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Time evolution of a “little bang” created in heavy-ion collisions can be divided into two phases, the
pre-equilibrium and hydrodynamic. At what moment does the evolution become hydrodynamic and is there
any universality in the hydrodynamic flow? To answer these questions we briefly discuss various versions of
hydrodynamics and their applicability conditions. In particular, we elaborate on the idea of “universal” (all-order
resumed) hydrodynamics and propose a simple new model for it. The model is motivated by results obtained
recently via the Anti–de Sitter and conformal field correspondence. Finally, charged hadron multiplicities in
heavy-ion collisions at the Relativistic Heavy Ion Collider and Large Hadron Collider are discussed. At the
freeze-out, the multiplicities can be related to total entropy produced in the collision. Assuming the universal
hydrodynamics to hold, we calculate the entropy production in the hydro stage of the collision. We end
up speculating about a connection between the multiplicity growth and the temperature dependence of the
quark-gluon plasma viscosity.
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Introduction. This Rapid Communication contains some
further developments of the ideas put forward in our paper [1].
There we argued that entropy production in the strongly
coupled quark-gluon plasma (sQGP) should be computed
using an all-order resummed hydrodynamics and that the
resummation makes it possible to provide reliable estimates,
even starting from very short thermalization times. The main
goal of this Rapid Communication is to connect this proposal
to some recent theory developments based on the Anti–de
Sitter and conformal field theory (AdS-CFT) setting [2], which
support our ideas, as well as to address the phenomenological
question of charged particle multiplicity production in heavy-
ion collisions at the LHC, to be detailed below. Let us
stress here that the entropy production is only one of several
applications for which an all-order resummation might be
important. There are additional interesting phenomena in
which matter gradients are large and applicability limits of
standard hydrodynamics are in question. Let us give here two
examples of those.

As recent studies have shown, fluctuations of initial-state
density in heavy-ion collisions are the origin of sound waves.
By freeze-out, these waves reach large distances, comparable
to the fireball radius itself, and are observed as fluctuations
of angular harmonics in the particle distributions. It is
remarkable that amplitudes of up to ninth harmonics have been
measured, displaying good agreement with hydrodynamics
[3–5]. Yet the questions as to how to treat these fluctuations
in nonequilibrium and from what initial times they can be
evolved hydrodynamically remain unanswered.

“Mach cones” induced in the matter by quenching jets [6,7]
present another application of the sound waves in heavy-ion
physics. Unlike sounds from the previous example, the jet-
induced waves were studied in detail within the AdS-CFT
context [8]. At late stages, the results were shown to agree with
hydrodynamics. However, when exactly the hydrodynamics

becomes applicable is still an open question, despite the
availability of exact AdS-CFT solutions. The issue becomes
even more important with the first Large Hadron Collider
(LHC) data on jets, revealing events with huge amounts of
energy, ∼100 GeV, deposited by a jet. This calls for studies of
the full nonlinear settings, beyond the linearized sound-wave
approximation.

Below we discuss initial conditions for hydrodynamics
from the perspective of the AdS-CFT results. We also propose
in a new, all-order resumed, hydrodynamics model for Bjorken
explosion. Later, we use this model in order to compute
the entropy production in the hydro phase. Phenomenolog-
ical relevance to the data on charged particle multiplicities
is also discussed. We summarize and provide additional
discussions.

Multiplicities in pp and AA collisions. One of the first
discoveries made by the LHC is a rapid rise with energy of mul-
tiplicities of charged hadrons produced both in proton-proton
(pp) and heavy-ion collisions. The discovery is especially
dramatic in heavy-ion collisions, where most of the existing
models have failed to predict the data.

The first ALICE data on charged particle multiplicity in
lead-lead collisions are [9]

dN

dη

∣∣∣∣
PbPb

(2.76 TeV) = 1584 ± 76, (1)

combined with the earlier data from the Relativistic Heavy
Ion Collider (RHIC); these imply the multiplicity in nucleus-
nucleus (AA) collisions growing with the (center-of-mass)
energy per nucleon as

dN

dη

∣∣∣∣
PbPb

(ENN ) ∼ E0.30
NN . (2)
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The corresponding power in the pp collisions is 0.22, and thus
the ratio of the two also grows with the energy

dN

dη

∣∣∣∣
PbPb

/
dN

dη

∣∣∣∣
pp

∼ E0.08
NN . (3)

From the RHIC energy (E = 0.2 TeV) to the LHC, the double
ratio is

dN
dη

∣∣
PbPb,LHC

/
dN
dη

∣∣
pp,LHC

dN
dη

∣∣
AuAu,RHIC

/
dN
dη

∣∣
pp,RHIC

= 1.23. (4)

This noticeable change with energy calls for a theoretical
explanation. (An increase in the atomic number, 197 for Au
and 208 for Pb, explains only 0.055 of it.)

Particle production in heavy-ion collisions proceeds via
two basic phases: (i) a prethermalization phase and (ii) a
hydrodynamical stage. Theoretical frameworks used for their
descriptions are very different.

The first one is based on a perturbative quantum chromody-
namics (pQCD) cascade of gluons, described by high-energy
evolution equations including gluon saturation effects, or a
color glass condensate (CGC). CGC relies on the emergence
of a semihard scale, the saturation momentum

Q2
s ∼ A1/3x−λ, λ = 0.25–0.30, (5)

related to the density of gluons with a longitudinal momentum
fraction x. Within the CGC approach, many quantities become
universal and simply scale with the saturation scale, the
property known as geometrical scaling. As an example of this,
the particle’s pt spectra in pp collisions are found to have a
dependence of the type f (pt/Qs) [10].

If the hypothesis of geometrical scaling is true, then a
CGC-based estimate for the AA-pp multiplicity ratio should be
energy independent [see, however, Ref. [11], which discusses
the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)
effect on the saturation scale]. Yet, experiments observe a
prominent growth with energy. Another observation is that the
CGC-based multiplicity estimates tend to underestimate it at
the LHC. In particular, Ref. [12] underestimates the observed
multiplicity by ∼35%: dN/dη|PbPb(2.76 TeV) � 1175.1

The second phase of heavy-ion collision process is hy-
drodynamic, and it produces particles (entropy) due to finite
viscosity. While the viscosity itself grows, from a strongly
coupled regime at the beginning of the evolution to hadronic
matter at its end, and even gets very large near freeze-out, the
main entropy production still happens at the very beginning.
This is so because the viscosity coefficient gets multiplied
by flow gradients, which rapidly decrease with the evolution
time. Below, we will discuss the effect of viscosity on the
multiplicity growth.

When does the hydro stage start? This question is not well
posed unless we specify what exactly is meant by “hydro” and
what is meant by its “start.” To define a starting moment is
relatively easy: For any theory and an approximation to it, the
approximation is considered as valid as long as the two deviate
from each other within a preset accuracy (say, 1%).

1In the latter [13] the results of Ref. [12] were revised toward a
much better agreement with the data.

The question of defining “hydro” has different meaning
and depends on what approximation is used. We will mention
three cases here: (i) “Ideal hydrodynamics” is a collective
description that includes local quantities only, such as pressure
and energy density. The accuracy and validity of the “ideal
hydro” approximation depends on viscous corrections to
this local approximation, which contain first gradients of
the flow of matter. (ii) Navier-Stokes hydrodynamics (NS)
includes these viscous terms, and its accuracy is estimated
by next terms involving two gradients. (iii) “Resummed
hydrodynamics” (RH) includes in some approximate form
all higher-order gradients. Accuracy of this approximation
is given by deviations from first-principles nonequilibrium
calculations.

Obviously, as the accuracy of approximation increases from
(i) to (iii), its applicability regions widen. In connection with
heavy-ion collision processes, it means that “the beginning of
the hydro stage” moves toward increasingly earlier times.

Conformal “resummed hydrodynamics.” When talking
about all-order resummed hydro, it is convenient to introduce
viscosity as a momenta-dependent function. In Ref. [1] we
extracted it from an AdS-CFT computed sound dispersion
curve. In Ref. [14] we took a more formal approach, which
lead us to propose the following model:

η(ω, k2) = η0

1 − 1/2k2 − iωτR

. (6)

Here η0 = 1/2 in dimensionless units in which 2πT = 1 and
that corresponds to the celebrated ratio of viscosity to entropy
density equal to 1/4π [15]. In these units, τR = 2 − ln 2 and is
the relaxation time of the Israel-Stewart (IS) model [16]. The
model (6) reproduces well the small ω and k expansion up to
fifth order.

We consider Bjorken flow [17] as a model for the explosion.
It has the simplest geometry: There is no dependence on
two transverse coordinates, as well as on space-time rapidity
y = (1/2) ln[(t − x)/(t + x)]. What is left is a dependence on
the proper time τ = √

t2 − x2 only. In these coordinates, the
metric is ds2 = −dτ 2 + τ 2dy2 + d �x2

⊥, and we will not write
any further details, as those are well known. In the Bjorken
flow, there are no spatial variations (�k = 0) and our model (6)
reduces back to IS. It is well known that additional nonlinear
terms contribute to the entropy production that is not governed
by the viscosity term only. However, the entropy is produced
mostly at the beginning of the expansion, when viscous terms
are dominant. It is especially true for the case of very early
thermalization. This is why a more or less reliable estimate of
entropy production can emerge only if we know the dissipation
tensor at very large ω.

Let us introduce the dimensionless variable w = τT . Then,
within the all-order hydrodynamic approximation, the entropy
production equation can be written with some “universal
function” of this variable

dw

d ln τ
= F (w), (7)
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Solving (7) one finds a time dependence of the temperature,
from the initial time τi to the final (freeze-out) time τf

τ (wf ) = τ (wi) exp

[ ∫ wf

wi

dw′

F (w′)

]
, T (w) = w/τ (w). (8)

The final values Tf , τf should be read off the experimental data
[there is evidence that Tf is about the same at the RHIC and
LHC while τf grows with ENN , and hence the total entropy
(multiplicity) also grows].

From these experimental data, one may use the solution
and trace back to the initial values for the thermalization time
and temperature. However, Eq. (8) provides only one relation
between the two. In the plane (τi, Ti) it defines a curve. [This
is similar to field theory renormalization group (RG) flows
of couplings.] An additional condition, to be detailed below,
is needed in order to fix the absolute values of the initial
conditions.

The function F (w) can be expanded in powers of 1/w, with
the coefficients of the expansion being higher-order viscosities.
Thanks to the AdS-CFT correspondence, for conformalN = 4
plasma the expansion terms are known up to third order [18,19]

F (w)/w = 2

3
+ 1

3w
η̄ − 1

3w2

η̄(ln 2 − 1)

3π

+15 − 2π2 − 45 ln(2) + 24[ln(2)]2

972π3w3
+ O(1/w4).

(9)

The first term corresponds to the ideal hydro. The second
one is NS, with η̄ = 1/3π , while the third one is second
order including nonlinear terms, beyond IS. At large w

the series is convergent. We will argue below that hydro
is a reasonably good approximation for w � w0 � 0.4. For
illustration purposes we give here values of these terms at w0,
normalized to the first term:

(3/2)F (w0)/w0 = 1 + 0.1326 + 0.0107 − 0.0189. (10)

It is clear that the NS term is still very important. The next
terms are an order of magnitude smaller. Moreover, we would
like to stress the sign alternating feature of these higher-order
terms. As a result, being resummed, these terms contribute less
than each of them separately.

To get such qualitative behavior we proposed a new and very
simple “resummation model” with a new (positive) parameter
α

F (w)/w = 2

3
+ η̄

3(w + α)
. (11)

This model obviously expands into a sign-alternating geomet-
ric series. The important feature is in the small w behavior,
which gets regularized. One might want to relate α either
to the relaxation time τR of IS or to the expansion terms in
Eq. (9). However, we argue that the most natural choice is
simply α = η̄: To eliminate any self-heating at the early times,
α shall be bigger than η̄, α � η̄. α = η̄ appears to be the
optimal model choice: It leads to T (τ ) ∼ τ 0 at small τ , which
is consistent with Ref. [20] and CGC-based estimates. This
choice maximizes the amount of entropy that can be produced
within the model (11). Larger α will drive the hydro to appear

w
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FIG. 1. (Color online) The solid line is our model for F (w)/w −
2/3; the dashed line is its known large w asymptotics (9).

to be more ideal. Figure 1 compares this model function with
the known asymptotics at large w given by (9).

AdS-CFT-based studies of equilibration. AdS-CFT corre-
spondence provides a possibility to study strongly coupled
plasmas. We will not elaborate here on any details but will only
refer to some relevant results. Following the first applications
of the AdS-CFT to equilibrium properties (such as the equation
of state) and near-equilibrium kinetic coefficients (such as
viscosity), it was further realized that the duality provides
a unique opportunity to study nonequilibrium problems from
first principles based on well-developed gravitational tools.
From the fifth-dimensional perspective, a fall of an object
under gravitational force is equivalent to a relaxation process,
proceeding from UV to IR. This was clearly demonstrated in
Ref. [21] for an elastic membrane falling under its own weight.

Without citing the full list of the AdS-CFT-based studies
of nonequilibrium phenomena, we refer to two recent works
[19,22], relevant for this Rapid Communication. Both papers
address the question as to what extent a sQGP explosion
deduced from exact numerical solutions of the Einstein
equations in AdS5 agrees with a hydro evolution. Relying
on these studies one can answer the questions posed above,
namely, “what is hydro?” and “when does it start?,” at least
for the conformal plasma in study. As seen from Fig. 3 of
Ref. [22], full numerical solutions of the Einstein equations
agree with the NS hydro at quite early times. A similar
analysis was performed in Ref. [19]. Starting from a number of
artificial initial conditions (which, to some extent, are equiv-
alent to introducing nuclei with arbitrary structure functions)
the authors of Ref. [19] traced the exact time evolution from the
gravity side. It was found that, starting from some initial wi , the
evolution of all trajectories converged to a universal behavior
of the form (7). Figure 4 of this work displays this convergence

061901-3



RAPID COMMUNICATIONS

M. LUBLINSKY AND E. SHURYAK PHYSICAL REVIEW C 84, 061901(R) (2011)

9 10 11 12 13 14 15
f fm

0.12
0.14
0.16
0.18
0.20
0.22

i fm

9 10 11 12 13 14 15
f fm

600

650

700

750

800

Ti GeV

FIG. 2. (Color online) The initial time and temperature as a function of the freezout time τf . Left panel: wi = 0.4 (bottom curve), wi = 0.5
(middle curve), wi = 0.6 (upper curve). Right panel: function of the freezout time τf . Left panel: wi = 0.6 (bottom curve), wi = 0.5 (middle
curve), wi = 0.4 (upper curve).

and can be used to define wi , which is the “beginning of hydro.”
We conclude that, depending on the accuracy requested,

wi(few percents) ≈ 0.40, wi(half percent) ≈ 0.65. (12)

One of these values provides the second relation between Ti

and τi , which, together with (8), fixes the initial conditions
uniquely. Obviously, our model function should be used for
w > wi only. Its accuracy can be estimated from comparison
with the asymptotics (9) (Fig. 1). As seen from the figure, the
accuracy is ∼1% or even better. It is also important to note that
in both studies mentioned above, the convergence between the
exact and hydro results happens when the viscosity-induced
asymmetries are still very large, O(1). Emergence of the ideal
hydrodynamics (small asymmetries) can be also seen in those
results: It happens at noticeably later times.

The entropy production. The model (11) makes it possible
to consider a small w limit with the function F being well
regularized. Within this model, the proper time as a function
of w can be found analytically:

τ

τi

=
(

w

wi

) 3α
2α+η̄

(
2w + 2α + η̄

2wi + 2α + η̄

) 3
2 − 3α

2α+η̄

. (13)

The entropy density s = 4kBT 3. Assuming R, the ratio
between the experimentally measured multiplicity and the
prethermalization one, to coincide with the ratio between the
finite and initial entropies, we have

R = sτ

siτi

=
(

w

wi

2wi + 2α + η̄

2w + 2α + η̄

)3− 6α
2α+η̄

. (14)

At the end of the evolution

τf ∼ w
3/2
f → ∞.

R goes to its limiting value

R =
(

2wi + 2α + η̄

2wi

)3− 6α
2α+η̄

� 1 + 2α + η̄

2wi

(
3 − 6α

2α + η̄

)
.

For our choice α = η̄ 2

R =
(

2wi + 3η̄

2wi

)
≈ 1.39, . . . , 1.24, (15)

2Choosing α even several times the value of our choice would not
affect much the results, because R is a relatively flat function of α.

where the numerical values 0.4, . . . , 0.65 were used for wi .
Thus, our model can nicely recover the missing 35% in the
total multiplicity production at the LHC at ENN = 2.76 TeV.
This also supports wi � 0.5 as the correct choice for the initial
condition.

More on hydro initial conditions. As we argued above,
hydro evolution (8), supplemented by a universal value of wi

provides a means to estimate both the initial temperature Ti

and initial time τi from the finite data. It makes sense to take
as a final temperature Tf the value of 170 GeV, which is the
QCD critical temperature. The freeze-out time τf is not well
known, and neither we can be certain about our estimate of
wi . Varying these parameters we can still provide a reasonable
estimate for the initial data. We do it in Fig. 2, which displays
τi and Ti as a function of τf for three values of wi = 0, 4,

0.5, 0.6.
Summary and discussion. Inspired by the results derived

via the AdS-CFT, we argued that for a rapidity-independent
geometry, a nonequilibrium explosion rapidly converges to
a universal hydrodynamical function F (w), for which we
proposed a new simple model. Using this model we estimated
the amount of entropy produced in the hydrodynamic stage and
found it to constitute ∼30% of the total. This compliments the
perturbative studies such as those of Ref. [12], and recovers
the “missing entropy” in heavy-ion collisions at the LHC. In
addition, we were able to provide estimates both for the initial
temperature Ti ∼ 600–800 GeV and for the thermalization
time τi ∼ 0.1–0.2 fm.

The key question, of course, is to what extent our arguments
and estimates are indeed applicable to QCD in real heavy-ion
collisions. The QCD plasma is believed to be strongly coupled.
From the lattice studies, thermodynamics of QCD is also
known to display a near-conformal behavior (p/T 4, ε/T 4 ∼
const for T > 2Tc). However, QCD is presumably not a theory
with a gravity dual, and there is little information about its
transport coefficients.

In particular, there is no reason for the viscosity-to-entropy
ratio to have the same universal value 1/4π as in theories with
gravity duals. Indeed, presently available phenomenological
estimates of the viscosity favor a larger value for the ratio:
Ref. [23] obtained η/s � 2 (1/4π ) at the RHIC and η/s �
2.5 (1/4π ) at the LHC. First studies of the higher flow
harmonics support these findings [3,4]. Furthermore, this
ratio is expected to increase with the temperature, because
the coupling becomes weaker. Perturbative studies, such as
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of Ref. [24], relate η/s to an interplay between gg → gg

and gg → ggg cross sections, which are O[αs(T )2] and
O[αs(T )3]. respectively (processes with more gluons in the
final state can be also considered [25]).

Nonperturbative studies relate viscosity to an interplay be-
tween gluon-gluon and gluon-monopole scattering processes.
In the latter case, there is no coupling constant in the cross
section (the electric charge times magnetic is the integer);
the monopole density, computed on the lattice, decreases
with temperature. Reference [26] predicted a rise in η/s as
a function of temperature (Fig. 14 of this reference), from
η/s � 2 (1/4π ) at T = 2Tc to η/s � 2.6 (1/4π ) at T = 4Tc,
roughly corresponding to the initial conditions at the RHIC
and LHC.

If the QCD plasma were conformal, R would not depend
on the collision energy ENN , and we would obtain the same
prediction for the RHIC and LHC. However, as we have
noted in the beginning, experimentally it is not true. We are
to speculate that this extra multiplicity observed at the LHC
(relative to the RHIC normalization) may originate from the
viscosity growth as a function of temperature. We further
conjecture that our “universal resummed hydrodynamics”
should, in some form, be valid in any theory and perhaps

the same value of wi parameter will be true in QCD. Then,
the extra entropy produced, between the RHIC and LHC, can
be ascribed to viscosity growth. Relying on our “resummed
hydrodynamics” result we get

R(LHC)

R(RHIC)
≈ 1 + 3[η̄(LHC) − η̄(RHIC)]

2wi + 3η̄(RHIC)
. (16)

Substituting η̄(RHIC) ≈ 2(1/3π ), ωi = 0.4 we find that in
order to get the 23 − 5.5 = 16.5% (4) of the unaccounted extra
multiplicity (double-ratio) growth at LHC, one would need the
relative viscosity growth [η̄(LHC) − η̄(RHIC)]/η̄(RHIC) �
0.4, which is in the expected range.

The ultimate knowledge about QCD transport properties
will come from a systematic study of various hydrodynamical
phenomena, beyond entropy production discussed in this
Rapid Communication. The most promising ones are sound
waves, already discussed in the Introduction.
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