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Relativistic mean field in A ≈ 80 nuclei and low-energy proton reactions
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Relativistic mean-field calculations were performed for a number of nuclei in the mass A ∼ 80 region.
Ground-state binding energy, charge radius, and charge density values were compared with experiment. The
optical potential was generated folding the nuclear density with the microscopic nuclear interaction DDM3Y.
S factors for low-energy (p,γ ) and (p,n) reactions were calculated and compared with experiment.
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The relativistic mean-field (RMF) approach has proved to
be very successful in explaining different features of stable and
exotic nuclei like ground-state binding energy, deformation,
radius, excited states, spin-orbit splitting, neutron halo, etc. [1].
In particular, the radius and the nuclear density are known to
be well reproduced. This has led to its application to nuclear
reactions also.

Low-energy reactions are very important from the astro-
physical point of view. In astrophysical environments, neutron
and proton reactions are the keys to nucleosynthesis of
heavy elements. The A ≈ 80 region is an interesting one as
(p,γ ) and (n,p) reactions play important roles in determining
the abundance of elements. In this mass region, there are
some proton-rich naturally occurring isotopes of elements
known as p nuclei which cannot be produced via the s or
r process. Mainly, proton-capture reactions contribute to the
formation of such nuclei. Recent works (see, e.g., Ref. [2])
have emphasized the importance of a number of charge
exchange reactions in this mass region for production of very
light p nuclei. The relevant astrophysical rates can directly
be derived from the (p,n) data, although the target is in
the ground state and reaction has negative a Q value [3].
A number of recent experiments has focused on reactions
using protons having an energy of a few MeV in the A ≈ 80
region.

Calculation of isotopic abundance requires a network
calculation involving many thousands of reactions. Despite
the importance of (p,γ ) or (p,n) reactions in explaining the
abundance of p nuclei, experimental data are rather scarce due
unavailability of the target nuclei on Earth. Thus, one often
has to depend on theory for these reactions. The calculations
essentially utilize the Hauser-Feshbach formalism where, the
optical model potential, a key ingredient, is often taken in a
local or a global form. It is also possible to use a microscopic
optical potential constructed utilizing nuclear densities. If the
target is stable, the density of the nucleus is available through
electron scattering. However, in the absence of a stable target,
theory remains our sole guide to describe the density. Thus,
it is imperative to test the theoretical calculations, where
experimental data are available, to verify its applicability. We
aim to check the success of microscopic optical potentials
based on mean-field densities in explaining the reaction cross
sections. A good description depending essentially on theory
will allow one to extend the present method to the critical
reactions that are beyond present day laboratory capabilities.

Calculations using microscopic potentials have been able
to explain the observed elastic-scattering cross sections even
in nuclei far from the stability valley (See, e.g. Ref. [4] and
references therein). Low-energy projectiles probe only the
outermost regions of the target nuclei. Hence, the nuclear skin
plays a very important role in such reactions. The density
information should be available from theoretical calculations.
This method has been utilized to study low-energy proton-
capture reactions in Ni and Cu nuclei [5] and nuclei in the
A = 60–80 region [6].

For the present study we have selected a number of
low-energy proton reactions for their astrophysical relevance.
The reactions 84,86,87Sr(p,γ ) were investigated through an
activation technique by Gyürky et al. in Ref. [7]. It is important
to note that 84Sr is another p nucleus. In beam measurements
were performed by Galanopoulos et al. [8] to find out the cross
sections for the reaction 88Sr(p,γ ). As for charge exchange
reactions, three reactions, identified as important by Rapp et al.
[2] and for which experimental cross sections are available,
have been selected for study. The reaction 75As(p,n) was
studied in Refs. [9–11] through in-beam detection of neutrons.
Finally, the reactions 76Ge(p,n) [12] and 85Rb(p,n) [3] were
studied by use of the activation technique. In the present work,
we investigate the reactions mentioned above in a microscopic
approach.

Theoretical density profiles were extracted in the RMF
approach. There are different variations of the Lagrangian
density as well as a number of different parametrizations. In the
present work we have employed the FSU Gold [13] Lagrangian
density. It contains, apart from the usual terms for a nucleon-
meson system, nonlinear terms involving self-coupling of
scalar-isoscalar mesons and additional terms describing self-
coupling of the vector-isoscalar meson and coupling between
the vector-isoscalar meson and the vector-isovector meson.

Pairing has been introduced under the BCS approximation
using a zero-range pairing force of strength 300 MeV-fm
for both proton and neutrons. The RMF + BCS equations
are solved under the usual assumptions of classical meson
fields, time-reversal symmetry, no-sea contributions, and so
on. Since we need the densities in coordinate space, the Dirac
and the Klein Gordon equations have directly been solved in
that space. This approach has earlier been used [4,14,15] in
neutron-rich nuclei in different mass regions.

The microscopic optical model potentials for the reactions
are obtained using effective interactions derived from the

057601-10556-2813/2011/84(5)/057601(4) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.057601


BRIEF REPORTS PHYSICAL REVIEW C 84, 057601 (2011)

nuclear matter calculation in the local density approximation,
i.e., by substituting the nuclear matter density with the
density distribution of the finite nucleus. In the present work,
the microscopic nuclear potentials have been constructed
by folding the density-dependent DDM3Y [16,17] effective
interaction with the densities from the RMF calculation. This
interaction, obtained from a finite-range energy-independent
M3Y interaction by adding a zero-range energy-dependent
pseudopotential and introducing a density-dependent factor,
has been employed successfully in nucleon nucleus as well as
nucleus nucleus scattering, calculation of proton radioactivity,
and so on. The density dependence has been chosen in the form
C(1 − βρ2/3) [17], the constants being obtained from a nuclear
matter calculation [18]. The real and the imaginary parts of
the potential are taken as 0.7 times and 0.1 times the DDM3Y
potential, respectively. This normalization have also been used
in our earlier work on (p,γ ) reactions in lighter nuclei [6].
We have checked that the above values adequately describe
the cross-section measurements. Of course, these parameters
can be tuned to fit the cross sections in individual reactions.
For example, in 84Sr, if we choose the imaginary part of the
potential as 0.3 times the DDM3Y potential, the result will
differ by 10% and fit the experimental data better. However,
we believe that a single parametrization for the entire mass
region is more useful.

The Coulomb potentials are similarly constructed by
folding the Coulomb interaction with the microscopic proton
densities. We have already used such potentials to calculate
life times for proton, α, and cluster radioactivity [19] as well
as elastic proton scattering [4] in different mass regions of the
periodic table.

Reaction calculations have been performed with the com-
puter code TALYS 1.2 [20] assuming spherical symmetry for the
target nuclei. The DDM3Y interaction is not a standard input
of TALYS but can easily be incorporated. Though the nuclear
matter-nucleon potential does not include a spin-orbit term,
the code provides a spin-orbit potential from the Scheerbaum
prescription [21] coupled with the phenomenological complex
potential depths. The default form for this potential given in
the code has been used without any modification.

The TALYS code has a number of other useful features.
We have employed the full Hauser-Feshbach calculation
with transmission coefficients averaged over total angular-
momentum values and with corrections due to width fluc-
tuations. Up to 30 discrete levels of the nuclei involved have
been included in the calculation.

Our calculations, being more microscopic, are more re-
stricting. Yet, the rate depends on the models of the level den-
sity and the E1 γ strength function adopted in the calculation
of cross sections. Phenomenological models are usually fine
tuned for nuclei near the stability valley. Microscopic prescrip-
tions, on the other hand, can be extended to the drip lines and,
hence, have been assumed in all nuclei. We have calculated our
results with microscopic level densities in Hartree-Fock (HF)
and Hartree-Fock-Bogoliubov (HFB) methods, calculated in
TALYS by Goriley and Hilaire, respectively. We have also
compared our results using phenomenological level densities
from a constant-temperature Fermi gas model, a back-shifted
Fermi gas model, and a generalized superfluid model from

TABLE I. Experimental binding energy and charge radii values
compared with calculated results.

B.E. (MeV) rch(fm)

Expt. Theor. Expt. Theor.

84Sr 728.90 727.53 4.236 4.232
86Sr 748.93 748.27 4.226 4.240
87Sr 757.36 757.17 4.220 4.245
88Sr 768.47 768.47a 4.220 4.249
75As 652.56 652.38 4.097 4.082
76Ge 661.60 660.69 4.081 4.053
85Rb 739.28 738.70 4.203 4.218

aNormalized following the prescription of Refs. [22,23].

TALYS. The cross sections are very much dependent on the
level density chosen, sometimes changing by a factor of 50%.
We find that, in most the cases, the HFB densities fit the
experimental data better in our formalism.

For E1 γ strength functions, results derived from
HF + BCS and HFB calculations, available in the TALYS

database, were employed. In agreement with our observation
in Ref. [6], the results for HFB calculations describe the S

factors reasonably well and we present our results for that
approach only.

It is possible to scale the theoretical capture cross sections
to match with experiment using a parameter Gnorm in the code
used to scale the γ -ray transmission coefficient. However, for
the present paper, we have not scaled the theoretical results. All
the parameters in the Lagrangian density and the interaction
are standard ones and have not been changed.

As the density profile is the important quantity in our
formalism, a comparison of the radii values can provide some
idea about the agreement of the calculated densities with
experiments. In Table I, we compare our results for the binding
energy and charge radii (rch) with measurements for those
nuclei in this mass region, which have been used as targets for
low-energy proton-capture or charge-exchange reactions. The
binding energy values from the mean-field approach have been
corrected using the formalism developed in Refs. [22,23]. The
experimental binding energy values are from Ref. [24].

Charge radii have been calculated from the charge densities,
which, in turn, have been obtained from the calculated point
proton density ρp by taking into account the finite size of the
proton. The point proton density is convoluted with a Gaussian
form factor g(r),

ρch(r) =
∫

eρp(r′)g(r − r′)dr′ (1)

g(r) = (a
√

π)−3 exp(−r2/a2) (2)

with a = 0.8 fm.
Experimental charge radii values are from Angeli [25]. The

results show that RMF can describe the charge radii of these
nuclei with sufficient accuracy. One sees that in most of the
nuclei, the difference between measurement and theory is less
than 1%.

Direct comparison of charge density is more difficult
in absence of accurate experimental information. De Vries
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FIG. 1. Comparison of charge density obtained from Fourier-
Bessel analysis of experimental electron scattering data (solid line)
and calculated in the present work (dashed line).

et al. [26] have presented the coefficients of Fourier-Bessel
expansion for charge density of a number on nuclei extracted
from electron-scattering data. It includes two nuclei of our
interest, 76Ge and 88Sr. In Fig. 1, we compare the charge
density extracted from the Fourier-Bessel coefficients and
our calculated results for the above two nuclei. One can see
that the theoretical and experimental values agree very well,
particularly at larger radii values, which is the region expected
to contribute to the optical potential at low projectile energy.
However, in absence of information on error in the density
values, this conclusion can remain only tentative.

We then compare the results for the reaction calculation
in the above-mentioned reactions with experiments. As the
astrophysically important Gamow window lies in the region
1.3 to 3.9 MeV for these nuclei, we present the results covering
this energy region. The cross section varies very rapidly at
such low energy, making comparison between theory and
experiment rather difficult. The usual practice in low-energy
nuclear reaction is to compare another key observable, viz. the
S factor. The expression of the astrophysical S factor [6] is
given by

S(E) = Eσ (E)e2πη, (3)

where E is the energy in center-of-mass frame in KeV, σ (E)
is the reaction cross section in barns, and η indicates the
Sommerfeld parameter with 2πη = 31.29ZpZt

√
μ/E. Here,

Zp and Zt are the charge numbers of the projectile and the
target, respectively, and μ is the reduced mass (in amu). It
varies much more slowly than reaction cross sections as the
exponential energy dependence of cross section is not present
in it. For this reason, we calculate this quantity and compare it
with experimentally extracted values.

Figures 2 and 3 show the results for the reactions
84,86−88Sr(p,γ ). The results compare favorably with exper-
iments compared to the NON-SMOKER code calculations of
Rauscher et al. [27]. However, it needs to be pointed out
that, in the case of 87Sr, theoretical results overpredict
the cross-section values. It was suggested [7] that perhaps
the agreement with theory (in their case the NON-SMOKER

calculation) worsens as one goes to more neutron-rich nuclei.
However, as one can see in the right panel of Fig. 2, this trend
is not shared by the present calculation.
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FIG. 2. Experimental and calculated S factors for (p,γ ) reactions
in (a)84Sr and (b) 86Sr targets.

Figure 3 shows the results for the (p,n) reactions on (a)
75As, (b) 76Ge, and (c) 85Rb targets. These reactions (along
with their inverse reactions) are listed among the 10 most
important reactions in deciding the abundance of the p nuclei
in Rapp et al. [2]. The three measurements for the 75As(p,n)
reaction are rather old and error values are not available
for most of the measurements. The quoted error in cross
section is 10% or above. In 76Ge, we find that the calculation
systematically overpredict the results by as much as 60%. On
the other hand, the calculations for the 85Rb(p,n) reaction
produce excellent match with experimental measurements.

We find that our calculation can reproduce the S-factor
values with reasonable success. Even in the worst case, the
calculation is off by a factor of less than 2 while the cross-
section values range over four orders of magnitude. However,
one should remember that in astrophysical calculations, the
rates are often varied by a large factor, viz. 10 or 100 [2]. Thus,
the present microscopic calculations can be used to obtain rates
which are dependable for astrophysical calculations.

We point out that, in our earlier work [5], we have showed
that the default local and global optical potentials [28] in the
TALYS package also can be used with suitable normalization
of γ -ray strength to produce comparable results for certain
energy ranges. In the present case also, suitable selection
of the parameter brings the values calculated with default
potential close to experimental values. However, we believe
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FIG. 3. Experimental and calculated S factors for (p,γ ) reactions
in (a)87Sr and (b) 88Sr targets.
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FIG. 4. Experimental and calculated S factors for (a) 75As(p,n), (b) 76Ge(p,n), and (c) 85Rb(p,n) reactions, respectively.

that the present microscopic approach is more suitable, as no
normalization is necessary, and the method can be extended to
reactions where experimental data are not available.

In summary, cross sections for low-energy (p,γ ) and
(p,n) reactions for a number of nuclei in A ≈ 80 region in
the energy regime important for explosive nucleosynthesis
have been calculated using the TALYS code. The microscopic
optical potential has been obtained by folding the DDM3Y
microscopic interaction with the nuclear densities obtained

from RMF calculation using the Lagrangian density FSU
Gold.
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