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Accurate calibration of relativistic mean-field models: Correlating observables and providing
meaningful theoretical uncertainties
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Theoretical uncertainties in the predictions of relativistic mean-field models are estimated using a chi-square
minimization procedure that is implemented by studying the small oscillations around the chi-square minimum.
By diagonalizing the matrix of second derivatives, one gains access to a wealth of information—in the form of
powerful correlations—that would normally remain hidden. We illustrate the power of the covariance analysis by
using two relativistic mean-field models: (a) the original linear Walecka model and (b) the accurately calibrated
FSUGold parametrization. In addition to providing meaningful theoretical uncertainties for both model parameters
and predicted observables, the covariance analysis establishes robust correlations between physical observables.
In particular, we show that, whereas the correlation coefficient between the slope of the symmetry energy and the
neutron-skin thickness of lead is indeed very large, a 1% measurement of the neutron radius of lead may only be
able to constrain the slope of the symmetry energy to about 30%.
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I. INTRODUCTION

The need to provide meaningful uncertainties in theoretical
predictions of physical observables is a theme that is gaining
significant momentum among the scientific community. In-
deed, the search for a microscopic theory that both predicts and
provides well-quantified theoretical uncertainties is one the
founding pillars of the successful UNEDF Collaboration [1,2].
Moreover, as recently articulated in an editorial published in
the Physical Review A [3], theoretical predictions submitted
for publication are now expected to be accompanied by
meaningful uncertainty estimates. The need for “theoretical
error bars” becomes particularly critical whenever models
calibrated in certain domain are used to extrapolate into
uncharted regions.

Although firmly rooted in QCD, computing both the
nucleon-nucleon (NN) interaction and the properties of nuclei
in terms of the underlying quark and gluon constituents
remains a daunting task. Hence, rather than relying strictly
on QCD, one uses the properties of QCD (such as chiral
symmetry and relevant energy scales) as a guide to construct
phenomenological interactions using nucleons and mesons as
the fundamental degrees of freedom. However, QCD has little
to say about the strength of the underlying model parameters,
which must then be constrained from experimental data. For
example, deuteron properties along with two-body scattering
data are used to build a nucleon-nucleon interaction that
may then be used (supplemented with a phenomenological
three-body force) to compute ab initio the properties of light
nuclei. Attempting ab initio calculations of the properties of
medium-to-heavy nuclei remains well beyond the scope of the
most powerful computers to date. In this case one must bring
to bear the full power of density functional theory (DFT).
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Following the seminal work by Kohn and collaborators [4],
DFT shifts the focus from the complicated many-body wave
function to the much simple one-body density. Moreover,
Kohn and Sham have shown how the one-body density may
be obtained from a variational problem that reduces to the
solution of a set of mean-field-like (“Kohn-Sham”) equations
[5]. The form of the Kohn-Sham potential is in general
reminiscent of the underlying (bare) NN potential. However,
the constants that parametrize the Kohn-Sham potential are
directly fitted to many-body observables (such as masses
and charge radii) rather than two-body data. In this manner
the complicated dynamics originating from exchange and
correlation effects get implicitly encoded in the empirical
constants. Yet regardless of whether the effective interaction is
fitted to two-nucleon or to many-body data, the determination
of the model parameters often relies on the optimization of a
quality measure.

In this contribution we focus on density functional theory
and follow the standard protocol of determining the model
parameters through a χ2-minimization procedure. This pro-
cedure is implemented by (a) selecting a set of accurately
measured ground-state observables and (b) demanding that
the differences between these observables and the predictions
of the model be minimized. Note that in the present framework
a model consists of both a set of parameters and a χ2

measure. In general, modifying the χ2 measure (e.g., by
adding observables) results in a change in the model param-
eters. Traditionally, once the χ2 minimum has been found
one proceeds to validate the model against observables not
included in the quality fit. Nuclear collective excitations are a
potentially “safe” testing arena for the model as they represent
the small oscillations around the variational ground state. But
what happens when the model must be extrapolated to regions
of large isospin imbalance and high density as in the interior
of neutron stars? Clearly, without reliable theoretical uncer-
tainties it is difficult to assess the predictions of the model. To
remedy this situation we propose to study the small oscillations
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around the χ2 minimum—rather than the minimum itself.
As we shall see, such a statistical analysis—inspired by the
recent study reported in Ref. [6]—provides access to a wealth
of information that remains hidden if one gets trapped in
the χ2 minimum. Among the critical questions that we will
be able to answer is how fast the χ2 measure deteriorates
as one moves away from the minimum. Should additional
observables be added to the χ2 measure to better constrain the
model? And if such observables are hard to determine are there
others that may be more readily accessible and provide similar
constraints? A particularly topical example that illustrates such
a synergy is the correlation between the neutron-skin thickness
and electric dipole polarizability of neutron-rich nuclei [6,7].
A detailed analysis of such a correlation—which involves a
systematic study of the isovector dipole response—is beyond
the scope of this initial study and will become the subject
of a forthcoming publication. Yet the study of correlations
between observables sensitive to the the poorly determined
density dependence of the symmetry energy will become a
recurring theme throughout this contribution.

The paper has been organized as follows. In Sec. II we
develop the necessary formalism to implement the correlation
analysis. This section is divided in two parts: (a) a discussion
on the structure of a class of relativistic mean-field models
and (b) a relatively short—yet fairly complete—derivation of
the statistical formalism required to perform the covariance
analysis. In Sec. III two simple examples are used to illustrate
the power of the formalism. This exercise culminates with the
estimation of meaningful theoretical error bars and correlation
coefficients. Our conclusions and outlook are presented in
Sec. IV.

II. FORMALISM

In this section we develop the formalism required to
implement the correlation analysis. First, in Sec. II A we
introduce a fairly general class of relativistic mean-field (RMF)
models that are rooted in effective-field-theory concepts, such
as naturalness and power counting. Second, in Sec. II B we
present a self-contained derivation of the ideas and formulas
required to implement the covariance analysis.

A. Relativistic mean-field models

Relativistic mean-field models traditionally include an
isodoublet nucleon field (ψ) interacting via the exchange
of two isoscalar mesons (a scalar φ and a vector V μ), one
vector-isovector meson (bμ), and the photon (Aμ) [8–10].
The noninteracting Lagrangian density for such a model may
be written as follows:

L0 = ψ̄(iγ μ∂μ − M)ψ + 1
2∂μφ ∂μφ − 1

2m2
sφ

2

− 1
4V μνVμν + 1

2m2
vV

μVμ − 1
4 bμν · bμν

+ 1
2m2

ρ bμ · bμ − 1

4
FμνFμν, (1)

where Vμν , bμν , and Fμν are the isoscalar, isovector, and
electromagnetic field tensors, respectively. That is,

Vμν = ∂μVν − ∂νVμ, (2a)

bμν = ∂μbν − ∂νbμ, (2b)

Fμν = ∂μAν − ∂νAμ. (2c)

The four constants M , ms, mv, and mρ represent the nucleon
and meson masses and may be treated (if wished) as empirical
parameters. Often, however, ms is determined from an accurate
calibration procedure. The interacting Lagrangian density has
evolved significantly over the years and now incorporates a
variety of meson self-interacting terms that are designed to
improve the quality of the model. Following ideas developed
in Ref. [10] we write the interacting Lagrangian density in the
following form:

Lint = ψ̄

[
gsφ −

(
gvVμ + gρ

2
τ · bμ + e

2
(1 + τ3)Aμ

)
γ μ

]
ψ

−U (φ, Vμ, bμ). (3)

In addition to the standard Yukawa interactions, the Lagrangian
is supplemented with an effective potential U (φ, Vμ, bμ)
consisting of nonlinear meson interactions that serve to
simulate the complicated dynamics that lies beyond the
realm of the mean-field theory. Indeed, by fitting the various
coupling constants directly to nuclear properties—rather than
to two-nucleon data—the complicated dynamics originating
from nucleon exchange, short-range effects, and many-body
correlations gets implicitly encoded in a small number of
parameters. For the purpose of the present discussion we
introduce explicitly all nonlinear terms up to fourth order in
the meson fields. That is,

U (φ, V μ, bμ)= κ

3!
�3 + λ

4!
�4 − ζ

4!
(WμWμ)2 − �v(WνW

ν)

× (Bμ · Bμ) − ξ

4!
(Bμ · Bμ)2 + κ0�WμWμ

+ κ1�Bμ · Bμ + λ0�
2WμWμ

+ λ1�
2Bμ · Bμ−�′

v(WμWν)(Bμ · Bν)+· · · ,
(4)

where the following definitions have been introduced: � ≡
gsφ, Wμ ≡ gvVμ, and Bμ ≡ gρbμ. Given that the present
analysis will be restricted to the study of uniform nuclear
matter, terms proportional to the derivatives of the meson
fields have not been included. As it stands, the relativistic
model contains 14 undetermined parameters (1 meson mass,
3 Yukawa couplings, and 10 meson self-interaction terms).
Note that if one incorporates the occasionally used scalar-
isovector δ meson [11,12], then 9 additional parameters must
be included to this order (1 Yukawa coupling, and 8 meson
self-interaction terms).

A model with 14—or 23—parameters goes significantly
beyond the early relativistic models that were able to reproduce
the saturation point of symmetric nuclear matter as well as vari-
ous ground-state observables with only a handful of parameters
(a single meson mass and three Yukawa couplings) [8,13,14].
Although fairly successful, those early models suffered from
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a major drawback: an unrealistically large incompressibility
coefficient. Such a problem was successfully solved by Boguta
and Bodmer with the introduction of cubic and quartic scalar
meson self-interactions [15]. Remarkably, using only these six
parameters (ms, gs, gv, gρ, κ, λ) it is possible to reproduce a
host of ground-state properties of finite nuclei (both spherical
and deformed) throughout the periodic table [16,17]. And by
adding two additional parameters (ζ and �v) the success of
the model can be extended to the realm of nuclear collective
excitations and neutron-star properties [18–21].

Given that the existent database of both laboratory and
observational data appears to be accurately described by
an 8-parameter model, is there any compelling reason to
include 6—or 15—additional parameters? And if so, what
criteria does one use to constrain these remaining parame-
ters? A meaningful criterion used to construct an effective
Lagrangian for nuclear-physics calculations has been proposed
by Furnstahl and collaborators based on the concept of
“naive dimensional analysis” and “naturalness” [22–26]. The
basic idea behind naturalness is that once the dimensionful
meson fields (having units of mass) have been properly
scaled using strong-interaction mass scales, the remaining
dimensionless coefficients of the effective Lagrangian should
all be “natural,” that is, neither too small nor too large [22,27].
Such an approach is both useful and powerful as it allows an
organizational scheme based on an expansion in powers of the
meson fields. Terms in the effective Lagrangian with a large
number of meson fields will then be suppressed by a large
strong-interaction mass scale. In this regard the assumption
of naturalness is essential as the suppression from the large
mass scale should not be compensated by large, i.e., unnatural,
coefficients. It was by invoking the concept of naturalness that
we were able to truncate the effective potential U (φ, V μ, bμ)
beyond quartic terms in the meson fields.

Although we have justified the truncation of the effective
Lagrangian invoking naturalness, we are not aware of an
additional organizational principle that may be used a priori
to limit further the form of U (φ, V μ, bμ). This implies that
all model parameters must be retained, as it is unnatural
to set some coefficients arbitrarily to zero without a com-
pelling symmetry argument [28]. In principle then, all model
parameters must be retained and subsequently determined
from a fit to empirical data. In practice, however, many
successful theoretical models—such as NL3 [16,17] and
FSUGold [19]—arbitrarily set some of these parameters to
zero. The “justification” behind these fairly ad hoc procedures
is that whereas the neglected terms are of the same order in
a power-counting scheme, the full set of parameters is poorly
determined by existing data, so ignoring a subset of model
parameters does not compromise the quality of the fit [10,22].

An important goal of the present work is to investigate
correlations between the parameters of the model and whether
additional physical observables could remove such correla-
tions. To do so we follow the standard protocol of determining
the model parameters through a χ2-minimization procedure.
Traditionally, this procedure is implemented by selecting a
set of accurately measured ground-state observables for a
variety of nuclei and then demanding that the differences
between the observables and the predictions of the model be

minimized. Once this is done, the success of the model may
be gauged by computing observables not included in the fit.
However, it is often difficult to assess the uncertainty in the
predictions of the model. To address this deficiency we propose
to study the small oscillations around the minimum—rather
than the minimum itself. Such a study—inspired by the
recent statistical analysis presented in Ref. [6]—provides
access to a wealth of information that, in turn, enables one
to specify meaningful theoretical error bars as well as to
explore correlations between model parameters and calculated
observables.

Although the following discussion is framed in the context
of an underlying χ2 measure, our arguments are general
as they merely rely on the existence of a (local) minimum
(or an extremum). As in any small-oscillations problem,
deviations of the χ2 measure from its minimum value are
controlled by a symmetric F × F matrix, where F represents
the total number of model parameters. Being symmetric, such
a matrix may be brought into a diagonal form by means
of an orthogonal transformation. The outcome of such a
diagonalization procedure is a set of F eigenvalues and F

eigenvectors. When a point in parameter space is expanded in
terms of these eigenvectors, the deviations of the χ2 measure
from its minimum value take the form of a system of F

uncoupled harmonic oscillators—with the eigenvalues playing
the role of the F spring constants. The spring constants may
be “stiff” or “soft” depending on whether the curvature around
the minimum is steep or shallow, respectively. As one explores
the parameter landscape along a stiff direction—and thus along
a particular linear combination of model parameters—a rapid
worsening of the χ2 measure ensues, suggesting that the fitting
protocol is robust enough to constrain this particular linear
combination. Conversely, no significant deterioration in the
quality of the fit is observed as one moves along a soft direction.
In this case the χ2 minimum is of little significance as scores
of parameter sets (i.e., models) of nearly equal quality may
be generated. This situation derives from the lack of certain
critical observables in the χ2 measure. As we shall see, the
particular linear combination of model parameters defining
the soft direction often provides enough hints to identify the
missing observable(s). Moreover, through this sort of analysis
one may establish correlations between observables that are
particularly sensitive to such soft directions. This is important
as certain observables may be easier to measure than others.
A particular topical case is that of the neutron-skin thickness
in 208Pb and the electric dipole polarizability [6,7,29].

B. Linear regression and covariance analysis

As discussed earlier, relativistic models of nuclear structure
are characterized by a number of model parameters, such as
masses, Yukawa couplings, and nonlinear meson coupling
constants. Following the notation of Ref. [6], we denote a
point in such a parameter space by p = (p1, . . . , pF ), where
F is the total number of model parameters. In principle, each
value of p represents a model. In practice, of course, one is
ordinarily interested in the “best model” as defined by a quality
measure. To obtain the best model, the model parameters
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are often calibrated to a well-determined set of ground-state
properties of finite nuclei (such as masses and charge radii)
that is supplemented by a few bulk properties of infinite
nuclear matter (such as the binding energy, incompressibility
coefficient, and symmetry energy at saturation density). Once
the model parameters and the group of observables have
been selected, the optimal parameter set is determined via a
least-squares fit to the following χ2 quality measure:

χ2(p) =
N∑

n=1

(O(th)
n (p) − O(exp)

n

�On

)2

. (5)

Here N (often much larger than F ) denotes the total number
of selected observables whereas “th” and “exp” stand for
the theoretical prediction and experimental measurement,
respectively. Further, every observable is weighted by a factor
of (�On)−1 that is (customarily) associated with the accuracy
of the measurement. Often, however, the selected experimental
data are insufficient to significantly constrain the parameters
of the model. This is particularly true for the case of the poorly
constrained isovector sector of the effective interaction. In
principle, one could alleviate this problem by incorporating
nuclear collective excitations—such as isoscalar-monopole
and isovector-dipole resonances—into the fitting protocol [30].
In practice, however, such a procedure places enormous
computational demands, so the problem is circumvented by
including a carefully selected set of “pseudodata” pertaining to
infinite nuclear matter and strongly constrained by the nuclear
collective modes (such as the incompressibility coefficient
and slope of the symmetry energy). Given that such a set of
nuclear-matter properties are not experimental observables, it
is crucial to assess the appropriate theoretical errors that must
be attached to the pseudodata [31,32]. Moreover, some fitting
protocols aim to incorporate an extensive set of ground-state
properties of both normal and exotic nuclei [33]. Whereas in
the case of stable nuclei these ground-state properties have
been measured with great accuracy, for exotic nuclei such
properties must be inferred from binding-energy and charge-
radii systematics. Typically, observables determined from
systematics are expected to have large theoretical errors. Thus,
it is particularly important to study the sensitivity of the results
to the input theoretical errors. An example of such a sensitivity
study—in the case of the theoretical error associated with the
slope of the symmetry energy—has been included in Sec. III.

We assume that—through a numerical procedure that is not
of particular relevance to this work—an accurately calibrated
model p0 has been found. This implies that all first derivatives
of χ2 vanish at p0. That is,

∂χ2(p)

∂pi

∣∣∣∣
p=p0

≡ ∂iχ
2(p0) = 0 (for i = 1, . . . , F ). (6)

The existence of the minimum (as opposed to a maximum
or saddle point) also implies that a particular set of F

second derivatives (to be defined shortly) must all be positive.
Approaches based on a least-squares fit to a χ2 measure often
culminate with the identification of the optimal parametriza-
tion p0. The predictive power of the model may then be
appraised by computing observables that were not included
in the fitting protocol. Less often, however, least-squares-fit

approaches are used to evaluate the “uniqueness” of the model.
In other words, how fast does the χ2 measure deteriorate as
one moves away from p0? Clearly, if the minimum is relatively
flat (at least along one direction), then there will be little (or
no) deterioration in the quality of the fit. Through a statistical
analysis, we will be able to obtain a physically reasonable
domain of parameters. We implement such an analysis by
studying the small oscillations around the χ2 minimum. As
a bonus, we will be able to uncover correlations between
observables and attach meaningful theoretical error bars to the
theoretical predictions [6]. To start, we expand the χ2 measure
around the optimal p0 model. That is,

χ2(p) = χ2(p0)

+ 1

2

F∑
i,j=1

(p − p0)i(p − p0)j ∂i∂jχ
2(p0) + · · · . (7)

For convenience, we quantify the departure from the minimum
by defining scaled, dimensionless variables

xi ≡ (p − p0)i
(p0)i

. (8)

In terms of these scaled variable, the quadratic deviations of
the χ2 measure from its minimum value take the following
compact form:

χ2(p) − χ2(p0) ≡ �χ2(x) = xT M̂ x, (9)

where x is a column vector of dimension F , xT is the
corresponding transpose (row) vector, and M̂ is the symmetric
F × F matrix of second derivatives defined by

Mij = 1

2

(
∂χ2

∂xi∂xj

)
x=0

= 1

2
(p0)i(p0)j ∂i∂jχ

2(p0). (10)

Being symmetric, the matrix M̂ can be brought to a di-
agonal form by means of an orthogonal (change-of-basis)
transformation. Denoting by Â the orthogonal matrix whose
columns are composed of the normalized eigenvectors and
by D̂ = diag(λ1, . . . , λF ) the diagonal matrix of eigenvalues,
the following relation holds true: M̂ = ÂD̂ÂT . By inserting
this relation into Eq. (9), we obtain the following simple and
illuminating expression:

�χ2(x) = xT (ÂD̂ÂT )x = ξT D̂ξ =
F∑

i=1

λiξ
2
i . (11)

Here the vector ξ = ÂT x represents a point in parameter
space expressed not in terms of the original model parameters
(gs, gv, . . .) but, rather, in terms of the new (“rotated”) basis.
As previously advertised, the deviations of the χ2 measure
from its minimum value have been parametrized in terms of F

uncoupled harmonic oscillators—with the eigenvalues playing
the role of the spring constants. In this way, each eigenvalue
controls the deterioration in the quality of the fit as one moves
along a direction defined by its corresponding eigenvector. A
“soft” direction—characterized by a small eigenvalue and thus
little deterioration in the χ2 measure—involves a particular lin-
ear combination of model parameters that is poorly constrained
by the choice of observables included in the least-squares
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fit [34]. By isolating such linear combination(s) one can
identify what kind of observables (e.g., isovector observables)
should be added to the χ2 measure to better constrain the
theoretical model. Moreover, one may also explore correla-
tions between various observables (e.g., neutron-skin thickness
and dipole polarizability), thereby facilitating the experimental
extraction of some of these critical observables. This could be
done by either refining existing experimental measurements or
designing brand new ones.

A concept of fundamental importance to the correlation
analysis is the covariance between two observables A and B,
denoted by cov(A,B) [35]. By assuming that (x(1), . . . , x(M))
represent M points (or models) in the neighborhood of the
optimal model x(0) = 0, the covariance between A and B is
defined as

cov(A,B) = 1

M

M∑
m=1

[(A(m) − 〈A〉)(B(m) − 〈B〉)]

= 〈AB〉 − 〈A〉〈B〉, (12)

where A(m) ≡ A(x(m)) and “〈 〉” denotes a statistical average.
From the above definition the correlation coefficient—often
called the Pearson product-moment correlation coefficient—
now follows

ρ(A,B) = cov(A,B)√
var(A)var(B)

, (13)

where the variance of A is simply given by var(A) ≡
cov(A,A). Note that two observables are said to be fully
correlated if ρ(A,B) = 1, fully anticorrelated if ρ(A,B) =
−1, and uncorrelated if ρ(A,B) = 0. If one expands the
deviation of both observables from their average value, then
cov(A,B) may be written as

cov(A,B) =
F∑

i,j=1

∂A

∂xi

[
1

M

M∑
m=1

x
(m)
i x

(m)
j

]
∂B

∂xj

≡
F∑

i,j=1

∂A

∂xi

Cij

∂B

∂xj

, (14)

where both derivatives are evaluated at the minimum (x(0) = 0)
and the covariance matrix Cij has been introduced [35]. In
order to continue, it is critical to decide how the M points
should be generated. A particularly convenient choice is
to assume that these M points (or models) are distributed
according to the quality measure χ2(x). That is, we assume a
probability distribution φ(x) given by

φ(x) = exp
[ − 1

2�χ2(x)
] = exp

(
− 1

2 xT M̂ x
)

. (15)

The covariance matrix may then be written as follows:

Cij =
∫

xixjφ(x)dx∫
φ(x)dx

= 1

Z(0)

[
∂2Z(J)

∂Ji∂Jj

]
J=0

, (16)

where we have defined the “partition” function Z(J) as

Z(J) =
∫

φ(x)eJ·xdx =
∫

exp
( − 1

2 xT M̂ x + J · x
)
dx.

(17)

The above Gaussian integrals may be readily evaluated by
completing the square. One obtains

Z(J) = Z(0) exp
(

1
2 JT M̂−1 J

) ≡ Z(0)eW (J). (18)

Hence, under the assumption that the model parameters are
generated according to the χ2 measure, the covariance matrix
becomes equal to the inverse of the matrix of second derivatives
of χ2. That is,

Cij = 1

Z(0)

[
∂2Z(J)

∂Ji∂Jj

]
J=0

= ∂2W (J)

∂Ji∂Jj

= (M−1)ij . (19)

Finally, then, we arrive at a form for the covariance of two
observables that is both simple and easy to compute:

cov(A,B) =
F∑

i,j=1

∂A

∂xi

(M̂−1)ij
∂B

∂xj

=
F∑

i=1

∂A

∂ξi

λ−1
i

∂B

∂ξi

. (20)

The last term in the previous expression is particularly
illuminating. Consider, for example, the case of a very soft
direction in the χ2 measure, namely, an eigenvector of M̂
(say ξ i) with a very small eigenvalue (say λ−1

i � 1). Such
a situation routinely emerges in RMF models whenever two
or more isovector parameters are included in the Lagrangian
density but only masses and charge—not neutron—radii are
used to define the χ2 measure. Having identified a soft
direction, one could then search for an observable A (e.g., the
neutron-skin thickness in 208Pb) that is particularly sensitive
to such a soft direction (as indicated by ∂A/∂ξi � 1). Adding
such an observable to the χ2 measure will stiffen the formerly
soft direction, thereby improving the predictive power of the
model. Moreover, if A is difficult to measure, one could
search for alternative observables that are strongly correlated
to A. Although some of these notions have been heuristically
implemented for some time, the statistical analysis discussed
here provides a quantitative measure of the correlation between
observables [6].

III. RESULTS

In this section we provide two simple examples that
illustrate the ideas presented in the previous sections. Here
terms such as “unique” and “predictive” will be used to
characterize a model. We regard a model as being unique
if all the eigenvalues of M̂ are large (i.e., λi � 1 for all
i). A model is predictive if it can successfully account
for physical observables not included in the χ2 measure.
Note that a model has been defined here as consisting of
both an underlying Lagrangian density (or effective inter-
action) and a set of physical observables defining the χ2

measure.

A. Example 1: Linear Walecka model

We start this section by discussing the linear Walecka model
as an example of a model that is unique but not predictive. The
Lagrangian density for this case is simple as it only contains
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two coupling constants [8,13]. That is,

Lint = gsψ̄ψφ − gvψ̄γ μψVμ. (21)

The Walecka model is perhaps the simplest model that
can account—at the mean-field level—for the saturation of
symmetric nuclear matter. Indeed, it is the saturation density
and the energy per nucleon at saturation that are typically
used to calibrate the two parameters of the model. To make
this simple model slightly less trivial we determine the two
parameters of the model by minimizing a quality measure
χ2 defined in terms of three “observables”: (i) the saturation
density ρ0, (ii) the energy per nucleon at saturation ε0, and (iii)
the effective Dirac mass M�

0 . Central values and uncertainties
for these three quantities are given as follows:

ρ0 = (0.155 ± 0.01) fm−3, (22a)

ε0 = (−16 ± 1) MeV, (22b)

M�
0 = (0.6 ± 0.1)M. (22c)

By using standard numerical techniques, a minimum value for
the χ2 measure of χ2

0 = 0.34145 is obtained at

g2
s = 93.62647, (23a)

g2
v = 180.48347. (23b)

Having computed the minimum value of the quality measure,
we now examine its behavior around the minimum. This
is implemented by diagonalizing the symmetric matrix of
second derivatives, M̂ [see Eq. (10)]. The outcome of
such a diagonalization procedure is the diagonal matrix of
eigenvalues, D̂, and the orthogonal matrix of normalized
eigenvectors, Â. That is,

D̂ = diag(λ1, λ2) = diag(7.4399 × 104, 8.3195 × 101), (24a)

Â =
(

cos θ sin θ

− sin θ cos θ

)
=

(
0.74691 0.66492

−0.66492 0.74691

)
. (24b)

It is evident that both eigenvalues are very large. This
indicates that both directions in parameter space are stiff and
consequently the quality measure (�χ2 = λ1ξ

2
1 + λ2ξ

2
2 ) will

deteriorate rapidly as one moves away from the χ2 minimum.
Note that λ1 is significantly larger than λ2; this is to be
expected. When probing the parameter landscape along the
first direction (i.e., ξ2 = 0) the scalar and vector coupling
constants move out of phase (see the first column of the matrix
Â). For example, the scalar attraction would get larger at the
same time that the vector repulsion would get smaller. This
would yield a significant increase in the binding energy per
particle and consequently a drastic deterioration in the χ2

measure. Recall that large and cancelling scalar and vector
potentials are the hallmark of relativistic mean-field models.

To quantify the extent by which the linear Walecka
model is unique, we now proceed to compute the vari-
ance in the coupling constants using Eq. (20). We

obtain

σ 2
s = (M̂−1)11 = λ−1

1 cos2 θ + λ−1
2 sin2 θ = 5.3217 × 10−3,

(25a)

σ 2
v = (M̂−1)22 = λ−1

1 sin2 θ + λ−1
2 cos2 θ = 6.7116 × 10−3.

(25b)

In turn, this translates into the following uncertainties in the
optimal values of the coupling constants:

g2
s = 93.62647 (1 ± σs) = 93.62647 ± 6.83008, (26a)

g2
v = 180.48347 (1 ± σv) = 180.48347 ± 14.78596. (26b)

We conclude that the uncertainties in the model parameters—
and thus in most of the predictions of the model—are of
the order of 5%–10%. In principle, the model uncertainties
could be reduced by refining the experimental database [see
Eq. (22)]. The great merit of the present statistical approach is
that one may systematically explore the extent by which the
experimental measurement must be refined in order to achieve
the desired theoretical accuracy. Note that the theoretical
uncertainties are dominated by the smallest eigenvalue of M̂
[see Eq. (25)]. Thus, assessing the uniqueness of the model by
varying each model parameter individually (e.g, first g2

s and
then g2

v) is misleading and ill advised. It is misleading because
in doing so the quality measure will in general be dominated
by the largest eigenvalue [see Eq. (11)]. Yet it is the lowest
eigenvalue that determines the uniqueness of the model.

Carrying out the covariance analysis further, we now
proceed to compute correlation coefficients between model
parameters and observables [see Eqs. (13) and (20)]. In esti-
mating uncertainties in the model parameters one concentrates
on the diagonal elements of the (inverse) matrix of second
derivatives [see Eq. (25)]. Information on the correlation
between model parameters is, however, stored in the off-
diagonal elements. For example, the correlation coefficient
between g2

s and g2
v is given by

ρ(g2
s , g

2
v) = (M̂−1)12√

(M̂−1)11(M̂−1)22

= 0.9977. (27)

The strong (positive) correlation between g2
s and g2

v is easily
understood. Given that configurations in parameter space are
distributed according to the χ2 measure, model parameters in
which g2

s and g2
v move out of phase are strongly suppressed,

as they are controlled by the largest eigenvalue λ1. As a result,
an overwhelming number of configurations are generated with
g2

s and g2
v moving in phase, thereby leading to a large positive

correlation. Correlation coefficients between various isoscalar
observables have been tabulated in Table I. Given that the
correlation coefficients are sensitive to the first derivatives of
the observables along all (eigen)directions [see Eq. (20)], we
have listed them for completeness in Table II. We observe that
all observables display a much larger sensitivity to the stiff
direction than to the soft one. This could (and does) lead to
sensitive cancellations since the large derivatives compensate
for the small value of λ−1

1 . Indeed, the correlation between
the saturation density and the binding energy at saturation is
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TABLE I. Correlation coefficients between isoscalar observables
in the linear Walecka model.

ε0 ρ0 K0 M�
0

ε0 +1.0000 −0.0036 −0.9998 +0.8867
ρ0 −0.0036 +1.0000 −0.0174 +0.4591
K0 −0.9998 −0.0174 +1.0000 +0.8962
M�

0 +0.8867 +0.4591 +0.8962 +1.0000

very small. On the other hand, the incompressibility coefficient
appears to be strongly correlated to the binding energy. This
behavior is also displayed in graphical form in Fig. 1, where
predictions for the various observables were generated with
model parameters distributed according to φ(x) [see Eq. (15)].
Note that the covariance ellipsoids in Fig. 1 were generated by
selecting those model parameters that satisfy �χ2 � 1.

Based on the previous statistical analysis it appears that
the linear Walecka model is unique (at least at the 5%–10%
level). But is the linear Walecka model predictive? To test
the predictability of the model we focus on two physical
observables that were not included in the χ2 measure, namely,
the incompressibility coefficient K0 and the symmetry energy
J . We obtain—with properly computed theoretical errors—the
following results:

K0 = (552.537 ± 29.655) MeV, (28a)

J = (19.775 ± 0.683) MeV. (28b)

Both predictions, even after theoretical errors have been
incorporated, differ significantly from the presently acceptable
values of K0 ≈ (240 ± 20) MeV and J ≈ (32 ± 2) MeV. This
conclusion should hardly come as a surprise. After all, the
predominant role played by the model parameters κ and λ in
softening the incompressibility coefficient and gρ in stiffening
the symmetry energy have been known for a long time. What
is relevant from the present statistical analysis is that we have
established quantitatively that the linear Walecka model fails
because its prediction for K0 differs from the experimental
value by more than 10 standard deviations. We must then
conclude that whereas the linear Walecka is (fairly) unique,
it is not predictive. We now proceed to discuss a particular
extension of the Walecka model that is highly predictive but
not unique: the nonlinear FSUGold model.

TABLE II. First derivatives of the scaled observables (i.e.,
observable scaled to its value at the χ 2 minimum) as a function
of ξ1 and ξ2 evaluated at the χ 2 minimum; see Eq. (20).

∂ξ1 ∂ξ2

∂ε0 −1.6698 × 101 −1.1716 × 10−1

∂ρ0 3.6619 −5.7333 × 10−1

∂K0 1.4261 × 101 1.1055 × 10−1

∂M∗
0 −3.2349 −8.8817 × 10−2

B. Example 2: Nonlinear FSUGold model

Modern relativistic models of nuclear structure have
evolved significantly since the early days of the linear Walecka
model. In the present example we focus on the FSUGold
parameter set [19] that is defined by an interacting Lagrangian
density of the following form:

Lint = ψ̄

[
gsφ −

(
gvVμ + gρ

2
τ · bμ + e

2
(1 + τ3)Aμ

)
γ μ

]
ψ

− κ

3!
�3 − λ

4!
�4 + ζ

4!
(WμWμ)2

+�v(WνW
ν)(Bμ · Bμ). (29)

Modifications to the linear Walecka model are motivated by
the availability of an ever-increasing database of high-quality
data. For example, the two nonlinear scalar terms κ and λ

induce a significant softening of the compression modulus
of nuclear matter relative to the original Walecka model
[8,13,15]. This is demanded by measurement of the giant
monopole resonance in medium to heavy nuclei [36]. Further,
omega-meson self-interactions, as described by the parameter
ζ , also serve to soften the equation of state of symmetric
nuclear matter but at much higher densities. Indeed, by tuning
the value of ζ it is possible to produce maximum neutron-star
masses that differ by almost one solar mass (M
) while
maintaining the saturation properties of nuclear matter intact
[10]. Such a softening appears consistent with the dynamics
of high-density matter as probed by energetic heavy-ion
collisions [37]. Finally, �v induces isoscalar-isovector mixing
and is responsible for modifying the poorly constrained density
dependence of the symmetry energy [18,38]. In particular,
a softening of the symmetry energy induced by �v appears
consistent with the distribution of both isoscalar monopole
and isovector dipole strength in medium to heavy nuclei
[19,30,39]. In summary, FSUGold is a fairly successful RMF
model that has been validated against theoretical, experimen-
tal, and observational constraints [20]. Note that as additional
laboratory and observational data become available (notably
the recent report of a 2M
 neutron star [40]) refinements to
the model may be required [21]. For now, however, we will
be content with using the FSUGold model to study the small
oscillations around the minimum.

As mentioned earlier, a model should be understood as
a combination of an interacting Lagrangian density and a
quality measure. We define the χ2 measure in terms of
the following set of observables generated directly from the
FSUGold parameter set:

ρ0 = 0.1484 fm−3, (30a)

ε0 = −16.30 MeV, (30b)

ε(2ρ0) = −5.887 MeV, (30c)

K0 = 230.0 MeV, (30d)

M�
0 = 0.6100M, (30e)

J̃ = 26.00 MeV, (30f)

L = 60.52 MeV, (30g)

Mmax = 1.722M
. (30h)
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FIG. 1. (Color online) Predictions from the linear Walecka models for the saturation density, binding energy, and incompressibility
coefficient at saturation. Model parameters were generated according to the distribution exp(−�χ2/2). Both of the covariance ellipsoids were
generated by limiting the models to the region �χ 2 � 1.

Note that in all cases a 2% uncertainty is attached to all
observables—except in the case of the slope of the symmetry
energy L where a significantly larger value of 20% is assumed.
This reflects our poor understanding of the density dependence
of the symmetry energy. Also note that J̃ represents the
value of the symmetry energy at a subsaturation density of
ρ ≈ 0.1fm−3—a density at which the theoretical uncertainties
are minimized [41]. Finally, notwithstanding the Demorest
et al. result [40], the maximum neutron star mass is fixed at
Mmax = 1.722M
. Given that a theoretical model is used to

generate the various observables, a much larger database could
be used to define the χ2 measure, if desired. By construction,
a very small value for the χ2 measure is obtained at the
FSUGold minimum. We now proceed to explore the wealth
of information available as one studies deviations around this
minimum value. As in the previous section, the symmetric
matrix of second derivatives, M̂ (now a 7 × 7 matrix), may
be diagonalized by means of an orthogonal transformation.
The diagonal matrix of eigenvalues, D̂, and the matrix of
eigenvectors, Â, are given by

D̂ = diag(1.2826 × 106, 1.5305 × 104, 4.2472 × 102, 3.2113 × 102, 1.2692 × 102, 6.9619, 3.7690), (31a)

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7.4967×10−1 −2.3685×10−1 3.0853×10−1 1.2931×10−1 −5.1254×10−1 −8.5089×10−2 6.8417×10−3

6.5682×10−1 −1.5751×10−1 3.6654×10−1 1.6504×10−1 −6.0281×10−1 −1.3685×10−1 8.5353×10−3

−1.5331×10−4 3.1315×10−3 −7.0050×10−1 6.8701×10−2 −3.9206×10−1 −3.3843×10−2 5.9137×10−1

3.8535×10−2 −2.8770×10−1 −2.4254×10−2 4.7416×10−1 4.3796×10−2 8.2968×10−1 −5.7643×10−3

3.9417×10−2 −6.8525×10−1 −1.3772×10−1 3.8776×10−1 3.5428×10−1 −4.8376×10−1 2.6431×10−3

−5.9458×10−2 6.0558×10−1 5.4897×10−2 7.5689×10−1 6.8021×10−2 −2.2175×10−1 6.2795×10−3

1.2995×10−4 −3.1465×10−3 5.0714×10−1 −5.7010×10−2 2.9691×10−1 3.6238×10−2 8.0628×10−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(31b)

Note that the scaled parameters of the model are associated to
the original coupling constants as follows:

{x1, x2, x3, x4, x5, x6, x7} → {
g2

s , g
2
v, g

2
ρ, κ, λ, ζ,�v

}
. (32)

We observe that the stiffest direction is dominated by two
isoscalar parameters and represents—as in the case of the
linear Walecka model—an out-of-phase oscillation between
the scalar attraction and the vector repulsion. Given that in
RMF models the cancellation between the scalar attraction
and the vector repulsion is so delicate, any out-of-phase
motion yields a significant change in the binding energy per
nucleon and a correspondingly dramatic increase in the quality

measure. The second stiffest direction also involves exclu-
sively isoscalar parameters and is dominated by the quartic
scalar (λ) and vector (ζ ) couplings—and to a lesser extent by
the cubic term (κ). This linear combination of parameters is
largely constrained by the incompressibility coefficient K0

and the maximum neutron-star mass Mmax. Although the
determination of the maximum neutron-star mass to a 2%
accuracy presents a significant observational challenge, our
statistical analysis suggests that such a determination would
strongly constrain the equation of state from saturation density
up to neutron-star densities. The third stiffest direction (with
still a fairly large eigenvalue of λ3 ≈ 425) is dominated by
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the two isovector parameters g2
ρ and �v. For this particular

“mode” both parameters oscillate out of phase. This behavior
can be readily understood by recalling the expression for the
symmetry energy [38]:

Esym(ρ) = k2
F

6E∗
F

+ g2
ρρ

8m∗2
ρ

(
m∗2

ρ ≡ m2
ρ + 2�vg

2
ρW

2
0

)
. (33)

In order for the symmetry energy J̃ to remain fixed, then
both g2

ρ and �v must move in phase. If they move out
of phase, then the symmetry energy cannot be kept at this
value and the quality measure deteriorates. By the same
token, the in-phase motion of g2

ρ and �v is very poorly
constrained—as evinced by the last and softest direction.
And it is only because the slope of the symmetry energy L

was assumed to be somehow constrained (at the 20% level)
that a positive eigenvalue was even obtained. Note that one
of the main goals of the successfully commissioned Lead
Radius experiment (PREx) at the Jefferson Laboratory is to
constrain the density dependence of the symmetry energy
(i.e., L) by accurately measuring the neutron radius of 208Pb
[42,43]. The next to last eigenvalue (λ6 ≈ 7) is also relatively
small. This suggests that the out-of-phase motion of the two
nonlinear scalar couplings (κ and λ) is poorly constrained by
the nuclear-matter observables defining the quality measure.
Perhaps supplementing the quality measure with finite-nuclei
observables will help ameliorate this problem. Work along
these lines is currently in progress.

We now proceed to estimate theoretical uncertainties as
well as to compute correlation coefficients for both the
model parameters and the physical observables. We start by
computing theoretical uncertainties (i.e., variances) for the
model parameters. These are given by [see Eq. (20)]

σ 2
i = (M̂−1)ii = (ÂD̂−1ÂT )ii =

7∑
j=1

A2
ij λ

−1
j (34)

and result in the following theoretical uncertainties for the
model parameters:

g2
s = 112.19955 ± 6.54468 [5.833%], (35a)

g2
v = 204.54694 ± 15.81183 [7.730%], (35b)

g2
ρ = 138.47011 ± 42.75427 [30.876%], (35c)

κ = 1.42033 ± 0.44827 [31.561%], (35d)

λ = 0.02376 ± 0.00445 [18.748%], (35e)

ζ = 0.06000 ± 0.0057 [9.447%], (35f)

�v = 0.03000 ± 0.01251 [41.711%]. (35g)

We observe that three out of the five isoscalar parameters,
namely, g2

s , g2
v, and ζ , are relatively well constrained (at the

�10% level). Whereas g2
s and g2

v are well determined by
the saturation properties of symmetric nuclear matter, it is
the maximum neutron-star mass that constrains ζ . Yet the
remaining two isoscalar parameters (κ and λ) are poorly
determined. This is particularly true in the case of κ , which
displays a large (≈30%) uncertainty. As alluded earlier, these
large uncertainties develop because the out-of-phase motion

FIG. 2. (Color online) Color-coded plot of the 21 independent
correlation coefficients between the 7 model parameters of the
FSUGold effective interaction.

of κ and λ—as controlled by the relatively soft sixth
eigenvector—is poorly constrained. Given that the in-phase
motion of the two isovector parameters (g2

ρ and �v) is
controlled by the softest of eigenvectors, the theoretical
uncertainties in these parameters is also fairly large (≈ 30%
and ≈ 40%, respectively). However, whereas the reason for
the latter is associated with the large error bars assigned to L,
we are unaware at this time of how to better constrain κ and λ.
Perhaps supplementing the quality measure with information
on various nuclear compressional modes may help resolve this
issue. Plans to do so in the near future are under consideration.

We have computed correlation coefficients between all
21 distinct pairs of model parameters and have displayed
them in graphical (color-coded) form in Fig. 2. As depicted
in the figure, the strongest correlations are between g2

s and
g2

v (0.988), g2
ρ and �v (0.967), and κ and λ (−0.962). As

alluded in the case of the simpler linear Walecka model, the
correlations are dominated by the softest directions, in this
case the sixth and seventh eigenvectors. Given that for these
two eigenvectors g2

s and g2
v as well as g2

ρ and �v move in phase
whereas κ and λ move out of phase, the observed correlations
ensue. In other words, the three largest eigenvalues strongly
suppress the generation of model parameters with g2

s and
g2

v moving out of phase, κ and λ in phase, and g2
ρ and �v

out of phase, respectively. Note, then, that the distribution of
isovector parameters g2

ρ and �v is generated in such a way
that the symmetry energy at subsaturation density J̃ remains
fixed at 26 MeV (at least within a 2% uncertainty). This
quantitative fact validates our heuristic approach—already
employed numerous times—to correlate isovector observables
(see Refs. [7,44,45] and references therein).

We now extend the covariance analysis to the case of
physical observables. To do so, we must supply the relevant
“matrix” of first derivatives [see Eq. (20)]. For completeness
we list the first derivatives in tabular form in Table III. Note
that in the case of the model parameters the corresponding
matrix of first derivatives is the matrix of eigenvectors, Â. The
derivatives encapsulate the sensitivity of the various observ-
ables to changes along the different eigenvectors. For example,
whereas isoscalar observables (such as ε0, ρ0, and K0) are
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TABLE III. First derivatives of the scaled observables (i.e., observable scaled to its value at the χ2 minimum) as a function of ξi at the χ 2

minimum; see Eq. (20).

∂ξ1 ∂ξ2 ∂ξ3 ∂ξ4 ∂ξ5 ∂ξ6 ∂ξ7

∂ε0 1.0551 × 10+1 −7.1882 × 10−1 −2.9433 × 10−2 4.9029 × 10−2 5.1626 × 10−2 −1.7025 × 10−2 −7.7009 × 10−4

∂ρ0 −2.2472 1.3904 −9.8868 × 10−4 2.2220 × 10−1 5.3440 × 10−2 1.8998 × 10−2 1.5875 × 10−3

∂K0 −7.4792 1.3890 −3.6799 × 10−2 −1.8808 × 10−1 4.8215 × 10−2 −2.1691 × 10−2 −3.0813 × 10−4

∂M∗ 1.1505 −5.5581 × 10−1 −1.0614 × 10−1 −8.3170 × 10−2 1.6492 × 10−1 1.2614 × 10−2 −2.7701 × 10−3

∂J̃ −2.7862 × 10−1 6.5586 × 10−2 −3.9136 × 10−1 2.5698 × 10−2 −6.8299 × 10−2 6.0862 × 10−4 6.2323 × 10−4

∂J −1.6811 9.4897 × 10−1 −3.2446 × 10−1 1.7826 × 10−1 −3.6792 × 10−2 6.2151 × 10−3 −8.4827 × 10−2

∂L −1.8759 1.1812 1.5849 × 10−2 2.6611 × 10−1 −1.0180 × 10−1 −2.2526 × 10−2 −3.8593 × 10−1

∂(Rn − Rp) 7.0224 9.6188 × 10−2 −2.3362 × 10−1 1.9804 × 10−1 −2.5651 × 10−2 −1.9368 × 10−2 −3.4167 × 10−1

∂R1.0 9.9947 × 10−1 −3.1989 × 10−1 −1.6534 × 10−2 −6.5939 × 10−2 −4.5197 × 10−2 −4.5964 × 10−3 −3.9800 × 10−2

∂R1.4 5.0300 × 10−1 −3.0884 × 10−1 9.3778 × 10−3 −1.1119 × 10−1 −6.3792 × 10−2 3.1016 × 10−3 −2.6571 × 10−2

∂Mmax −2.7675 × 10−1 −1.4882 × 10−1 3.1173 × 10−2 −1.6394 × 10−1 −6.8790 × 10−2 3.4817 × 10−2 −2.4367 × 10−3

insensitive to changes along the mostly isovector seventh
eigenvector, both L and the neutron-skin thickness of 208Pb,
Rn − Rp, display a fairly large sensitivity.

Given the enormous interest in constraining the density
dependence of the symmetry energy, we estimate theoretical
uncertainties on three—mostly isovector—observables. These
are the symmetry energy at saturation density J , the neutron-
skin thickness of 208Pb, and the radius (R1.4) of an M = 1.4M

neutron star. Recall that it was J̃ (not J ) that was included in
the definition of the quality measure. We obtain

J = (32.593 ± 1.574) MeV [4.830%], (36a)

Rn − Rp = (0.207 ± 0.037) fm [17.698%], (36b)

R1.4 = (11.890 ± 0.194) km [1.631%]. (36c)

We now comment on each of these cases individually. Before
we do so, however, note that correlation coefficients for 11
observables (i.e., 55 independent pairs) are depicted in a color-
coded format in Fig. 3. First, the central value of J along
with its theoretical uncertainty may be easily understood by
invoking a first-order expansion for the symmetry energy J̃

at subsaturation density (ρ̃0 ≈ 0.103 fm−3) in terms of J and

FIG. 3. (Color online) Color-coded plot of the 55 independent
correlation coefficients between 11 physical observables as computed
with the FSUGold effective interaction.

L [46]. That is,

J = J̃ + xL + · · · ≈ (32.208 ± 1.346) MeV,
(37)

x = 1

3

(
1 − ρ̃0

ρ0

)
≈ 0.103,

where the errors were added in quadrature. So although J

is strongly correlated to L (with a correlation coefficient of
0.922) the error in the former is significantly smaller than
that in the latter because of the small value of x. Second,
for the neutron-skin thickness of 208Pb we find a theoretical
error comparable to the one assumed for L and a correlation
coefficient between the two observables of almost one (0.995).
Such a strong correlation is consistent with two recent studies
that employ a large number of accurately calibrated relativistic
and nonrelativistic interactions to uncover the correlation
[47,48]. Also consistent with recent studies [6,48] is the fact
that the proposed 1% measurement of the neutron radius of
208Pb by the PREx Collaboration [42,43] may not be able
to place a significant constraint on L. For example, our
covariance analysis suggests that the 20% uncertainty assumed
for L translates into a theoretical error in the neutron skin of
0.037 fm—or about a 0.7% uncertainty in the neutron radius of
208Pb. Conversely, if L is to be determined to within 10% (i.e.,
L ≈ 60 ± 6 MeV) then the neutron skin must be constrained
to about 0.018 fm and so the neutron radius must be measured
with close to a 0.3% accuracy—a fairly daunting task. Finally,
we obtain a very small theoretical uncertainty for the radius of
a 1.4M
 neutron star and a correlation coefficient between L

and R1.4 (or Rn − Rp and R1.4) of 0.811. Although the radius
of the neutron star is sensitive to the density dependence of the
symmetry energy [49], R1.4 cannot be uniquely constrained by
a measurement of Rn − Rp because whereas the latter depends
on the symmetry energy at (or below) saturation density, the
former is also sensitive to the equation of state at higher
densities [38]. Note that a far better correlation coefficient of
0.942 is obtained between L and the radius of a 1.0M
 neutron
star. Regardless (with all things being equal), knowledge of the
slope of the symmetry energy to a 20% accuracy significantly
constrains the stellar radius.
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IV. CONCLUSIONS

The demand for theoretical predictions that include mean-
ingful and reliable uncertainties is increasing. Such a sentiment
has been articulated in a recent publication by the editors
of the Physical Review A [3]. The need to quantify model
uncertainties in an area such as theoretical nuclear physics is
particularly urgent as models that are fitted to experimental
data are then used to extrapolate to the extremes of temper-
ature, density, isospin asymmetry, and angular momentum.
Inspired by some of the central ideas developed in Ref. [6], we
applied a systematic statistical approach to a class of relativistic
mean-field models. The aim of this statistical analysis was
twofold: first, to attach meaningful and reliable theoretical
uncertainties to both the model parameters as well as to the
predicted observables and, second, to quantify the degree of
correlation between physical observables.

Modern relativistic mean-field models have evolved consid-
erably since the early days of the linear Walecka model. Based
on certain shortcoming of the Walecka model—most notably
the inability to reproduce the incompressibility coefficient
of symmetric nuclear matter—the Lagrangian density was
augmented by nonlinear cubic and quartic scalar-meson terms.
However, based on modern effective-field-theory tenets, such
as naturalness and power counting, a consistent Lagrangian
density should include all terms up to fourth order in the meson
fields. But in doing so, how should one constrain the large
number of model parameters? In principle, one should follow
the standard protocol of determining all model parameters
through a χ2-minimization procedure. In practice, however,
many successful theoretical approaches arbitrarily set some
of the model parameters to zero. The argument behind this
fairly ad hoc procedure is that the full set of parameters is
poorly determined by existing data, so ignoring a subset of
model parameters does not compromise the quality of the
fit.

A covariance analysis such as the one implemented here
should be able to clarify in a quantitative fashion the precise
meaning of a “poorly determined set of parameters.” To
do so, one should focus not on the minimum of the χ2

measure but, rather, on its behavior around the minimum.
As in any small-oscillations problem, the deviations around
the minimum are controlled by a symmetric matrix of second
derivatives that may be used to extract theoretical error bars
and to compute correlation coefficients between physical
observables. However, to access the wealth of information
available in the covariance analysis we took it a step further
and diagonalized the matrix of second derivatives. Upon
diagonalization, the deviations of the χ2 measure from
the minimum are parametrized in terms of a collection of
“uncoupled harmonic oscillators.” By doing so, one could
readily identify stiff and soft modes in parameter space,
namely, eigenvectors characterized by either large or small
eigenvalues, respectively.

We now summarize some of the most important lessons
learned. First, a stiff direction represents a particular linear
combination of model parameters that is well constrained by
the set of physical observables included in the χ2 measure.
By the same token, a soft direction suggests that additional

physical observables are required to further constrain the
model. Second, given that model parameters around the
minimum are distributed according to the χ2 measure, the
soft directions dominate the correlation analysis. Finally,
testing whether a model is well constrained by individually
varying its parameters—rather than by varying them coher-
ently as suggested by the structure of the eigenvectors—
may be misleading. To illustrate these findings we used
two relatively simple, yet illuminating, examples: (a) the
linear Walecka model and (b) the FSUGold parametrization.
Note that ultimately we aim to implement the covariance
analysis with a χ2 measure defined by a consistent Lagrangian
density.

A particularly clear example of a stiff direction was
represented by the out-of-phase motion of the scalar gs and
vector gv coupling constants in the linear Walecka model.
Indeed, increasing the scalar attraction while at the same time
reducing the vector repulsion leads to a significant increase in
the binding energy per nucleon and, thus, results in a significant
deterioration of the χ2 measure. The in-phase motion of gs and
gv, however, is not as well constrained (the ratio of the two
eigenvalues being about 1000). Therefore, configurations in
parameter space generated by the χ2 measure were dominated
by pairs of coupling constants that were in phase, thereby
resulting in a correlation coefficient between gs and gv that was,
as expected, large and positive. Note, however, that if gs and gv

were varied individually, one would erroneously conclude that
the model is much better constrained than it really is—since
changes in the χ2 measure would be dominated by the largest
eigenvalue.

In our second example we considered the accurately
calibrated FSUGold interaction with an isovector interaction
determined by two parameters (gρ and �v). We found the
out-of-phase motion of gρ and �v to be strongly constrained
by the value of the symmetry energy at a density of about
0.1 fm. However, our poor knowledge of the density depen-
dence of the symmetry energy left the in-phase motion of gv

and �v largely unconstrained. Effectively then, correlations
in the isovector sector were induced by the in-phase motion
of gρ and �v—subject to the constraint that the symmetry
energy at ρ ≈ 0.1 fm remains intact. This procedure validates
the heuristic approach that we have used for some time to
estimate correlations between isovector observables. Yet a
benefit of the present analysis is that one can precisely quantify
the theoretical errors as well as the correlation between
observables. For example, we concluded that if the slope of the
symmetry energy is to be determined with a 10% uncertainty,
then the neutron-skin thickness of 208Pb should be measured
with a 0.3% accuracy. This more stringent limit seems to agree
with the conclusions of Refs. [6,48].

In the future we aim to apply the covariance analysis
discussed here to the construction of a relativistic density
functional that will include all terms up to fourth order in
the meson fields. Moreover, we plan to calibrate the χ2

measure using various properties of finite nuclei and neutron
stars. In addition, we reiterate a point made in Ref. [6] that
the methodology used in this work should be applicable to
any problem where model parameters are determined from
optimizing a quality measure.
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