the nuclear environment.
Therefore, it comes as no surprise that a vast number of
nuclear structure calculations and experiments have been
carried out in the past based on the α-cluster formation and
its role in nuclear reactions (see, for example, Ref. [1]). As
a consequence, a range of α − α and α-nucleus interactions
have been constructed and a plethora of models and methods
have been employed in these studies.

Many investigations were also carried out based on the
assumption that the nucleus is composed entirely of α

particles. For light nuclei, one can even apply accurate methods
employed in few-body system studies. We mention here, as
examples, the variational calculations for the ground state of
12C [2], the α-cluster description of the 12C(0+

2 ) resonance
using a hyperspherical harmonics type formalism [3], the
practically exact calculations based on the Alt-Grassberger-
Sandhas integral equations [4] for the 12C [5] and for the
16O [6] systems, and the calculations for light nuclei within
the framework of the generator coordinate approach [7].
More recently, Ronen et al. [8] employed the hyperspherical
formalism to study the spectrum of the 16O assuming that
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it is a 4α particle system and showed that the use of two-
and three-body forces reproducing the α − α phase shifts,
the 8Be resonance, and the first and second O+ states of
12C are not sufficient to describe the low-lying experimental
spectrum of 16O. This was achieved by using an additional
four-body force. The condensation of α cluster in nuclei
was also considered with increasing interest and numerous
investigations concerning this problem were carried out while
the open questions in the field have been summarized by
Funaki et al. in Ref. [9].

In the present work we are concerned with the application of
a formalism suitable to study systems consisting of A bosons.
This formalism is based on the assumption that the wave
function of the A-body system can be expanded in Faddeev
components which in turn are expanded in terms of potential
harmonics (PH) [10] to obtain a set of differential equations in
the hyper-radius r . Alternatively, by projecting on the rij space,
with rij = xi − xj in terms of the particle coordinates xi , one
can obtain a single integrodifferential equation (IDE) for the
wave function components which depend on two variables
only, namely, the hyper-radius r and an angular variable z,
while the corresponding kernel is expressed in terms of Jacobi
polynomials P

α, β

K (z) where α = (3A − 8)/2, β = 1/2 + �.
For pairs in an S state (� = 0) this equation is known as the
S-projected integrodifferential equation (SIDE) [11,12] and it
has been successfully used in few-body system studies in the
past.

The IDE can be easily applied to bosonic systems (up
to A ∼ 20). For larger systems numerical problems creep
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in due to the large number of oscillations of the Jacobi
polynomials P

α, β

K (z) as well as to the difficulties in using
the so-called weight function W (z) ≡ (1 − z)α(1 + z)β in-
volved in the calculations since the W (z) has a δ-function-
like peak for z ∼ −1 as A → ∞, i.e., as α → ∞, which
is difficult to control numerically. However, as shown in
Ref. [14], the IDE can be transformed, for large A to a much
simpler form in which the kernel has a simple analytical
form that does not depend on any polynomial, is indepen-
dent from α, and only depends linearly on the number of
particles A.

It is noted here that the SIDE, and consequently the SIDEL,
formalism takes into account the two-body correlations exactly
while the Coulomb interactions can also be included. This has
been discussed in the past by Fabre and collaborators (see,
for example, Ref. [13]). This formalism has been successfully
applied to Bose-Einstein condensation of 87Rb atoms confined
by an externally applied trapping potential Vtrap(r) [14]
and the results obtained were in excellent agreement with
those obtained by the potential harmonics expansion method
(PHEM) [15] and the diffusion Monte Carlo (DMC) [16]
method.

In Sec. II, we briefly outline the basic ideas and derivations
of our formalism. Our results are presented in Sec. III followed
by a summary of our conclusions in Sec. IV.

II. FORMALISM

Let us briefly summarize our formalism and discuss its
basic characteristics. We start from the assumption that the
system consists of A identical bosons and that the interboson
interaction can be expressed as a sum of pairwise acting central
potentials so that the Hamiltonian of the system has the form

H = T + V = T +
∑

i<j�A

Vij . (1)

The inclusion of higher order correlations in the Hamiltonian
and the expansion of the corresponding A-body wave function
in a systematic way has been described by Barnea and Viviani
[17]. The Hamiltonian (1) implies that the wave function can
be written as a product of a harmonic polynomial H[L](x) of
minimal degree L, characterized by the quantum numbers [L]
describing the state, and a sum of two-body amplitudes

�(x) = H[L](x)
∑

i<j�A

F (rij , r), (2)

where x is the coordinate vector x = (x1, x2, . . . , xA), rij =
xi − xj , in terms of the particle coordinates xi , and r

is the hyper-radius, r = [2/A
∑

i<j�A r2
ij ]1/2. The two-body

amplitudes F (rij , r) obey the A-body Faddeev-type equation

[T − E] H[L](x) F (rij , r)

= −V (rij ) H[L](x)
∑

k<l�A

F (rkl, r). (3)

In the present work we consider pairs in an S state with L = 0
in which case the amplitude F is a function of rij = |xi −
xj |, i.e., the amplitudes are now written as F (rij , r). Letting

F (rij , r) = P (z, r)/rL+1 where now L = (D − 3)/2 [D is the
dimensionality of the A-boson system, D = 3(A − 1)] and
z = 2r2

ij /r2 − 1, and projecting on the rij space one gets the
SIDE equation describing the A-particle system [11,12]

h̄2

m

[
T̂ (r) + 4

r2
T̂ (z) − E

]
P (z, r)

= −V (rij )

[
P (z, r) +

∫ +1

−1
K(z, z′) P (z′, r) dz′

]
, (4)

where T̂ (r) and T̂ (z) are given by

T̂ (r) = − ∂2

∂r2
+ L(L + 1)

r2
,

(5)

T̂ (z) = − 1

W (z)

∂

∂z
(1 − z2)W (z)

∂

∂z

and W (z) is the weight function which, for bosonic systems,
is given by

W (z) = (1 − z)α(1 + z)β, (6)

where α = (D − 5)/2 and β = 1/2. The kernel K(z, z′) is the
projection function which is expressed in terms of the Jacobi
polynomials P

α,β

K (z),

K(z, z′) = W (z′)
∑
K

(
f 2

K − 1
)

hK

P
α,β

K (z)P α,β

K (z′) . (7)

The hK is a normalization constant given by

hK =
∫ +1

−1

[
P

α,β

K (z)
]2

W (z) dz (8)

and f 2
K by [11,14]

f 2
K = 1

+ 2(A − 2)P α,β

K (−1/2)+[(A − 2)(A − 3)/2]P α,β

K (−1)

P
α,β

K (+1)
.

(9)

When the number of particles A is large the evaluation of
the Jacobi polynomials P

α,β

K (z) and of the weight function
W (z) becomes problematic since the polynomials are highly
oscillatory for large α, while the behavior of the weight
function for z → −1 peaks sharply, resulting in intractable
numerical problems. To avoid this we consider first the
transformation [14]

rij = rζ/
√

α (10)

with z = 2ζ 2/α − 1. Then for large A the Jacobi polynomials
P

α,β

K can be expressed in terms of Laguerre polynomials L
1/2
K ,

P
α,β

K

(
2r2

ij /r2 − 1
) −→

α→∞(−1)KL
1/2
K

(
αr2

ij /r2
)

≡ (−1)KL
1/2
K (ζ 2) , (11)

which are independent of α, while the troublesome term
(1 − z)α is removed from the weight function which now
becomes

W (z) = CWζe−ζ 2
, (12)
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where CW is a normalization constant. By considering a further
transformation

P (ζ, r) = eζ 2/2

ζ
Q(ζ, r) , (13)

one obtains the integrodifferential equation for large A

(SIDEL) [14]

h̄2

m

{
T̂ (r) + 4

r2
T̂ (ζ ) − E

}
Q(ζ, r)

= −V (rij )

[
Q(ζ, r) +

∫ √
α

0
KI (ζ, ζ ′)Q(ζ ′, r) dζ ′

]
, (14)

where now the T̂ (ζ ) is given by

T̂ (ζ ) = α

4

[
− ∂2

∂ζ 2
+ ζ 2 − 3

]
. (15)

The new form of the kernel KI is

KI (ζ, ζ ′) = 2(A − 2)√
3

{[
A − 3 − 2

3

(
ζ 2 − 3

2

) (
ζ ′2 − 3

2

)]

× ζ ζ ′e−(ζ 2+ζ ′2)/2 + 4√
3

[
e−[5(ζ−ζ ′)+2ζ ζ ′]/6

−e−[5(ζ+ζ ′)−2ζ ζ ′]/6
]}

(16)

which can be easily computed for any value of A.
We stress once more that the above formalism takes

the two-body correlations exactly into account while the
inclusion of the Coulomb potential VC(rij ) is trivial. Higher-
order correlations stemming from other partial waves can be
included, albeit in an approximate way, using the hypercentral
potential as discussed in Refs. [11,14].

Equation (14) can be solved using the adiabatic ap-
proximation which involves first the solution of the
eigenequation,

h̄2

m

[
4

r2
T̂ (ζ ) + Uλ(r)

]
Qλ(ζ, r)

=−V

(
r√
α

ζ

)[
Qλ(ζ, r)+

∫ √
α

0
KI (ζ, ζ ′)Qλ(ζ ′, r)dζ ′

]
,

(17)

to obtain the eigenpotentials Uλ(r) for each value of r having
an eigenvalue k2

λ. The later is obtained by solving

u′′
λ(r) + [

k2
λ + Veff(r)

]
uλ(r) = 0, (18)

FIG. 1. Two body Ali-Bodmer type potentials V2(rij ) employed:
straight line—AB1, [18], dashed line—AB2 [2], and dotted line—
AB3 [19].

where the effective potential Veff(r) is given by

Veff(r) = L(L + 1)

r2
− Uλ(r). (19)

Our results are obtained using the shallowest adiabatic
potential Uλ(r).

III. RESULTS

Let us apply the formalism to Aα systems where A is
the number of α particles involved. The choice of the input
potential is quite tricky as there is a wide range of α − α

interactions employed in the past in various investigations.
These include deep local potentials sustaining a Pauli for-
bidden state and shallow potentials with a repulsive core, as
well as nonlocal interactions. From the local potentials, the
Ali-Bodmer one [18] is perhaps the most well known and
used. It consists of two Gaussian terms the one describing
the short-range repulsive behavior and the other the attractive
exterior part,

Vαα(rij ) = Vre−μ2
r r

2
ij − Vae−μ2

ar
2
ij . (20)

Various choices of the constants lead to variant potentials. One
such potential (designated as AB1) is with Vr = 475 MeV,
Va = 130 MeV, μr = 0.7 fm−1, and μa = 0.475 fm−1.
Another version is the one employed by Consoni et al. [2] in-
teraction (designated as AB2) in their variational calculations
for the ground state of 12C and subsequently used by other
researchers as well. The parameter used are Vr = 360 MeV,
Va = 130 MeV, μr = 0.7 fm−1, and μa = 0.475 fm−1. The
corresponding Coulomb potential used with the above strong

TABLE I. The ground state binding energies EA (in MeV), the EA/A, and the average size of the condensate rav (in fm) obtained with the
variant α − α Ali-Bodmer potential AB1 (the rms of the α-particle is not added to rav).

A 3 4 6 8 10 13 15 17 20 25

EA (MeV) 1.13 2.33 3.99 5.00 5.42 5.27 4.81 4.17 2.96 0.56
EA/A 0.38 0.58 0.67 0.63 0.54 0.41 0.32 0.25 0.15 0.002
rav 2.70 2.84 3.12 3.32 3.47 3.63 3.72 3.793 3.89 4.07
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FIG. 2. The binding energy per particle, EA/A as a function of
the number of particles A for the Ali-Bodmer potentials AB1 (solid
line) and AB2 (dotted line).

force is

VC(rij ) =
⎧⎨
⎩

4e2

2rC

[
3 − ( rij

rC

)2]
, rij < rC

4e2

rij
, rij � rC

(21)

with rC = 1.5 fm. The Ali-Bodmer potential does not, how-
ever, give accurately the experimental resonant energy of 8Be
and in general is not fully adequate for describing the dilute
3α-boson system [19,20]. Yamada and Schuck [19] proposed
a potential (designated as AB3) with with Vr = 50 MeV,
Va = 34.101 MeV, μr = 0.4 fm−1, and μa = 0.3 fm−1 with
quite a softer short-range repulsion. It reproduces the resonant
energy of 8Be at E2α = 92 keV in agreement with experiment.
The corresponding Coulomb potential used is the folded
potential

VCoul(rij ) = 4e2

rij

erf(arij ) (22)

TABLE II. The ground state binding energies EA (in MeV) and the
average size rav (in fm) obtained with the variant α − α Ali-Bodmer
AB2 potential of Ref. [2]. Eexp

A are the experimental binding energies
for α-chain nuclei.

SIDE SIDE-L Other

A EA rav EA rav E
exp
A [23] HH [2]

3 5.71 2.23 7.27 6.60
4 10.27 2.40 5.15 2.60 14.43
5 14.70 2.94 10.56 2.11 19.17
6 19.03 3.17 15.11 2.52 28.48
7 10.27 2.40 19.44 2.78 38.46
10 34.28 3.00 31.17 2.82 59.09
20 57.56 3.38 55.73 3.25
50 69.70 3.62 69.88 3.49
100 58.54 3.04
200 44.83 2.76
500 15.50 2.66
600 5.15 2.60

FIG. 3. The effective potentials Veff (r)A = 3, 6, 10, 17, and, 25,
read from left to right, for the AB1 potential.

widely used in resonating group model calculations [21]. It
is noted that this potential has been employed in Ref. [19]
together with a three-body force. The three potentials are
shown in Fig. 1 for comparison.

We see that while the Ali-Bodmer potentials AB1 and AB2
have a strong short-range repulsion which stimulates the Pauli
state envisaged by the resonating group method (RGM) [21],
the AB3 interaction in comparison has a very weak repulsion
implying weak short-range correlations. It is noted here that
the Consoni et al. potential AB2 sustains a two-body bound
state at E2 = 1.75 MeV.

Let us consider first the most repulsive AB1 potential. The
results obtained with this potential with the SIDE equation,
Eq. (4), (no need to use the SIDEL method), are given in
Table I together with the average size rav which is defined as
the root-mean-square distance of the individual particle from
the center of mass [22]

rav =
〈

1

A

A∑
i=1

(�xi − �X)2

〉1/2

= 〈r2〉1/2

√
2A

, (23)

where �X is the center-of mass-coordinate. In Fig. 2 the binding
energy per particle, EA/A, as a function of the number
of particles A is plotted. These results reveal that for the
Ali-Bodmer potential AB1 the 20Ne nucleus has a maximal
stability while for the A = 10 system, i.e., the 40Ca, the

FIG. 4. Same as in Fig. 3 for the AB2 potential and for A =10,
20, 50, 100, 200, and 500.
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TABLE III. Same as for Table II for the AB3 potential.

SIDE SIDE-L

A EA rav EA rav

3 0.11 3.01
4 1.17 3.40
10 10.98 3.64 8.51 3.48
20 38.06 3.78 34.59 3.69
50 186.10 3.94 177.58 3.90
100 647.54 4.00
200 2504.46 4.06
500 5602.25 4.08

binding energy has a maximum. By switching off the Coulomb
force the maximal stability is shifted at A ∼ 13 with Eb =
40.61 MeV and Eb/A = 3.12 MeV/particle while at A = 80
we obtain Eb = 130.97 MeV and Eb/A = 1.64 MeV/particle.
For A > 80 the eigenpotential has a very long range and the
numerics become cumbersome and difficult to control.

The importance of the short-range repulsion and of the
existence of a bound state can be readily exposed by consid-
ering the AB2 potential [2]. The results obtained are given in
Table II. It is seen that the binding energies are picked around
A = 50 and the formation of an α-particle systems ceased at
A ∼ 600. The binding energy per particle, EA/A, as a function
of the number of particles A is also plotted in Fig. 2.

It is interesting to see the behavior of the effective potential
(19) for the two interactions, AB1 and AB2. They are plotted
in Figs. 3 and 4. It is clear that they are strongly dependent
on the characteristics of the pair potential. The minimum
becomes deeper with increasing A until a critical value is
reached. Thereafter the effective potential becomes shallower
with increasing A, eventually generating a well in the positive
energy region. Here the system does not sustain a bound state,
and instead the eigenpotential generates the condition for a
particle decay through the barrier. The two potentials, however,
differ considerably in the possible number of particles needed
to form a stable system, i.e., the critical value of A depends
very much on the pair potential used.

Let us now turn our attention to the AB3 potential of
Ref. [19] which is very shallow as compared with the AB1 and
AB2 potentials. This potential has been used together with a
three-body force. Although it generates the correct resonance
for the α − α system, it does not sustain any bound state (Pauli
forbidden state) needed to interpret the existence of π in the
� = 0 phase shifts at k = 0, i.e., δ0(0) = π , and therefore it
is unrealistic. Nevertheless, it is of interest to see the results
generated with this potential having such a weak short-range
repulsion. The binding energy results obtained are given in
Table III. The values obtained obviously are unrealistic and
exemplify the importance of the short-range correlations.

IV. CONCLUSIONS

We employed a two-dimensional integrodifferential equa-
tion describing A-boson systems and taking the underlying
two-body correlations exactly into account, to study the
α-cluster model of nuclei. For large number of A, this equation
is transformed to a simpler form which can be used in

studies for any arbitrary value of A � 10 without any major
computational problem. Both equations, designated for pairs
in an � = 0 state as SIDE and SIDEL respectively, have as
input two-body forces only (including Coulomb forces).

In handling the problem, we faced the question of how to
choose the α − α interaction from the plethora of the available
potentials. It is known that the α − α potential should be
strongly repulsive at short range. Within the the RGM theory
the corresponding potential has a deep attractive well that
reproduces the α − α phase shifts but also sustains an unphys-
ical Pauli-forbidden bound state. This unphysical state can be
removed by two successive supersymmetric transformations
[24] that results to a potential with a repulsive core having 1/r2

behavior at short distances. This behavior can be satisfactorily
simulated using the Ali-Bodmer type potential which consists
of two Gaussian terms generating a relatively strong repulsion
at short distances and a shallow attractive well. The existence
of the strong short-range repulsion, however, may give rise
to numerical problems and thus various variant potentials
with less repulsion were used in nuclear physics studies. To
investigate the importance and the role played by these partly
equivalent interactions we choose three potentials having quite
different characteristics: The one with a strong repulsion at
short distances [18], the second is that used in variational
calculations by Consoni et al. [2] which sustains a bound
state, and the third is the one employed by Yamada and Schuck
in the Gross-Pitaevskii mean-field formalism together with a
three body force [19] that has a very soft short range repulsion.

The use of a potential (AB1) that generates strong short-
range correlations gave binding energies which are too weak
and are peaked around A = 10, corresponding to the closed-
shell nucleus 40Ca while beyond A ∼ 26 no formation of a
nucleus consisting of α particles is possible.

The results obtained with the other two potentials (i.e.,
using a potential having a bound state or with soft repulsion at
short distances to ease calculations) leads to unrealistic results.
The existence of the bound state in the AB2 potential gave
results which indicated that α clusters can be generated for
very large number A (of the order of A ∼ 600) while the lack
of strong repulsive correlations in the AB3 potential gives rise
to strongly bound systems with large numbers of particles.

It is interesting to note that the rav does not change much
with increasing A for all potentials used. It is not clear what
the reason for this is, but it seems that this is related to a
trade-off between the attraction of the strong force and the
repulsion of the centrifugal and Coulomb terms that results in
eigenpotentials which favor the existence of bound states.

We would like to mention here that such large α clusters
could be formed in the center of red giants, where helium
start burning. It could also formed, as was emphasized by
Schramm et al., [25], when quantum helium liquid is formed
due to the crust evolution of the accretion on old neutron stars.
Existing approximations of the description of such phenomena
and structures are based mainly on Jastrow-type ansatze for
two- and three-body correlations [26]. Although the present
alternative method (SIDEL) includes two-body correlations
only, the incorporation is exact and the numerics are tractable
to any size of system. Therefore the use of this method in such
studies is promising.
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