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Elastic scattering data for 141Pr(α,α)141Pr have been analyzed to derive a new energy-dependent local potential
for the 141Pr-α system. This potential is used successfully to predict the cross section of the 141Pr(α,n)144Pm
reaction at low energies where new experimental data have become available very recently. In contrast to various
global potentials, this new potential is able to reproduce simultaneously elastic scattering data around and above
the Coulomb barrier and reaction data below the Coulomb barrier for the 141Pr-α system. Reasons for the partial
failure of the global potentials are explained by intrinsic properties of the scattering matrix and their variation with
energy. The new local potential may become the basis for the construction of a new global α-nucleus potential.
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I. INTRODUCTION

The total reaction cross section σreac is related to the
complex scattering matrix SL = ηL exp (2iδL) by the well-
known relation

σreac =
∑

L

σL = π

k2

∑

L

(2L + 1)
(
1 − η2

L

)
, (1)

where k = √
2μEc.m./h̄ is the wave number, Ec.m. is the energy

in the center-of-mass (c.m.) system, and ηL and δL are the real
reflection coefficients and scattering phase shifts. σL is the
contribution of the Lth partial wave to the total reaction cross
section σreac.

Usually, experimental elastic scattering angular distribu-
tions are analyzed using a complex optical potential. At first
view, it seems to be a simple task first to determine σreac

from the analysis of the elastic scattering angular distribution
and second to distribute this cross section σreac among the
open channels (e.g., using the statistical model) to predict
cross sections of α-induced reactions. However, in practice
several problems appear. There is no unambiguous way to
determine reflection coeffcients ηL, phase shifts δL, or the
optical potential from a measured elastic scattering angular
distribution, and, in addition, in most cases angular distribu-
tions are measured at relatively high energies whereas reaction
cross sections should also be known at low energies below the
Coulomb barrier (which holds in particular for reaction cross
sections relevant for nuclear astrophysics). Thus, typically an
ambiguous optical potential has to be extrapolated down to
low energies; as a consequence, considerable uncertainties
have been noticed for the prediction of α-induced reaction
cross sections at low energies, in particular for (α,γ ) capture
reactions for targets with masses above A ≈ 100 [1–7].

Very recently, Sauerwein et al. [8] have studied the
141Pr(α,n)144Pm reaction at energies between 10 and 15 MeV,
i.e., below the Coulomb barrier. It is shown in [8] that
the calculated 141Pr(α,n)144Pm cross section depends almost
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exclusively on the α transmission and is thus well suited
to test global α-nucleus optical potentials. It is found that
the new experimental data cannot be reproduced by any
of the widely used global α-nucleus potentials, which are
the energy-independent four-parameter McFadden-Satchler
(MCF) potential [9], the latest version of the Avrigeanu
(AVR) potential with many partly energy-dependent param-
eters [10], and the energy-independent six-parameter potential
by Fröhlich and Rauscher (FRR), which is optimized for
low-energy reaction cross sections [11]. However, an excellent
description of the new 141Pr(α,n)144Pm data is achieved in [8]
using an energy-dependent modification of the MCF potential
where a new energy dependence of the depth of the imaginary
Woods-Saxon volume potential was introduced to reproduce
the new reaction data; the potential by Sauerwein et al. is
referred to as Sauerwein-Rauscher (SAR) in the following.

In contrast to the study in [8], which is restricted to the
analysis of the 141Pr(α,n)144Pm reaction in a narrow energy
window, the present study considers 141Pr(α,α)141Pr elastic
scattering in a wide energy range from 19 to 45 MeV. From
the fits to the elastic scattering angular distributions a new
energy-dependent potential is derived, and the total reaction
cross section σreac is calculated from this potential. σreac is then
compared to all available α-induced reaction data on 141Pr in
the EXFOR data base [12]. The aim of the present study is
thus to obtain a consistent description of all available elastic
scattering and reaction data over a broad energy range.

Elastic 141Pr(α,α)141Pr scattering data are available in the
literature at 45 MeV [13]. However, these data cover only a
limited angular range, and they have to be digitized from Fig. 3
in [13]. The latter leads to uncertainties which are difficult to
estimate. Four 141Pr(α,α)141Pr angular distributions at Elab =
19.0, 23.97, 32.0, and 37.7 MeV have been measured [14].
The experiment has been performed at the XTU Tandem of the
INFN Laboratori Nazionali di Legnaro. Unfortunately, these
data have never been published; a partial analysis of the data
was already shown in an earlier publication [15]. These data
are available in numerical form (including uncertainties) and
are thus much better suited for the determination of an optical
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potential by a fitting procedure. However, as the original data
give statistical errors only (with tiny uncertainties at forward
angles), a 5% uncertainty has been added quadratically to
account for unknown systematic errors of the data. Note that
it is difficult to achieve much smaller systematic uncertainties
for α-scattering experiments (see, e.g., [16,17]). These data
will be made available to the community via EXFOR [12].

Besides the 141Pr(α,n)144Pm data of [8], the reactions
141Pr(α,n)144Pm and 141Pr(α,2n)143Pm have been measured
in [18] using a stacked-foil activation technique. The data
cover an energy range from about 15 to 45 MeV. Although this
technique leads to considerable uncertainties at low energies,
these data provide further insight into the energy dependence
of reaction cross sections and the distribution of the total
reaction cross section σreac among different open channels.
Unfortunately, data for 141Pr(α,γ )145Pm are not available
in [12], and because of its lower reaction cross section and
unfavorable half-life and decay branches of 145Pm it was
not possible to measure the 141Pr(α,γ )145Pm cross section
simultaneously with the 141Pr(α,n)144Pm cross section in the
recent high-sensitivity activation experiment of [8].

II. ANALYSIS OF ELASTIC SCATTERING AND THE
TOTAL REACTION CROSS SECTION σreac

A. Elastic scattering

The analysis of the 141Pr(α,α)141Pr angular distributions
follows closely the procedure outlined in earlier work [16,17].
The total potential is composed of the nuclear potential with
real and imaginary parts and the real Coulomb potential. The
different potentials are discussed in the following.

The real part of the nuclear potential is derived from the
folding model; the folding potential is modified by a strength
parameter λ ≈ 1.2–1.4 and a width parameter w ≈ 1.0. (Large
deviations from w ≈ 1 would indicate a failure of the folding
model.) To avoid discrete uncertainties from the so-called
family problem, real potentials with volume integrals of about
JR ≈ 320–350 MeV fm3 have been selected [15]. (Note that
the negative signs of volume integrals JR and JI are—as
usual—omitted in the discussion.)

The imaginary part of the nuclear potential is taken in
the usual Woods-Saxon parametrization. It is well known
that scattering data at low energies are best described using

an imaginary potential of Woods-Saxon surface type (see,
e.g., [19]). This has been confirmed recently in a microscopic
calculation of the α-nucleus potential [20]. The same behavior
is found in the present study where the angular distributions at
Elab = 19.0, 23.97, and 32.0 MeV can be very well reproduced
with a pure surface imaginary potential. An additional volume
Woods-Saxon potential in the imaginary part does not improve
the description of the angular distributions at low energies.
However, for an excellent description of the 37.7- and
45.0-MeV data a combination of volume and surface Woods-
Saxon potentials for the imaginary part is required; at these
energies the volume part is even dominating the imaginary
potential.

The Coulomb potential is taken in the usual parametrization
of a homogenously charged sphere with a Coulomb radius RC

identical to the root-mean-square (rms) radius of the folding
potential without width modification (w = 1). This avoids
uncertainties from the otherwise somewhat arbitrary choice
of the Coulomb radius RC (often taken as RC = 1.2, 1.3, or
1.4 fm ×A

1/3
T ), which are non-negligible at least at very low

energies [21].
The resulting parameters of the potential and the total

reaction cross section σreac are listed in Table I. The fits are
compared to the experimental angular distributions in Fig. 1.

In addition to the local potential analysis, a model-
independent phase-shift analysis (PSA) has been performed
using the technique of [22]. These phase-shift fits show the ten-
dency to relatively high and oscillating cross sections at back-
ward angles where no experimental data are available. Never-
theless, the derived total reaction cross sections σreac are close
to the results of the local potential fit. From the variation of σreac

with the fitting parameters (in particular the maximum fitted
angular momentum Lmax) and from the comparison with the
local potential fit, the uncertainty of σreac can be estimated to
be smaller than 3% in all cases except the lowest energy where
I estimate an uncertainty of about 7%. This is also consistent
with a recent analysis of total reaction cross sections in [31].

As discussed above, the extraction of the total reaction
cross section σreac requires theoretical considerations and
is thus somewhat model-dependent. Nevertheless, because
of the small sensitivity of σreac to the chosen model, the
total reaction cross section σreac can be considered as a
quasiexperimental quantity. This holds in particular for cases
where the elastic scattering angular distributions cover the full

TABLE I. Parameters of the optical potential and the total reaction cross section σreac derived from 141Pr(α,α)141Pr angular distributions.

Elab Ec.m. λ w JR rR,rms WV RV aV WS RS aS JI rI,rms χ 2/F σreac
a Ref.

(MeV) (MeV) (MeV fm3) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV fm3) (fm) (mb) Exp.

19.0 18.48 1.354 0.994 345.3 5.511 – 17.1 1.358 0.581 45.1 7.451 2.3 465 ± 31 [14]
23.97 23.31 1.270 1.010 338.6 5.604 – 27.5 1.410 0.508 68.2 7.623 0.8 1018 ± 31 [14]
32.0 31.12 1.452 0.958 326.7 5.314 – 36.1 1.290 0.500 73.9 7.012 2.4 1306 ± 39 [14]
37.7 36.66 1.328 0.992 329.3 5.504 −17.8 1.297 0.157 3.9 1.586 0.457 51.7 6.075 5.9 1654 ± 50 [14]
45.0 43.76 1.306 1.012 340.0 5.614 −18.4 1.303 0.107 6.1 1.567 0.436 58.5 6.253 0.4 1874 ± 56 [13]

low energies 1.354 0.994 345.3 5.511 – Eq. (4) 1.353 0.530 Eq. (4) 7.361 – – –
α decay 1.151 1.000b 308.8 5.545 – – – – – – –

aFrom the local potential fit using Eq. (1); uncertainties are estimated from the model-independent phase-shift analysis.
bFixed.
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FIG. 1. (Color online) Rutherford normalized elastic scattering
cross sections of the 141Pr(α,α)141Pr reaction vs the angle in the
center-of-mass frame. The lines are calculated from a local potential
fit which is adjusted to the scattering data (full red line), from a
phase-shift analysis (dash-dotted light brown line) [22], and from
different global α-nucleus potentials [9–11]. The experimental data
have been taken from [13,14]. The given energies are Ec.m. in the
center-of-mass system.

angular range. However, as a word of caution, it should be kept
in mind that discrepancies have been noticed between σreac

determined from elastic scattering angular distributions and
from α-transmission experiments [23,24]. These discrepancies
have not been fully understood up to now [25].

Furthermore, Fig. 1 shows the results of several global
α-nucleus optical potentials [9–11]. It is obvious that the
global potentials cannot achieve the same quality as the local
potential fit or the phase-shift fit. This is not a surprise because
the parameters of the global potentials are not readjusted
to the experimental angular distributions. Nevertheless, the
AVR potential reproduces the angular distributions very well.
The calculations using the MCF potential are also close to
the experimental angular distributions; however, there is a
systematic overestimation of the scattering cross sections at
backward angles at low energies. A strong overestimation at
backward angles is found for the FRR potential at all energies;
this corresponds to a significant underestimation of the total
reaction cross sections σreac of the FRR potential. It has to be

pointed out here that the FRR potential was never intended
to reproduce elastic scattering data above the Coulomb
barrier.

The present study does not show results of the potentials
of Kumar et al. [26] because this potential has been optimized
for a wide energy range above the new 141Pr(α,n)144Pm data;
in addition, it has been shown in [16] that this potential
cannot reproduce 89Y(α,α)89Y elastic scattering data at low
energies. Unfortunately, the latest versions [27,28] of the
global potential by Demetriou et al. [29] are only published
in conference proceedings and cannot be used without the
authors of [27,28]; I do not intend to show results from
the early and perhaps outdated potentials in [29]. Not yet
included are also the predictions from a new regional potential
which was derived from recent scattering data of the nuclear
astrophysics group at Notre Dame University; a publication is
in preparation [30].

B. Reduced cross sections

For a comparison of total reaction cross sections for
different nuclei at various energies, it has been suggested to
present the data as “reduced cross sections” versus “reduced
energies” as defined by

Ered =
(
A

1/3
P + A

1/3
T

)
Ec.m.

ZP ZT

, (2)

σred = σreac(
A

1/3
P + A

1/3
T

)2 . (3)

The reduced energy Ered takes into account the different
heights of the Coulomb barrier in the systems under consid-
eration, whereas the reduced reaction cross section σred scales
the measured total reaction cross section σreac according to
the geometrical size of the projectile-plus-target system. A
smooth behavior for all σred of α-induced reactions is found,
including the new data for 141Pr-α. The obtained values for σred

are smaller for tightly bound projectiles (α, 16O) compared to
weakly bound projectiles (6,7,8Li) and halo projectiles (6He).
The data are shown in Fig. 2, which is an update of similar
figures in [31,32]. Up to now, no complete theoretical analysis
has been presented for the reduced cross sections σred in
Fig. 2, and for better readability the data points have been
connected by lines to guide the eye (dotted lines in Fig. 2;
taken from [32]). In addition to these lines, I show here the
result from the local potential for 141Pr(α,α)141Pr with its
energy dependence as discussed in Sec. II C. This calculation
reproduces practically all data points for α-induced reactions
and also data for 16O-138Ba, which is another combination of
doubly-magic projectile and semimagic target nucleus.

The smooth behavior of all reduced cross sections σred in
Fig. 2 encourages us to search for a global potential which
is able to reproduce σred and thus the energy dependence of
the total reaction cross sections σreac for α-induced reactions.
The present study was restricted to 141Pr but an extension
to a wider target range is planned for the near future. The
following procedure is applied to derive an energy-dependent
α-141Pr potential from the local potential fits (see also Table I).
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FIG. 2. (Color online) Reduced reaction cross sections σred vs
reduced energy Ered for tightly bound α particles and 16O, weakly
bound 6,7,8Li projectiles, and exotic 6He (updated from Fig. 4 of [32]
with additional data from [16,17,31,33,34]). The error bars of the
new data for 141Pr (huge red symbols) are omitted because they are
smaller than the point size. The dotted lines are to guide the eye. The
full red line is calculated from the energy-dependent local potential
for 141Pr-α (see Sec. II C).

C. Energy dependence of the potential

Here I discuss the extraction of a local energy-dependent
potential for 141Pr-α. An estimate of the uncertainties for the
resulting total reaction cross section σreac will be given later in
Sec. III B.

The energy dependence of the real part is weak. The volume
integrals JR in Table I increase slightly with decreasing energy;
however, at even lower energies the opposite behavior is
suggested from dispersion relations. Thus, the real part of the
potential is simply taken from the lowest angular distribution at
19 MeV where the width parameter w is close to 1.0 and close
to the average of the other energies. Note that the parameters
of the real part vary only weakly with energy. This holds also
for the potential derived from the analysis of the weak α-decay
branch of 145Pm (see Sec. II D).

The situation for the imaginary part is more difficult because
the parameters vary with energy, and different parametriza-
tions had to be used for the five angular distributions under
study. For the extrapolation to low energies I use a surface
Woods-Saxon potential (parameters “low energies” in Table I)
with the average geometry from the angular distributions at
19.0, 23.97, and 32.0 MeV, i.e., RS = 1.353 fm and aS =
0.530 fm. Only the three lowest energies are considered here
because these three angular distributions could be described
with the same parametrization (surface Woods-Saxon) of
the imaginary part. Note that the radius parameters RS

and the diffuseness parameters aS do not vary significantly
with energy; i.e., the shape of the imaginary potential is
well defined from the experimental angular distributions. (A
significant energy dependence of the shape of the imaginary
part is found only for halolike projectiles such as 6He; see,
e.g., [33].)

The strength WS of the imaginary potential is derived by
fitting the imaginary volume integral JI of the three lowest
energies using a Fermi-type function (similar to [1] and
[8])

JI = JI,0

1 + exp [(E0 − Ec.m./aE)]
, (4)

with the parameters JI,0 = 74.16 MeV fm3, E0 = 17.41 MeV,
and aE = 2.42 MeV; a formula similar to Eq. (4) holds for
the depth WS of the surface imaginary potential with WS,0 =
31.1 MeV. A similar Fermi-type function was also used in [8]
for the depth of the imaginary volume Woods-Saxon potential.
It is interesting to note that the parameters E0 and aE in Eq. (4)
are close to the values obtained from the adjustment to the new
141Pr(α,n)144Pm data in [8].

The widely used Brown-Rho parametrization of the imagi-
nary part [35] is given by

JI = JI,0
(Ec.m. − E0)2

(Ec.m. − E0)2 + 
2
(5)

for energies Ec.m. > E0 above the opening of the first
nonelastic channel at energy E0 and JI = 0 below E0. JI,0

is again the saturation value, and the parameter 
 describes
the slope of JI from zero to its saturation value JI,0. E0 is
given by the excitation energy of the lowest excited state
in 141Pr which can be populated by inelastic scattering:
E0 = 0.145 MeV [36,37]. The Brown-Rho parametrization
in Eq. (5) is not able to reproduce the energy dependence of
the imaginary volume integrals and thus cannot be used for the
extrapolation of the potential to lower energies. This may—at
least partly—explain the problems with the prediction of the
144Sm(α,γ )148Gd cross section [1] using the potential derived
from 144Sm(α,α)144Sm elastic scattering [38] in combination
with a Brown-Rho parametrization of the imaginary volume
integral.

The failure of the Brown-Rho parametrization is shown
in Fig. 3. Whereas the three parameters of the Fermi-type
function allow a perfect reproduction of the JI values from
elastic scattering, it is impossible to reproduce the steep rise of
the JI data between about 15 and 25 MeV with a Brown-Rho
function and fixed E0 = 0.145 MeV. If the energy E0 of the
opening of the first nonelastic channel is taken as an additional
free parameter, the JI values from elastic scattering can be
reproduced with JI = 76.2 MeV fm3, E0 = 15.1 MeV, and

 = 2.8 MeV. However, this result corresponds to a vanishing
imaginary part already in the energy range of the recent
141Pr(α,n)144Pm experiment [8] and thus predicts that the total
reaction cross section vanishes. It is clear that the Brown-Rho
parametrization of the imaginary volume integral JI cannot be
used for the prediction of α-induced reaction cross sections of
141Pr.
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FIG. 3. (Color online) Energy dependence of the imaginary
volume integral JI using the Fermi-type parametrization of Eq. (4)
(full red line) and Brown-Rho parametrizations of Eq. (5) with fixed
E0 = 0.145 MeV (dotted blue line) and E0 = 15.1 MeV (dashed
green line) with E0 adjusted to the scattering data. The energy range
of the recent 141Pr(α,n)144Pm experiment [8] is indicated by vertical
lines. For further discussion see the text.

D. α decay of 145Pm

α decay provides a further opportunity to test α-nucleus
potentials at low energies. For 145Pm (as in most other cases)
αdecay is dominated by the 
L = 0 transition from the 145Pm
ground state to the 141Pr ground state; thus, analysis of α-
decay properties provides information on the potential for the
L = 0 partial wave (see also Sec. IV for the energy-dependent
relevance of different partial waves for σreac). The mass range
around A ≈ 150 has been studied in [39] using the same type
of folding potentials as in this work. Although the α-decay
half-lives vary over many orders of magnitude among 148Gd,
146Sm, and 144Nd (with their N = 82 daughters 144Sm, 142Nd,
and 140Ce), it has been found in [39] that the preformation of
the α particle in the decaying nucleus is between about 10%
and 20% within this model.

145Pm with its N = 82 daughter 141Pr has a weak α-decay
branch of (2.8 ± 0.6) × 10−9 [36,40,41], which, together with
the half-life of T1/2 = 17.7 ± 0.4 yr [36,40,42], translates
to a partial α-decay half-life T α

1/2 = (2.0 ± 0.4) × 1017 s.
The α-decay Q value is Qα = 2322.2 ± 2.6 keV [36]. To
repeat the α-decay calculations of [39] for 145Pm, a real
folding potential has been calculated at extremely low energies
(labeled “α decay” in Table I), and the α-decay half-life has
been calculated using the semiclassical model of [43]. From
the ratio between the calculated half-life T

α,calc
1/2 = 2.49 ×

1016 s and the experimental partial half-life a preformation

of P = 12.5% ± 2.7% is determined; this is within the range
of 10%–20% for the neighboring α emitters with N = 82
daughters. Although based on almost 50-year-old data for
the half-life [42] and the α branching [41], this result nicely
confirms the close relationship among the various N = 82
nuclei including 144Sm.

III. α-INDUCED REACTIONS ON 141PR

As the optical potential for 141Pr-α is completely fixed
from the above procedure in Sec. II C, the calculation of the
total reaction cross section σreac is straightforward and does
not require any further parameter adjustment to experimental
reaction data. First, the obtained σreac(E) is converted to the
reduced cross section σred and compared to the σred data
for various projectiles and targets (full line in Fig. 2). It
is obvious that the general behavior of the σred versus Ered

energy dependence is very nicely reproduced at least down
to Ered ≈ 0.8 MeV, corresponding to Ec.m. ≈ 14 MeV for the
141Pr-α system under study in the work.

Next, the result for σreac is shown in Fig. 4 in a wide
energy range, and it is converted to the astrophysical S

factor in Fig. 5 for comparison with the new 141Pr(α,n)144Pm
data of [8] for energies between 10 and 15 MeV. The new
experimental S-factor data decrease with energy by about a
factor of 5 from S(E) ≈ 3 × 1026 MeV b below 11 MeV
to S(E) ≈ 0.6 × 1026 MeV b at 14.5 MeV. An excellent
reproduction of the new data of [8] is found.

A. Total reaction cross section σred and cross section of the
141Pr(α,n)144Pm reaction

The total reaction cross section σreac is given by the sum over
all nonelastic channels; i.e., it includes inelastic scattering,
fusion, and all transfer channels. This σreac has to be distributed
among the open channels (thresholds indicated in Fig. 4)
using, e.g., the statistical model. For the particular case of
the 141Pr(α,n)144Pm reaction in the energy range of the recent
experiment [8] as shown in Fig. 5, it is found that σreac is
almost identical to the (α,n) cross section because of the
dominating neutron emission channel [except very close above
the (α,n) threshold at 10.2 MeV]. The proton emission from
the compound nucleus 145Pm is strongly suppressed by the
Coulomb barrier, and the ratio of (α,n) over (α,γ ) cross
sections is large in this energy window. Using the standard
NON-SMOKER parameters [44] (α potential from [9], nucleon
potentials from [45], γ -ray strength function from [46], and
level density from [47]) the ratio is ≈4 at the lowest energy
of [8] and exceeds 20 at 11.5 MeV; i.e., by neglecting the
weak other open channels such as (α, αn), the total reaction
cross section σreac has to be reduced by less than 5% to obtain
the (α,n) cross section above 11.5 MeV and by ≈25% for the
two lowest data points. The standard TALYS [48] calculation
(α potential from [49], nucleon potentials from [50], γ -ray
strength function from [51], and level density from [48,52])
predicts a ratio of ≈10 between (α,n) and (α,γ ) at the lowest
energy of [8] and more than 100 at energies above ≈12 MeV;
i.e., the (α,n) cross section does not deviate by more than 1%
from σreac above 12 MeV, and the deviations at the lowest
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FIG. 4. (Color online) Total reaction cross sections σreac for α-induced reactions on 141Pr from elastic scattering (red dots) and cross sections
of the 141Pr(α, n)144Pm (open and full triangles [8,18]) and 141Pr(α, 2n)143Pm (full squares [18]) reactions. The data of [18] are connected by
thin lines to guide the eye. Calculations with different potentials [8–11] agree well at higher energies (except [11]), but they disagree at lower
energies (see also Fig. 5). The arrows on top indicate the thresholds for various reaction channels.

energies of [8] never exceed 10%. Thus, because only minor
differences are predicted between the (α,n) cross section and
σreac in the energy range of [8] in all calculations [44,48],
I restrict myself to the presentation of σreac in Figs. 4 and
5. This avoids any uncertainties from other sources (mainly
from the neutron potential and the γ -ray strength function)
which may be present at the lowest data points of [8]. The
minor differences between the 141Pr(α,n)144Pm cross section
and σreac can be seen from a comparison of the calculations in
Fig. 5 of this work and Figs. 8 and 9 of [8]. (The same scale
has been chosen in all these figures for simple comparison.)

From Fig. 4 it can be read that σreac is well reproduced from
all potentials under study at higher energies above 25 MeV
(except the FRR potential, which underestimates σreac at all
energies). Discrepancies become visible at lower energies;
see Fig. 5. The MCF potential shows an incorrect energy
dependence and strongly overestimates the data at lowest
energies. The AVR potential reproduces the experimental data
in the higher energy range, but it underestimates the data at
lower energies. The energy dependence calculated from the
FRR potential is also incorrect, and data at low (high) energies
are overestimated (underestimated). An energy-dependent
potential was found in [8] which is able to reproduce the new
141Pr(α,n)144Pm data over the whole measured energy range.
The prediction of the new energy-dependent potential from
the present study, which was adjusted only to elastic scattering
data, is very close to the result of [8], but it does not require
any adjustment to reaction data.

It is interesting to note that the energy of the lowest
data point in Fig. 5 corresponds to a reduced energy Ered ≈
0.62 MeV which is close to the lower end of Fig. 2. The reduced
cross sections σred at reduced energies below Ered = 1 MeV

are thus almost identical for 141Pr + α and 16O + 138Ba; in
both cases the projectile is a doubly-magic nucleus and the
target is semimagic with N = 82.

B. Sensitivity of the total reaction cross section σred to variations
of the parameters of the local potential

It is difficult to provide a precise error bar for the calculated
total reaction cross section σreac in Figs. 4 and 5, but an estimate
of the uncertainties can be given by reasonable variations of the
parameters of the local potential, which are the geometry (in
particular of the imaginary part) and the energy dependence.
The results of the following sensitivity study are shown in
Fig. 6. The local potential calculation (full red line, identical
to Fig. 5) is the reference for the sensitivity study.

The real part of the potential is nicely constrained from the
folding calculation. In addition to the scattering data, further
information on the real part of the potential at very low energies
can be extracted from the analysis of the α decay of 145Pm (see
Sec. II D). The parameters of the potential for the α-decay
calculations remain close to the real part of the scattering
potential. The volume integral JR is about 10% lower than
the value found for the 19-MeV scattering data. If this lower
real part of the potential is used for the calculations of σreac

instead of the 19-MeV real part (as derived in Sec. II C), σreac

shows a slightly different energy dependence but does not
change by more than about 40% in the energy range under
study (dashed fuchsia line in Fig. 6). Only at very low energies
below 10 MeV (i.e., below the shown energy range of Fig. 6)
does the lower real potential with its resulting higher effective
Coulomb barrier result in a lower σreac. But in any case the
deviations remain below 50%, thus confirming that the real

055803-6



TOTAL REACTION CROSS SECTIONS FROM 141Pr( . . . PHYSICAL REVIEW C 84, 055803 (2011)

5

10
26

2

5

10
27

S
-f

ac
to

r
(M

eV
b)

11 12 13 14 15

Ec.m. (MeV)

( ,n) Sauerwein et al.
local potential
McFadden/Satchler
Avrigeanu et al.
Froehlich/Rauscher
Sauerwein/Rauscher

FIG. 5. (Color online) Same as Fig. 4, but shown as astrophysical
S factor in a narrow energy window around the new experimental data
of [8]. For simplicity, the averaged S factor at the mean energy (see
Table III of [8]) is shown here. The local potential (full red line) and
the SAR potential (dash-dotted golden) reproduce the data well, but
the global potentials fail to reproduce the energy dependence (MCF:
dotted green; AVR: dashed blue; FRR: dash-dotted dark-magenta).

part of the potential is relatively well defined and does not lead
to big uncertainties in the calculation of σreac in the energy
range under analysis.

It should be noted that the α-decay potential is adjusted
at the decay energy of 2.3 MeV, far below the energy
range under study; thus, using the α-decay potential for the
calculation of σreac is an extremely careful estimate for the
uncertainty of σreac on a variation of the real potential. I do
not show calculations with increased strength of the real part
because volume integrals significantly above 350 MeV fm3

have not been observed in α scattering of semimagic nuclei
[15,16,19,53]. This finding is supported theoretically by the
fact that dispersion relations lead to a reduction of real potential
at very low energies (see, e.g., Fig. 11 of [15] or Fig. 12 of [54]).

The influence of the imaginary part on the calculated
total reaction cross section σreac is significant. In particular, a
reasonable energy dependence is essential for the reproduction
of the experimental data. If the energy dependence of the
imaginary part is ignored and the saturation value JI,0 is
used instead of the energy dependence of Eq. (4), then σreac is
overestimated with increasing discrepancy to the experimental
data at lower energies (green dotted line in Fig. 6). A similar
behavior has been found for the energy-independent MCF
potential. However, small variations of the imaginary strength
result only in minor modifications of σreac: a reduction of
JI (E) by 10% leads to slightly reduced σreac with very similar
energy dependence as the reference calculation (dash-dotted
aquamarine line).
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FIG. 6. (Color online) Sensitivity of the astrophysical S factor to
variations of the potential parameters. The full red line is identical to
the previous Fig. 5. A reduced real potential (derived from α decay;
see Sec. II D) shows a slightly different energy dependence (dashed
magenta). Neglecting the energy dependence of the imaginary part
leads to strong overestimation of the experimental cross sections
(green dotted), whereas small modifications of the imaginary part
(10% reduction of the strength or variation of geometry parameters)
do not affect the calculated σreac strongly. For further discussion see
the text.

Next, the geometry parameters of the surface Woods-Saxon
potential in the imaginary part were taken from the three
angular distributions at 19, 24, and 32 MeV (see Table I)
instead of their average values RS = 1.353 fm and aS =
0.530 fm. The depth WS has been adjusted to the same volume
integral in Eq. (4) as in the reference calculation. The geometry
from the 19-MeV angular distribution leads to somewhat larger
σreac, which is a consequence of the larger aS = 0.581 fm
(short-dashed blue). The result from the 24-MeV geometry
is almost identical to the reference calculation (dash-dotted
magenta line), and the result from the 32-MeV geometry is
somewhat smaller than the reference (dash-dotted golden line).
The uncertainty of the geometry of the imaginary potential
leads to uncertainties of σreac of the order of 30%. It has to be
pointed out that such a small uncertainty can only be achieved
because the geometry parameters are well defined from several
angular distributions at energies around and slightly above the
Coulomb barrier.

Summarizing the above sensitivity study, we have found
that the uncertainty of σreac from the present local potential
is much smaller than the variations among the different
predictions from global potentials. The influence of the
geometry of the imaginary part is not dramatic as long as
the geometry is well defined from low-energy scattering data.
However, the energy dependence of the strength JI of the
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imaginary part is an essential ingredient for the prediction of
reaction cross sections below the Coulomb barrier.

IV. DISCUSSION

Let me start the discussion with a few general remarks on
statistical model calculations. In the statistical model the cross
section for a reaction is given by the product of the compound
formation cross section and the decay branching of the
decaying compound nucleus into the particular channel. The
full formalism can be found, e.g., in [21,44]. The formation
cross section is calculated from transmission coefficients using
the optical potentials; i.e. it is the total reaction cross section
σreac in Eq. (1). The decay branching is also calculated from
transmission coefficients for particle channels and from the
γ -ray strength function for the photon (capture) channel. It
is obvious that the correct reproduction of the total reaction
cross section σreac is the basic prerequisite for a successful
prediction of any reaction cross section in the statistical model
and should thus always be discussed first in presentations of
statistical model calculations. Unfortunately, this is not always
the case.

The total reaction cross section σreac is then distributed
among all open channels. It is important to study the influence
of all open channels and their relevance for the decay
branching of the compound nucleus. This is nicely illustrated
in Fig. 4. Close above the opening of the (α,2n) channel
around 17 MeV, the (α,2n) channel becomes stronger than
the (α,n) channel, which was dominant from close above its
threshold at 10.2 MeV up to 17 MeV. If an open channel,
e.g., the 141Pr(α,2n)143Pm channel above 17 MeV, is not
taken into account in a statistical model calculation, then all
the calculated 141Pr(α,X) cross sections above 17 MeV must
be overestimated. However, such a shortcoming of neglected
open channels may be partly compensated by using special
potentials for the particular (α,X) reaction under study.

After these general remarks let me be more specific for
α-induced reactions on 141Pr. The total reaction cross section
σreac is well understood and has relatively small uncertainties
for energies above the Coulomb barrier. This can be seen
from the comparison of predicted σreac from the various
global potentials [9–11] to the experimental result from the
analysis of the elastic scattering angular distributions (see
Table II). All potentials (except the FRR potential) reproduce
the experimental σreac within minor uncertainties of typically
a few percent.

The excellent reproduction of σreac for most global poten-
tials at energies above the Coulomb barrier can be explained by
a look at the reflection coefficients ηL and the contribution σL

of the Lth partial wave to σreac (see Fig. 7 for the example of the
Ec.m. = 23.31 MeV data). For small angular momenta L the
reflection coefficients are close to ηL ≈ 0; thus, σL increases
linearly proportional to 2L + 1 (dashed line in Fig. 7). All
global potentials with a reasonable real part and a sufficiently
strong imaginary part, i.e., the MCF, AVR, and SAR potentials,
predict the same σL for small L. For large L (corresponding
to large impact parameters) the ηL values approach unity, and
the σL vanish (i.e., partial waves with large angular momenta

TABLE II. Experimental total reaction cross sections σreac (in
millibarns) derived from 141Pr(α,α)141Pr elastic scattering angular
distributions (from Table I), compared to the phase-shift analysis
(“PSA”), predictions from the global α-nucleus potentials MCF, AVR,
and FRR [9–11], and the energy-dependent potential SAR of [8]
which was adjusted to reproduce the 141Pr(α,n)144Pm cross section at
low energies.

Ec.m. (MeV) Exp. PSA MCF AVR FRR SAR

18.48 465 ± 31 433 425 437 197 424
23.31 1018 ± 31 1003 957 993 648 957
31.12 1306 ± 39 1310 1452 1487 1125 1452
36.66 1654 ± 50 1654 1662 1696 1333 1662
43.76 1874 ± 56 1873 1841 1872 1514 1841

are practically not absorbed by any imaginary potential with
a limited radial range). Differences in σL appear only for
a few partial waves between L ≈ 8 and L ≈ 14 (for the
Ec.m. = 23.31 MeV case) where the different potentials predict
different ηL and thus different σL. It becomes obvious that
relatively small differences in ηL for a very limited number of
partial waves around L ≈ 10 cannot lead to major differences
for the total reaction cross section σreac, which is simply given
by the sum over all σL. The good reproduction of the total
reaction cross section σreac from different global potentials
is thus simply a consequence of intrinsic properties of the
scattering matrix as long as the energy exceeds the Coulomb
barrier.

The situation changes dramatically at lower energies far
below the Coulomb barrier. Here only the lowest angular
momenta (below L ≈ 5) are affected, show ηL < 1, and thus
contribute to σL; but even these ηL remain much larger than
zero and do even approach ηL ≈ 1 for very low energies (see
Fig. 8 for energies 11 � Ec.m. � 15 MeV, i.e., the energy
range of the new 141Pr(α,n)144Pm data of [8]). Here the trivial
2L + 1 proportionality of σL vanishes. Now the relevant σL
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FIG. 7. (Color online) Reflection coefficients ηL (a) and contri-
bution σL of the Lth partial wave to the total reaction cross section
σreac [(b); linear scale]. The thin dotted lines connect the data points
to guide the eye. For further discussion see the text.
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FIG. 8. (Color online) Reflection coefficients ηL (a) and contribu-
tion σL of the Lth partial wave to the total reaction cross section σreac

[(b); logarithmic scale] for low energies between 11 and 15 MeV. Note
the different scale for ηL in Figs. 7 and 8. The thin dotted lines connect
the data points to guide the eye. The ηL values at 11 and 12 MeV are
very close to unity for all L; thus, the 11-MeV data disappear behind
the 12-MeV data in the upper diagram. Differences between the 11-
and 12-MeV data become visible only in the presentation of σL,
which is proportional to (1 − η2

L). The 2L + 1 proportionality of σL

for small L (as seen at higher energies in Fig. 7) vanishes completely
at energies below the Coulomb barrier. For further discussion see the
text.

depend sensitively on details of the potential. In particular, the
strength of the imaginary part for large radii has strong impact
on the resulting cross sections σL. Under these conditions
it becomes mandatory that the imaginary potential has the
proper geometry (e.g., fixed from scattering data at slightly
higher energies) and the proper strength (using a realistic
energy dependence, e.g., from Eq. (4), which can be adjusted
to scattering data and/or properly chosen reaction data). As
pointed out in Sec. II, the real part of the potential has
only minor uncertainties in shape and strength because it is
calculated from a folding procedure; furthermore, the analysis
of α-decay properties provides a test for the L = 0 potential
(see Sec. II D).

The above discussion explains why all global potentials
are able to reproduce total reaction cross sections σreac above
the Coulomb barrier but may fail to reproduce σreac below
the Coulomb barrier. Thus, it is not surprising that the global
potentials show a significant scatter in the predictions of the
new experimental 141Pr(α,n)144Pm data of [8] (see Fig. 5).

For the energy-independent MCF potential the reason for
the discrepancy is obvious. The missing energy dependence
of the MCF potential leads to an overestimation of the
imaginary part of the potential at low energies and thus to
an overestimation of the 141Pr(α,n)144Pm cross section. As
expected, the discrepancy between the MCF prediction and
the experimental data increases with decreasing energy. A
similar behavior has been found in other cases; see, e.g., the
144Sm(α,γ )148Gd reaction [1], the 112Sn(α,γ )116Te reaction
[3], or the 106Cd(α,γ )110Sn reaction [2].

It is difficult to make such general statements on the many-
parameter AVR potential. This potential has been adjusted
to a huge data base of elastic scattering and reaction data
[55], and excellent agreement has been found for many
reactions especially in the A ≈ 100 range. The AVR potential
shows the best agreement of the global potentials with the
elastic scattering angular distributions, and it reproduces
the 141Pr(α, n)144Pm data well at higher energies above
13 MeV. However, it underestimates the data at lower energies
significantly.

The FRR potential has been optimized for reaction data
at low energies. Its parameters are energy-independent and
close to the MCF potential in most cases. Similar to the MCF
case, because of its energy independence it cannot be expected
that the FRR potential is able to reproduce simultaneously
elastic scattering data above the Coulomb barrier and reaction
data below the Coulomb barrier. Despite the big success in
predicting reaction cross sections at low energies, the simple
FRR potential cannot be the basis for a global potential in a
broad energy range.

The MCF potential with an additional energy dependence
of the depth of the imaginary potential has been used in [8]
to reproduce their new 141Pr(α,n)144Pm data. Although this
is in principle the best way to improve the MCF potential,
there are two disadvantages of the SAR potential. Obviously,
reaction data are required to fit the energy dependence of the
SAR potential. And, in addition, the chosen underlying MCF
potential uses a volume Woods-Saxon imaginary part which
has been found—according to recent studies [17,19,20]—to
be probably not fully adequate for low energies below the
Coulomb barrier; here surface Woods-Saxon potentials should
be preferred. Consequently, the SAR potential is not able
to reproduce the elastic scattering angular distributions. It
turns out that the angular distributions of the SAR and MCF
potentials are almost identical above 25 MeV because the
MCF and SAR potentials are almost identical there. Even at
19 MeV where the imaginary depth of the SAR potential is
about 25% lower than the MCF depth, the calculated angular
distributions of MCF and SAR agree within a few percent, i.e.,
within a linewidth in Fig. 1; therefore, the SAR potential is not
shown in Fig. 1.

The energy-dependent potential of this work has been
derived from elastic scattering data. Local optical potentials
have been derived from the available angular distributions
between 19 and 45 MeV by fitting the parameters of the
real part (strength and width of the folding potential) and
the imaginary part (Woods-Saxon parametrization). Because
of the small variation of the found parameters at the different
energies (see Table I), these parameters could be combined to
derive a common potential with an energy-dependent depth
of the imaginary surface potential. This common potential
maintains the good reproduction of the elastic scattering data
and the derived total reaction cross sections σreac. In addition,
it turns out that this potential is able to predict the cross
section of the 141Pr(α,n)144Pm cross section at lower energies,
in particular in the energy range of the new experimental
data of [8] between 10 and 15 MeV (see Fig. 5). Thus,
the new potential is able to describe 141Pr(α,α)141Pr elastic
scattering data at energies around and above the Coulomb
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barrier simultaneously with 141Pr(α,n)144Pm reaction data
below the Coulomb barrier.

The parametrization of this new potential, i.e., a double-
folding potential in the real part and a surface Woods-Saxon
potential with fixed geometry and energy-dependent depth,
should be tested in further cases in forthcoming work. For
a detailed study of a particular target nucleus, several elastic
scattering angular distributions are required to fix the shape and
the energy dependence of the imaginary potential. However,
the found geometry parameters in the present 141Pr-α case
(RS = 1.353 fm and aS = 0.530 fm) are close to standard
values; it should be possible to apply these parameters to other
target nuclei. The main problem will be the determination of
the energy dependence of the depth of the imaginary surface
potential. Here considerations similar to [8,10,55] will be
helpful where parameters of the imaginary part have been
put in relation to the Coulomb barrier. It is obvious that the
predictions from such a potential have to be compared to
experimental reaction data below the Coulomb barrier, which
are—despite significant improvement in the recent years—still
not widely available.

The previous discussion may also be summarized to provide
a general recipe to find a widely useful potential. First, the
potential has to reproduce the total reaction cross section σreac

at energies above the Coulomb barrier. However, because of
the 2L + 1 proportionality of σL for small L, this requirement
is almost trivial and can be fulfilled by many potentials.
Next, among the many α-nucleus potentials which are able to
fulfill this first condition, these potentials have to be selected
which are in addition able to reproduce the elastic scattering
angular distributions. This ensures the correct strength and
geometry of the chosen potential (in particular of the imaginary
part), which is essential for the prediction of σreac below the
Coulomb barrier. This conclusion is also a strong motivation
to extend the measurements of elastic scattering angular
distributions.

V. SUMMARY AND CONCLUSIONS

A new local potential for the system 141Pr-α has been
derived from elastic scattering angular distributions. The
derived potential is able to predict the total reaction cross
section σreac which is dominated by the 141Pr(α,n)144Pm cross
section in the energy range of the new experimental data
of [8]. Thus, the new potential for 141Pr-α is able for the first
time to describe simultaneously elastic scattering data around

and above the Coulomb barrier and reaction data below the
Coulomb barrier. Such a simultaneous description was not
achieved and/or aimed for in earlier work using the global
potentials of [9–11] or the local potential suggested in [8].

Reasons for the partial success at higher energies and failure
at lower energies of global potentials are carefully analyzed by
studying the reflection coefficients ηL and the contribution σL

of the Lth partial wave to the total reaction cross section σreac. It
is found that above the Coulomb barrier σL for small angular
momenta are predicted correctly by most global potentials
because of a simple 2L + 1 proportionality, which is almost
independent of details of the optical potential. This results
in minor differences for the total reaction cross section σreac,
which have to arise from a few partial waves around L ≈ 10
for the 141Pr-α case under study in this work. However, at
low energies below the Coulomb barrier this simple 2L +
1 proportionality of σL for small L vanishes, the σL values
become sensitive to details of the potential, and consequently
predictions for σreac from global potentials show a huge spread.
Precise scattering data at different energies around and closely
above the Coulomb barrier are required to determine a potential
(in particular the shape and strength of its imaginary part)
which is able to predict total reaction cross sections σreac not
only above but also below the Coulomb barrier.

Because the new local potential has a well-defined geometry
derived from elastic scattering, its extrapolation to low energies
and its predictions for σL and the resulting σreac should be
more reliable than predictions from other global potentials.
The parametrization of the new local potential may finally
become the basis for a new global potential to solve or at
least reduce the long-standing problem of α-nucleus potentials
at low energies below the Coulomb barrier and the resulting
uncertainties for the prediction of α-induced reaction cross
sections at astrophysically relevant energies.
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E. Somorjai, Phys. Rev. C 82, 047601 (2010).
[32] P. N. de Faria et al., Phys. Rev. C 81, 044605 (2010).
[33] P. Mohr et al., Phys. Rev. C 82, 044606 (2010).
[34] P. Mohr, International Workshop on the p-process: Status and

Outlook, Istanbul, 2011 (to be published).
[35] G. E. Brown and M. Rho, Nucl. Phys. A 372, 397 (1981).

[36] Online database ENSDF [http://www.nndc.bnl.gov/ensdf/].
[37] J. K. Tuli and D. F. Winchell, Nucl. Data Sheets 92, 277

(2001).
[38] P. Mohr, T. Rauscher, H. Oberhummer, Z. Máté, Zs. Fülöp,
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