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In the framework of a constituent quark model, the effect of hidden color channels on the nucleon-nucleon
(NN ) interaction is studied. By adjusting the color confinement strength between the hidden color channels and
color singlet channels and/or between the hidden color channels and hidden color channels, the experimental
data of S- to I -partial-wave phase shifts of NN scattering can be fitted well. The results show that the hidden
color channel coupling might be important in producing the intermediate-range attraction of the NN interaction.
The deuteron properties and dibaryon candidates have also been studied with this model.
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I. INTRODUCTION

The study of nucleon-nucleon (NN ) interaction has lasted
over 70 years. The quantitative description of NN interaction
has been achieved in the one-boson-exchange (OBE) models
[1], the chiral perturbation theory (ChPT) [2], and quark
models [3].

In the OBE model [1], the long-range part of the NN inter-
action is attributed to one-pion exchange. The short-range part
is described by ρ, ω-meson exchange or phenomenological
repulsive core, while the σ -meson exchange is responsible
for the intermediate-range attraction. Phenomenological form
factors are needed to achieve the quantitative description of
the NN interaction data. In the chiral perturbation theory [2],
the multi-π ’s are exchanged between two nucleons. The short-
range part related to the nucleon internal structure is modeled
by the contact terms with phenomenological low-energy
constants. The theory can give a quantitative description of the
low-energy NN scattering below the π production threshold.
It is hard to extend this model to higher energy, the very
interesting resonance region of NN scattering.

With the advent of quantum chromodynamics (QCD), it is
expected to describe the NN interaction from the fundamental
degree of freedom of QCD, quark, and gluon. Recently, lattice
QCD calculation has achieved a qualitative description of NN

interaction [4]. However, it is still far from the quantitative
description. The QCD-inspired quark models are useful in
describing the NN interaction with the fundamental quark-
gluon degree of freedom. The most popular and successful
one is the constituent quark model. The nonperturbative (color
confinement and spontaneous chiral symmetry breaking) and
perturbative properties of QCD are incorporated into the model
by introducing the phenomenological confinement potential,
Goldstone-boson exchange, and effective one-gluon exchange
between the massive constituent quarks [5]. In almost all
realistic quark models aimed to describe the NN interaction,
the short-range repulsion of NN interaction is described
by one-gluon exchange and quark antisymmetrization. The
long-range part is described by π -meson exchange, which is
the same as the OBE and chiral perturbation theory approaches.
To describe the intermediate-range part, the σ -meson exchange

is employed in most quark-model approaches. The only one
exception is the quark delocalization color screening model
(QDCSM). The quark delocalization and color screening effect
between interacting quarks within different quark clusters are
employed [6] to describe the intermediate-range attraction,
which is similar to the molecular covalent bond. To develop
such a molecular covalent-bond-like model, the outstanding
fact is that the molecular force and nuclear force are similar
except for the energy and length scale difference [7]. Also, the
existence of the σ meson is not sure for long. Recently, BES
collaboration reported the observation of the σ meson, which
appeared as a ππ S-wave resonance [8]. However, the calcu-
lation of the correlated ππ exchange between two nucleons
can not obtain enough attraction [9] as the phenomenological
σ -meson exchange did. The recent QDCSM calculation, on
the other hand, showed that the quark delocalization and
color screening mechanism is quantitatively equivalent to the
phenomenological σ -meson exchange in describing the NN

intermediate-range attraction [10]. In ChPT, there is also no
σ -meson exchange. In addition, by introducing the multibody
color confinement interaction [11], or by incorporating the
hidden color channels in the calculation [12], the intermediate-
range attraction can also be obtained to some extent. Therefore,
the mechanism of the NN intermediate-range attraction is still
an open question.

In this work, an alternative approach for the NN interaction
is studied. The hidden color channels ignored in the prevailing
quark-model calculations of the NN interaction are included.
Accordingly, the confinement potential between different
channels is modified as follows: the ordinary confinement is
used for the quark pairs within the same nucleon and the color
singlet channels, whereas a multiplying factor is introduced
for the confinement potential between the quark pairs if a
hidden color channel is involved. The aim is to test if the color
screening phenomenology used in QDCSM is an effective
description of the hidden color channel coupling. The details
of this model approach will be explained in the next section.
The NN scattering phase shifts obtained in this approach
are confronted with experimental data and compared with
chiral quark model (ChQM) and QDCSM approaches. The
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equivalence of these three quark models in describing the NN

scattering data has been confirmed. The deuteron properties
and dibaryon candidates are also studied with this model.

The structure of this paper is as follows. A brief introduction
of the three quark models used is given in Sec. II. Section III is
devoted to the numerical results and discussions. The summary
is shown in the last section.

II. THREE QUARK MODELS

A. Chiral quark model

The Salamanca version of ChQM is chosen as the repre-
sentative of the chiral quark models. It has been successfully
applied to hadron spectroscopy and NN interaction. The
model details can be found in Ref. [13]. Only the Hamiltonian
and parameters are given here. The ChQM Hamiltonian in the
nucleon-nucleon sector is

H =
6∑

i=1
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mi + p2

i

2mi

)
− Tc +

∑
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whereSij is quark tensor operator, Y (x), H (x), and G(x) are
standard Yukawa functions [3], Tc is the kinetic energy of
the center of mass, and αch is the chiral coupling constant,
determined as usual from the π -nucleon coupling constant.
All other symbols have their usual meanings. The parameters
of this ChQM Hamiltonian are given in Table I.

TABLE I. Parameters of three-quark models discussed in this
paper.

ChQM QDCSM1 QDCSM2 QDCCM

mu,d (MeV) 313 313 313 313
b (fm) 0.518 0.518 0.60 0.518
ac (MeV fm−2) 46.938 56.755 18.5 56.755
V0 (fm2) −1.297 −0.5279 −1.3598 −0.5279
μ (fm−2) 0.45 1.00
αs 0.485 0.485 0.996 0.485
mπ (MeV) 138 138 138 138
αch 0.027 0.027 0.027 0.027
mσ (MeV) 675
	 (fm−1) 4.2 4.2 4.2 4.2

B. Quark delocalization color screening model

The model and its extension were discussed in detail in
Refs. [14,15]. Its Hamiltonian has the same form as Eq. (1),
but without σ -meson exchange, and a phenomenological color
screening confinement potential is used:

V C(rij ) = −acλi · λj [f (rij ) + V0] + V
C,LS
ij ,

f (rij ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r2
ij if i, j occur in the same

baryon orbit,
1−e

−μr2
ij

μ
if i, j occur in different
baryon orbits.

(2)

Here, μ is the color screening constant to be determined by fit-
ting the deuteron mass in this model. The quark delocalization
in QDCSM is realized by allowing the single-particle orbital
wave function of QDCSM as a linear combination of left and
right Gaussian, the single-particle orbital wave functions in
the ordinary quark cluster model:

ψα(�Si, ε) = [φα(�Si) + εφα(−�Si)]/N (ε),

ψβ(−�Si, ε) = [φβ(−�Si) + εφβ(�Si)]/N(ε),
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TABLE II. The channels used in NN scattering calculations and
the factors k1, k2 (for recipes 1,2) for each channel (I = 1).

J Channels k1/k2

0 1S0 : NN, ��,2�2
8�8,

4N 4
8N8,

2N 2
8�8,

2N 2
8N8 1.42/1.39

5D0 : N�,��,4N 2
8�8,

4N 4
8N8,

4N 2
8N8

3P0 : NN,N�, ��,2�2
8�8,

4N 2
8�8, 1.10/1.10

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

1 3P1 : NN,N�, ��,2�2
8�8,

4N 2
8�8, 1.35/1.28

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

2 1D2 : NN,��,2�2
8�8,

4N 4
8N8,

2N 2
8�8,

2N 2
8N8 2.00/1.85

5S2(5D2) : N�, ��,4N 2
8�8,

4N 4
8N8,

4N 2
8N8

3P2 : NN,N�, ��,2�2
8�8,

4N 2
8�8, 1.75/1.66

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

3F2 : NN, N�,��,2�2
8�8,

4N 2
8�8, 1.00/1.00

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

3 3F3 : NN, N�,��,2�2
8�8,

4N 2
8�8, 1.00/1.00

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

4 3F4 : NN, N�,��,2�2
8�8,

4N 2
8�8, 1.00/1.00

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

1G4 : NN, ��,2�2
8�8,

4N 4
8N8,

2N 2
8�8, 1.00/1.00

2N 2
8N8

3H4 : NN,N�, ��,2�2
8�8,

4N 2
8�8, 1.00/1.00

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

5 3H5 : NN,N�, ��,2�2
8�8,

4N 2
8�8, 1.00/1.00

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

6 3H6 : NN,N�, ��,2�2
8�8,

4N 2
8�8, 1.00/1.00

4N 4
8N8,

4N 2
8N8,

2N 2
8�8,

2N 2
8N8

1I6 : NN,��,2�2
8�8,

4N 4
8N8,

2N 2
8�8, 1.00/1.00

2N 2
8N8

N (ε) =
√

1 + ε2 + 2εe−S2
i /4b2

,

φα(�Si) =
(

1

πb2

)3/4

e
− 1

2b2 (�rα−�Si/2)2

,

φβ(−�Si) =
(

1

πb2

)3/4

e
− 1

2b2 (�rβ+�Si/2)2

. (3)

The mixing parameter ε(S) is not an adjusted one but is
determined variationally by the dynamics of the multiquark
system itself. This assumption allows the multiquark system
to choose its favorable configuration in the interacting process.
It has been used to explain the crossover transition between
the hadron phase and the quark-gluon plasma phase [16]. The
model parameters are fixed as follows: The u, d-quark mass
difference is neglected and mu = md is assumed to be exactly
1/3 of the nucleon mass, namely, mu = md = 313 MeV. The π

mass takes the experimental value. The 	 takes the same values
as in Ref. [3], namely, 	 = 4.2 fm−1. The chiral coupling
constant αch is determined from the πNN coupling constant
as usual. The other parameters b, ac, V0, and αs are determined
by fitting the nucleon and � masses and the stability of nucleon
size b with the variation of quark mass m. All parameters used
are listed in Table I. In order to compare the intermediate-range

TABLE III. The channels used in NN scattering calculations and
the factors k1, k2 (for recipes 1,2) for each channel (I = 0).

J Channels k1/k2

1 3S1(3D1) : NN, ��,2�2
8�8,

4N 4
8N8,

4N 2
8N8,

2N 2
8N8 1.40/1.38

7D1 : ��,4N 4
8N8

1P1 : NN, ��,2�2
8�8,

4N 4
8N8,

2N 2
8N8 1.80/1.70

5P1 : ��,4N 4
8N8,

4N 2
8N8

2 3D2 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8,

2N 2
8N8 1.00/1.00

7D2 : ��,4N 4
8N8

3 3D3 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8,

2N 2
8N8 2.40/2.20

7S3(7D3) : ��,4N 4
8N8

1F3 : NN,��,2�2
8�8,

4N 4
8N8, 1.00/1.00

2N 2
8N8

3G3 : NN,��,2�2
8�8,

4N 4
8N8, 1.00/1.00

4N 2
8N8,

2N 2
8N8

4 3G4 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8, 1.00/1.00

2N 2
8N8

5 3G5 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8, 1.00/1.00

2N 2
8N8

1H5 : NN, ��,2�2
8�8,

4N 4
8N8, 1.00/1.00

2N 2
8N8

3I5 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8, 1.00/1.00

2N 2
8N8

6 3I6 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8, 1.00/1.00

2N 2
8N8

7 3I7 : NN,��,2�2
8�8,

4N 4
8N8,

4N 2
8N8, 1.00/1.00

2N 2
8N8

attraction mechanism, the σ -meson exchange in ChQM, and
quark delocalization and color screening in QDCSM, the same
values of parameters b, αs, αch, mu, mπ, 	 are used for
these two models. Thus, these two models have exactly the
same contributions from one-gluon exchange and π exchange.
The only difference of the two models is coming from the
short- and intermediate-range parts, σ exchange for ChQM,
quark delocalization, and color screening for QDCSM. To
show the sensitivity of the QDCSM to the model parameters,
the results of another set of model parameters (QDCSM2) is
also reported.

C. Quark delocalization model with hidden color channels
coupling (QDCCM)

This approach is focused on the hidden color channel
effect, which has been ignored almost in all quark-model
calculations, but certainly should exist in a description based
on the fundamental quark-gluon degree of freedom. In the
lattice QCD calculation of the NN interaction [4], these
hidden color channels should have been included implicitly.
However, their effect has not yet been separated. We assume
a Hamiltonian that is the same as that of QDCSM, except that
the usual quadratic confinement

V C(rij ) = −kacλi · λj

(
r2
ij + V0

)
(4)
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FIG. 1. The phase shifts of NN S-wave scattering.

is used, but with an additional multiplying factor k. For the
color singlet channels (two baryon clusters are in the color
singlet states), the factor k takes the value 1. For the hidden
color channels, two recipes are used. Recipe 1 (QDCCM1):
For the coupling between hidden color channels and the
color singlet channels, the factor k is taken as an adjustable

parameter. In all the other cases, the factor k is kept 1. Recipe 2
(QDCCM2): The factor k is taken as an adjustable parameter
not only for color singlet–hidden color channels coupling,
but also for hidden color–hidden color channels. As for the
single-quark orbital wave function, the same form [Eq. (3)]
as that of QDCSM is assumed. This model assumption is
inspired by the lattice QCD calculation: The recent lattice
QCD calculations show that the interactions among quarks
are genuinely multibody interactions. The color-dependent
two-body confinement interaction is consistent with the lattice
QCD results only for two- and three-quark systems in color
singlet states, but inconsistent with the multibody interaction
obtained in lattice QCD for multiquark systems [17]. So, the
direct extension of the color-dependent two-body confinement
interaction from the two- or three-quark system to the
multiquark system as used in most quark-model calculations
is questionable. The calculation based on the direct extension
can not describe the NN scattering quantitatively well, even
after including hidden color channels coupling as shown in
QDCCM0, which might be an indication of this inadequacy.
In fact, for multiquark systems and color octet nucleons, quark
pairs are not always in color-antisymmetric states, but also in
color-symmetric ones. The color factor λi · λj will give rise to
anticonfinement interaction for symmetric quark pairs [18].
In QDCSM mentioned above, we used a color screening

FIG. 2. The phase shifts of NN P wave scattering.
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FIG. 3. Central, spin-orbit, and tensor components of NN P -
wave scattering.

confinement interaction to model the effect of this multibody
confinement interaction obtained in lattice QCD. Here, we

study directly the effect of hidden color channel coupling
to test if the phenomenological color screening confinement
is an effective description of the hidden channel coupling.
In order to simplify the numerical calculation, a two-body
confinement interaction form [Eq. (4)] is still assumed, but
with an additional adjustable multiplying factor aimed to
reflect the effect of the lattice QCD multibody confinement.
At the same time, the model parameters are kept to the same
as those of QDCSM1, except the color screening confinement
form [Eq. (2)] is replaced by the usual quadratic confinement
form [Eq. (4)]. This is aimed to let the effect of hidden color
channel coupling stand out.

III. THE RESULTS AND DISCUSSIONS

We calculated the NN scattering phase shifts of different
partial waves (S, P , D, F , G, H , and I waves) by the
three-quark models mentioned above. To look for nonstrange
dibaryon resonances, a systematic calculation of NN scatter-
ing phase shifts with explicit coupling to N� and �� channels
is also done. The resonating-group method (RGM), described
in more detail in Ref. [19], is used to do the calculation.
The experimental information used for the comparison is the
partial-wave solution SP07 [20] of NN scattering data. For
QDCSM, the color screening parameter μ is fixed by deuteron
properties, and no other parameters are readjusted. For the third

FIG. 4. The phase shifts of NN D-wave scattering.
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FIG. 5. The phase shifts of NN F -wave scattering.

approach (QDCCM), the channels included in different partial
waves are listed in Tables II and III. The multiplying factors
k1, k2 are adjusted to fit the NN phase shifts of SP07. The
calculated results for NN scattering phase shifts are presented
in Sec. III A; deuteron properties are shown in Sec. III B
and the discussions of the dibaryon resonances are given in
Sec. III C.

A. N N scattering phase shifts

(1) S waves: Figure 1 shows the NN scattering phase shifts
for 3S1 and 1S0 partial waves. A perfect fit is obtained for both
ChQM and QDCSM1 (QDCSM2 gives a little less attraction).
The dominant contribution to the S-wave phase shift comes
from the central part of the potentials. The agreement between
two models means these two quark models give the same
NN interaction, at least the same central part. For QDCCM,
QDCCM1 and QDCCM2 also give good descriptions of NN
3S1 and 1S0 scattering phase shifts by including the hidden
color channels and adjusting the color confinement interaction
strength, while with the usual color confinement interaction
strength (k = 1), the model (QDCCM0) calculated phase shifts
are far from the measured ones.

(2) P waves: Figure 2 shows the NN scattering phase
shifts of 1P1, 3P0, 3P1, and 3P1 partial waves. For 1P1 and 3P1,
ChQM and QDCCM gave an almost perfect description of the
experimental data. The 1P1 phase shift is mainly determined by
the central repulsion. The theoretical phase shifts of QDCSM
and QDCCM0 are lower than experimental ones, which show
that these two models give a too strong repulsion. For 3P0,
QDCSM2 described the experimental data better than others.
For QDCCM, we do not have to adjust the color confinement
interaction strength ac too much (k = 1.1 for both QDCCM1
and QDCCM2), so both QDCCM1 and QDCCM2, even
QDCCM0, can fit the 3P0 phase shifts reasonably well. ChQM
and QDCSM1 give too strong attraction. For 3P2, QDCCM1
gives a perfect fit. ChQM, QDCSM, and QDCCM0 do not
have enough attraction. Figure 3 shows central, spin-orbit, and
tensor components of the 3PJ phase shifts. Clearly, ChQM,
QDCSM, and QDCCM0 do not give strong enough attraction
in the central and spin-orbit parts. In OBE, πρ and πω

exchange, which might not have been reproduced in the
quark-model calculations, are also needed to reproduce the
P -wave phase shifts [1].

(3) D waves: Figure 4 shows the NN scattering phase
shifts of 3D1, 3D2, 3D3, and 1D2 partial waves. For 3D1, all the
models fit the experimental data well except QDCCM0. For
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FIG. 6. The phase shifts of NN G-wave scattering.

3D2, QDCSM1 and QDCSM2 give a very good description of
the experimental data (QDCSM2 is a little better), and ChQM
gives too strong attraction. For QDCCM, we find that we do
not need to adjust the color confinement interaction strength
for this channel, and QDCCM0 can fit the experimental
scattering phase shifts. For 3D3 and 1D2, ChQM described
the experimental data better than QDCSM. For QDCCM, both
adjusting recipes can give a perfect fit to the experimental data.

(4) F wave: The calculated 1F3, 3F2, 3F3, and 3F4 NN phase
shifts are shown in Fig. 5. For F -wave scattering, we find that
QDCCM0 already fit the experimental scattering phase shifts
reasonably, so we did not fine tune the confinement strength.
All the models give a good description of the experimental
data reasonably in the low-energy region (Ec.m. < 100 MeV).
Above 100 MeV, the model predictions deviate more or less
from the experimental data. For 3F2, QDCSM2 gave a much
better fit to the experimental data than QDCSM1, ChQM,
and QDCCM0. For 1F3, QDCSM1, QDCSM2, and QDCCM0
all give a better fit to the experimental data than ChQM,
especially at higher energy. However, for 3F3, ChQM is closer
to the experimental data than other models. For 3F4, a perfect
fit is obtained for QDCCM0, ChQM has a little too strong
attraction at high energy, and QDCSM gives a too weak
attraction.

(5) G wave: The NN phase shifts of 3G3, 1G4, 3G4,
and 3G5 are shown in Fig. 6. All the models can describe
the experimental data. We do not have to adjust the color
confinement interaction strength for QDCCM here.

(6) H wave: Figure 7 shows the calculated 1H5, 3H4, 3H5,
and 3H6 NN phase shifts. For H -wave phase shifts, all models
fit to the experimental data equally well. We also find that we
do not have to adjust the color confinement interaction strength
for QDCCM here.

(7) I wave: The calculated 3I5, 1I6, 3I6, and 3I7 NN

phase shifts are shown in Fig. 8. For I -wave phase shifts,
all the models give almost the same results and fit the
experimental data well. Again, the color confinement inter-
action strength for QDCCM does not need to be adjusted
here.

For high-L partial waves, the long-range π exchange
dominates the interaction. Three quark models have the same
π exchange and therefore give almost the same results for
L � 3, and we do not have to adjust the multiplying factor for
the QDCCM for these high-L partial waves.

These numerical results (Figs. 1–8) show that by including
the hidden color channels and adjusting the color confinement
interaction strength, both adjusting recipes can fit the NN

scattering phase shifts well. From the calculated S-, P -, and
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FIG. 7. The phase shifts of NN H -wave scattering.

D-wave phase shifts of NN scattering in QDCCM0, we
can see that the attraction is always inadequate because of
the appearance of anticonfinement interaction of symmetric
quark pairs. By increasing the strength of confinement,
the attraction coming from the confinement interaction is
strengthened, and QDCCM1 and QDCCM2 can give a good
description of the experimental data. We take these results
as an indication that the short- and intermediate-range NN

interaction is caused by the nucleon internal structure and its
distortion both in orbital and color spaces in the interacting
process. These are quite the same as the atomic internal
structure and its distortion in orbital space, which gives rise
to the molecular covalent bond. The Anderson’s conjecture
[7] is verified here. The phenomenological color screening
confinement might be an effective description of the hidden
color channel coupling. The phenomenological σ -meson
exchange used in OBE and ChQM might be an effective
description of the more complicated nucleon distortion in
the NN interaction process as described in QDCSM and
QDCCM. This mechanism also gives a natural explanation
as to why the NN interaction between two color singlet
nucleons is so similar to the molecular interaction between two
charge neutral atoms, except for the energy and length scale
difference.

B. Deuteron

All these three models are used to calculate the properties
of deuteron, and the results are shown in Table IV. Both
ChQM and QDCSM give a good description of deuteron.
For QDCSM, by adjusting the color screening parameter,
the same results for deuteron can be obtained for different
baryon size b. Because of the large separation between
the proton and neutron in the deuteron, the properties of
deuteron mainly reflect the long-range part of the nuclear
force. The same π exchange used in the two models assure
that the properties of deuteron can be fitted equally well.
However, π exchange alone can not provide strong enough
intermediate-range attraction to make the deuteron bound. In
ChQM, it is the phenomenological σ -meson exchange that
provides the intermediate-range attraction. In QDCSM, it is
the quark delocalization and color screening that provide the
intermediate-range attraction. The fact that both models fit
the deuteron properties well verifies once more that the two
intermediate-range attraction mechanisms used in these two
models are equivalent.

Table IV shows that the binding energy and the D-wave
component of deuteron can be reproduced (we did not
fine tune the strength of color confinement to get a better
fitting). However, the root-mean-square radius is too small
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FIG. 8. The phase shifts of NN I -wave scattering.

in comparison to experimental value. This may indicate that
QDCCM with the parameters given in Table I gives rise to an
NN scattering phase shift equivalent potential, but with a little
too strong attraction in the short-range region, which tightens
up the deuteron.

C. Dibaryon resonances in N N scattering

In this section, we show the results of a systematic search for
the possible nonstrange dibaryon candidates by the three-quark
models mentioned above.

The previous calculations [21] show that there are four
possible dibaryons in the quark-model calculations, N� state
with IJ = 12, �� states with IJ = 01, 10, 03. Here, the
QDCCM is applied to recalculate these states. All of these
dibaryon states are allowed to decay via the NN channels. In

TABLE IV. The properties of deuteron.

ChQM QDCSM1 QDCSM2 QDCCM1 QDCCM2

B (MeV) 2.0 1.94 2.01 1.0 2.2√
r2 (fm) 1.96 1.93 1.94 1.2 1.1

PD (%) 4.86 5.25 5.25 4.0 4.0

other words, these dibaryon states appear as resonance states in
the NN scattering process. So, we calculate the NN scattering
phase shifts by including all the possible channel couplings.
The results are shown in Fig. 9.

(1) I = 0, J = 1: The 3S1 energies of single �-� channel
calculation are lower than the corresponding threshold 100–
350 MeV in ChQM, QDCCM, and QDCSM. The coupling to
the 3SNN

1 channel has an unexpectedly large effect, pushing up
the energy of 3S�-�

1 state ∼ 300 MeV, so that only in QDCSM2
it becomes a resonance at 2408 MeV. This very large mass shift
is caused by the central interaction and the presence of a lower-
mass state, the deuteron, in the admixed 3SNN

1 channel. Mixing
with other channels listed in Table III, the resonance mass is
pushed down a little bit, to 2393 MeV. In ChQM and QDCCM,
the 3S1 energies in the single �-� channel calculation are
100 MeV or more higher than that in QDCSM2. The additional
large mass shift caused by the coupling to the NN channel then
pushes the state above the �� threshold. So, no resonance
appears in other models except QDCSM2. The phase shifts
of 3SNN

1 are shown in the upper left corner of Fig. 9, where
the phase shifts for 100 < Ec.m. < 400 MeV from ChQM,
QDCSM1, QDCSM2, QDCCM1, and QDCCM2 agree with
each other, as already pointed out in Sec. III A. The phase
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shifts of 3SNN
1 rise through π/2 at a resonance mass only in

QDCSM2. So, whether there is an IJ = 01 �� resonance
state with resonance mass 2393 MeV in the NN 3S1 scattering
channel is unknown.

(2) I = 0, J = 3: The single �-� channel calculation
shows that the state 7S��

3 is a bound state in all models
used here. The coupling to the 3DNN

3 channels causes this
bound state to change into an elastic resonance. The resonance
mass shift, which is caused by the tensor interaction, is not
large (∼ 3 MeV). The calculation shows that the mass shift is
always dominated by the NN scattering states below the bound
state rather than those above it. Coupling to other channels
listed in Table III, which are above the 7S��

3 bound state,
the resonance is pushed down as expected. The calculated
3DNN

3 phase shifts, shown in the upper right corner of Fig. 9,
rise through π/2 at the resonance masses in all models. But,
quantitatively, the resonance masses are different in different
models. The resonance mass in QDCSM1 is about 60 MeV
lower than that in ChQM, and the QDCSM2 always has the
lowest mass. For QDCCM, the resonance mass is 2443 MeV
in QDCCM0, 2298 MeV in QDCCM1, and 2156 MeV in
QDCCM2. This resonance (IJ = 03 ��) is a promising
candidate for the observed isoscalar ABC structure seen
more clearly in the pn → dππ production cross section

at 2.36 Gev in the recent report by the CELSIUS-WASA
Collaboration [22].

(3) I = 1, J = 0: The 1S��
0 state is qualitatively similar to

the 3S��
1 state since they are just different spin-isospin states

of the same quark system with the same relative orbital angular
momenta. The calculated phase shifts, shown in the lower left
corner of Fig. 9, show that the resonance survives only in
QDCSM2 after the channel coupling. The situation is almost
the same as the 3SNN

1 state.
(4) I = 1, J = 2: The phase shifts of NN scattering are

shown in the lower right corner of Fig. 9. From the curves,
we find that a resonance appears in QDCSM2, QDCCM1, and
QDCCM2. The resonance masses are 2168 MeV in QDCSM2,
2144 MeV in QDCCM1, and 2130 MeV in QDCCM2. For
ChQM and QDCSM1, only a prominent cusp appears at the
N� threshold. Nevertheless, the state might correspond to the
resonance looping in the Argand diagram of the 1D2 pp partial
wave [23].

For odd-parity NN states, resonance poles are found for
the isovector odd-parity NN partial waves 3P2, 3F2, and 3F3

[24]. These empirical resonancelike solutions reproduce the
empirical Argand loopings of the partial-wave solutions, but
many studies in the past [25] have not resolved the question
of whether these Argand loopings represent real dibaryon

FIG. 9. The phase shifts of NN S-wave and D-wave scattering to energies beyond the �� or N� thresholds.
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resonances. In our quark-model calculation, we have not found
any resonance attributable to an N� or �� bound state in the
odd-parity NN states.

IV. SUMMARY

By including the hidden color channels and varying the
strength of the color confinement potential between color
singlet channels and hidden color channels and/or hidden
color channels and hidden color channels, a phenomenological
quark model for baryon-baryon interaction is constructed. The
model achieves a good description of S-, P -, D-, F -, G-,
H -, and I -partial-wave phase shifts of NN scattering as good
as other quark models. It also reproduces the binding energy
and D-wave component of deuteron, but a little too small
root-mean-square radius. By applying the model to dibaryon
search, similar results with QDCSM and ChQM are obtained.
The results show that the hidden color channels are important
for the NN intermediate-range attraction. The lattice QCD
calculations obtained the stringlike multibody confinement
interaction in the multiquark system [17]. It is equivalent to the
two-body confinement Eq. (4) with k = 1 for a color singlet
nucleon with three quarks. Oka extended the string-flip model
to the six-quark system and obtained a reasonable description
of NN interaction [11], which might be viewed as a modeling
of the lattice QCD stringlike multibody confinement. QDCCM
fits the NN scattering data better and we suspect it might be
another modeling of the lattice QCD multibody confinement.

Certainly, one would expect to directly use the stringlike
multibody interaction obtained in lattice QCD to calculate
the NN interaction. However, it is not only because of
the huge numerical task, but also because there is not any
information about the transition interaction between different
string structure, which hindered this approach.

Nuclear force is an old topic; it has been studied over
70 years and a large amount of experimental data has been
accumulated. Although there are several approaches that can
give almost perfect description of the experimental data, the
mechanism for the intermediate-range attraction is still an
open question. Lattice QCD achieved a qualitative description
of the NN interaction already, and it will finally achieve a
quantitative description. But, based on present lattice QCD
technique, it can not reveal the physical mechanism, for exam-
ple, to distinguish the phenomenological σ -meson exchange
and the nucleon distortion similar to molecular covalent-bond
mechanism for the intermediate-range attraction. One has
to develop the nonperturbative continuous QCD field theory
method as well as nonperturbative QCD model to explore the
NN interaction.
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