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Probing the microscopic nuclear matter self-organization processes in the neutron star crust
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We investigate microscopic self-organization processes of nuclear matter in the outermost layers of neutron
star crusts with the DYWAN model. In this framework a pure mean-field description of nuclear dynamics has
been performed. Starting from initial crystalline lattices, which are expected in the most external regions, the
system organizes itself in exotic structures. The present work focuses on the effects of both the initial lattice
symmetries and the nuclear species on the morphology and on the evolution of those structures. The response of
the system is analyzed when it is subjected to random fluctuations of the initial lattice.
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I. INTRODUCTION

Neutron stars (NSs) are cold and extremely compact
objects, with temperatures T � 1 MeV and densities ranging
from a few grams per cubic centimeter at the surface to
1015 g cm−3 at the center. As predicted in the early 1980s [1,2],
and endorsed by recent works, nuclei may adopt exotic shapes
at subnuclear densities. Ever since then these structures had
concentrated the interest of many theoretical works [3–6].
They are supposed to be built as the consequence of the inter-
play between Coulomb and nuclear forces and to be sensitive
to the equation of state (EOS) of nuclear matter. It has been
argued that their existence may have important astrophysical
consequences on macroscopic characteristics such as masses
and radii [7], as well as on the cooling processes [8] of the
star. In particular, their presence should affect the neutrino
opacity [9] and the transport properties [10] of the crust.

We have recently developed a self-consistent dynamical
model [11] in which nonspherical shapes are shown to appear
as a consequence of nuclear microdynamics. The different
structural phases involve low-energy excitations. We were
interested in the dynamical exploration of those multiple low-
lying energy configurations through a mean-field description
in which residual interactions have been neglected. In our first
calculations we have solved time dependent Hartree-Fock
(TDHF)-like equations of motion for the one-body density
matrix at zero temperature. In order to disentangle numerical
from physical fluctuations, the first step was to check the
corresponding numerical accuracy. The simulation has
been shown to be extremely well conditioned, conserving
metastable configurations during time intervals of several
thousands of femtometers/c. On the other hand, isospin-
dependent effective forces have been utilized for the treatment
of the mean field and the sensitivity of the above structures
to nuclear matter EOS was analyzed. These preliminary
calculations have been performed on oxygen lattices built with
simple cubic primitive cells. The occurrence of nuclei with
exotic shapes such as rods, slabs, and other complex structures
was observed and interpreted in terms of the effective force.

In this work we would like to complete our previous
investigations of the NS crust matter in the framework of
the present mean-field approach. The corresponding extension
of the model beyond the mean-field description will be
the aim of a forthcoming paper. Our interest relies on the

self-organization of the nuclear matter from the lattice struc-
tures expected in the outer crust to either exotic structures or
disordered patterns in the inner crust. Dynamical investigations
are well suited to analyze such complex context, and therefore
in order to contrast our results with other recent works we
apply a criterion allowing us to compare the characterization
of structures stemming from our model and from a molecular
dynamical description [4].

Since in our preliminary calculations we have considered
for simplicity only light nuclei lattices with simple cubic
primitive cells, the purpose of this work is to make use of
other initial arrangements of matter including heavier nuclei,
in order to study the influence of various lattice symmetries
and to study their corresponding behavior with the launching
of random lattice perturbations.

This work is organized in the following way. In Sec. II we
recall the bases of the model. In Sec. III a comparative analysis
between two different definitions of structures is presented.
Section IV is dedicated to the study of lattice perturbations in a
simple cubic-type oxygen lattice for two isotopic composition.
In Sec. V face-centered and body-centered cubic cells are
considered. The consequence of the new lattice symmetries
in the dynamics is investigated. Section VI is devoted to the
study of iron lattices in order to analyze the impact of nuclear
species. Conclusions are given in Sec. VII.

II. SURVEY OF THE MODEL

In this section we will restrict ourselves to an overview of
the principal ingredients of our model, a detailed description of
which can be found in Ref. [11]. In the range of temperatures
and densities characteristic of the NS crust, the stellar matter is
usually described in terms of a system of interacting nucleons
in a uniform background of electrons. In order to address the
microphysics of this region of the star we have developed
a dynamical model in the spirit of the DYWAN model of
nuclear collisions [12], built on the basis of projection methods
(PMs) [13] and on mathematical wavelet theory [15].

From the Liouville–von Neumann equation of motion for
the complete N -body density matrix, the PMs permit us to
extract the equations of motion of relevant variables, which
are coupled to the dynamics of irrelevant ones. In the case
where the relevant variables are one-body observables it has
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been shown [13,14] that the one-body density matrix ρ evolves
according with the following equation:

ih̄ρ̇ = [H(ρ), ρ] + I (ρ), (1)

where H(ρ) is the self-consistent Hamiltonian and I (ρ) is the
collision term. In the weak-coupling limit and in the Markovian
approximation this collision term is the quantum version of the
Boltzmann collision term for the Fermi-Dirac statistics. This
equation belongs to the class of extended TDHF equations
(ETDHF) that have been derived alternatively through other
techniques such as the truncation of the quantum Bogoliubov-
Born-Green-Kirkwood-Yvon (BBGKY) hierarchy for density
matrices [16] or that of the Martin-Schwinger hierarchy for
Green functions [17]. The introduction of multiparticle corre-
lations will allow to go beyond this description. Nevertheless,
in this work we remain at the lowest level of the description
by neglecting the collision term under the condition that the
intrinsic excitation of nuclei is almost vanishing and their
dynamics is governed by the mean field. In order to be able to
go efficiently beyond the mean-field approximation, and since
the previously referred to theories encompass the correlation
effects from a perturbative point of view, one purpose is also
to stringently control and analyze the main contribution to
the dynamics, i.e., the mean field. Equation (1) with I (ρ) = 0
is solved on a three-dimensional lattice satisfying periodic
boundary conditions. The so-called supercell is built up with
primitive cells, which, in general, differ from Wigner-Seitz
(WS) cells. The implemented primitive cells are simple
cubic (SC), face-entered cubic (FCC), and body-entered cubic
(BCC) cells. In the initial condition a nucleus is prepared in an
elementary cell either in its ground state or in excited states,
according to mechanical or thermal constraints, by means of a
static self-consistent procedure. The resulting single-particle
(SP) wave functions are spanned in a basis of wavelets |αλ

i 〉
[15], the subscript referring to the ith basis element of the one-
body level λ. These last functions have interesting properties as
defined symmetries, compact support and orthogonality, and
can be approximated by simple analytical forms. At the same
time, they provide strongly compressed representations of the
system with an accurate description of the SP wave functions.

The N -body density matrix is then constructed with Slater
determinants of SP wave functions. Its projection on the one-
body space of states gives the corresponding one-body density
matrix, which can be expressed as

ρ =
N∑

λ=0

∑
i,j

βλ
i,j

∣∣αλ
i

〉〈
αλ

j

∣∣, (2)

where the parameters βλ
i,j are coefficients related to SP

wave function decomposition in terms of wavelets. Owing
to this decomposition the one-body density matrix is a
function of a set of time-dependent correlated coordinates
{�ξ (t), �χ(t), �π(t), �φ(t)} corresponding to the first and second
moments in coordinate and momentum spaces, respectively.
The equations of motion of these quantities have been obtained
from a variational principle [11]. They constitute a system of
coupled nonlinear differential equations in terms of the wavelet
transform of the effective nuclear potential V = 〈α|V HF

q |α〉.

In this work we have chosen, for both the static and the dy-
namic calculations, a density-dependent zero-range effective
interaction, with the following self-consistent field [11]:

V HF
q (ρ, ξ ) = t0

ρ∞
ρ + t3

ρν+1∞
ρν+1 + c

ρ∞2
ξ 2 + 4qc

ρ∞2
ρξ

+ �

3ρ∞2
ξ 2 + 4q�

3ρ∞2
(ρ − ρ∞)ξ + V C

q , (3)

where ρn and ρp stand for neutron and proton densities,
ρ = ρn + ρp, ξ = ρn − ρp, and q = 1/2 for neutrons and
−1/2 for protons, ρ∞ = 0.145 fm−3 is the saturation density
of infinite nuclear matter, and V C

q is the Coulomb potential.
The standard values of the parameters are

ν = 1/6, t0/ρ∞ = −356 MeV fm3

t3/ρ
ν+1
∞ = 303 MeV fm3(ν+1).

We have chosen c = 20 MeV and � = −100 MeV in order
to reproduce the typical values of baryon density energies in
infinite matter as well as the principal static characteristics of
nuclei, as binding energies, radii, and equilibrium densities.
The parameters c and � are related to the familiar symmetry
coefficients J and L [11]. The current values fall in with
typical values in macroscopic and microscopic calculations
[18]. The Coulomb term for protons is calculated using Ewald
summation techniques [19], adapted to the calculation of long-
range potentials in periodic systems. It consists basically in
recasting V C into two convenient terms, each of which can be
calculated in a fast and efficient way. The current values of the
parameters of Eq. (3) will not be changed in the present work.

III. REFERENCE THRESHOLD DENSITY

One of the salient results of Ref. [11] is the appearance
of nonspherical structures, and the transitions between them,
as a consequence of the self-consistent dynamical evolution.
As mentioned in Sec. II, density matrices are built from
Slater determinants of SP wave functions providing time-
dependent continuous local densities in configuration space.
The various morphological structures are characterized by
the average density 〈ρ〉 and the threshold density ρt . The
former is the number of particles inside the supercell divided
by the related volume, the choice of which allows us to
explore diverse configurations with neighboring energies. The
latter determines domains in the three-dimensional space
where the nuclear density distribution is constrained by the
condition ρ(−→r ) � ρt . Each density threshold gives a set of
boundary regions of equal density (isosurfaces) corresponding
to well-defined morphological structures. Due to the spreading
of the wave functions the density distribution is inhomoge-
neous and different density threshold values lead to various
shapes, similarly to the variation of coastal contours with
tidal movements. In this way at a given time the spatial
density distribution is unique but the isosurfaces, i.e., the
morphological structures, are not since they depend on the
choice of the threshold density. In addition to dripped neutrons,
low-density regions linking different clusters are built as a
result of the spreading of nucleon wave functions. These
regions experience densities lower than the saturation value
of nuclear matter and, accordingly, they are revealed only
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at low values of ρt . In Ref. [11] it has been stressed that
these structures are in general intermingled, rendering difficult
their characterization. In the above reference, phase structure
diagrams have been built in the (ρt , 〈ρ〉) plane for a variety
of systems with distinct isotopic composition. Due to their
dynamical origin, the corresponding shapes in phase diagrams
are the result of an averaging procedure over different times,
the consequence being a diagram pattern exhibiting some small
fluctuations around a smooth behavior which could be obtained
by smearing over a greater number of times.

Most models deal with one-dimensional phase represen-
tations as a function of the mean density [1–4], associating
a unique morphological structure to a given average density.
In our context, i.e., in the (ρt , 〈ρ〉) plane, this means that a
choice of a threshold density of reference ρref

t must be made
in order to compare with other approaches. To this end various
criteria may be applied. In Ref. [4] a threshold density has
been derived from the following condition:

(
d2(V/A)

dρ2
t

)
ρref

t

= 0, (4)

where V and A are the volume and the surface area,
respectively, corresponding to the regions where the local
density is ρ(−→r ) � ρt . In our model both quantities, V and
A, have been calculated using morphological image analysis
(MIA) techniques [20].

As mentioned in Ref. [4] condition (4) is not always
suitable and often it is not possible to extract a threshold
density of reference ρref

t due to the diffuseness of the density
distribution entailed either by nonzero temperatures or by the
wave function spreadings. In the following, aiming at working
out a significant comparison, we address only those situations
in which ρref

t can be unambiguously extracted.
In Fig. 1 are plotted the neutron phase diagrams correspond-

ing to SC lattices of oxygen isotopes for two distinct values of
the proton fraction, xp= 0.5 in part (a) and 0.2 in part (b).

In these pictures the distribution of different shapes (spher-
ical, cylindrical, planar slab, spongelike, and bubble-like) is
given in terms of ρt and of the average density normalized
to the saturation value 〈ρ〉/ρ∞. The threshold density ρref

t

resulting from Eq. (4) is shown by full squares, the widths of
which are equal to their corresponding numerical uncertainties.

In these cases the calculated reference values are roughly
independent of the mean density. They are located around
0.05 to 0.06 fm−3 at xp = 0.2 and fall under 0.04 fm−3 at the
proton fraction xp = 0.5. In both plots of Fig. 1, following
the corresponding ρref

t values, one retrieves globally the same
phase sorting in terms of 〈ρ〉 as in one-dimensional phase
diagrams [4]. By considering for instance cold matter diagrams
at xp = 0.5 and 0.3 in Fig. 3 of Ref. [4], the same structures
appear at roughly the same values of the average densities.
Some differences may nevertheless appear, as in the case of
symmetric nuclear matter for which slablike structures are
not present in the actual description [Fig. 1(a)]. This is a
consequence of the underlying mean-field evolution where
no perturbations nor dissipation have been implemented. The
resulting dynamics preserves strictly the symmetries of the
initial conditions, which in this particular case are such that

FIG. 1. Neutron structure distributions as a function of the
threshold density ρt and of the normalized neutron mean density
〈ρ〉/ρ∞ for two proton fractions xp = 0.5 (a) and xp = 0.2 (b).

planar structures are not favored. It must be pointed out that
the occurrence of these structures in Ref. [4] is concentrated
only in a narrow density region around 0.35ρ∞.

IV. EFFECTS OF LATTICE PERTURBATIONS

As already stated, a stringent mean-field treatment should
preserve the initial symmetries; consequently, the stability of
the corresponding solutions against numerical fluctuations has
been checked. Indeed, in Ref. [11] it has been shown that the
initial lattice symmetries are preserved during the evolution
of the system over several thousands of femtometers/c.
Starting from a low-lying energy nonequilibrium initial state,
the system passes through different structural configurations
which are energetically equivalent. In principle, a variety of
initial conditions can be considered. In our previous works SC
lattices with slightly deformed oxygen isotopes, with proton
fractions 0.1, 0.2, and 0.5, have been employed to build the
initial state. It is well known in condensed matter physics that
SC lattices are not the most stable ones with respect to the
Coulomb interaction. In theses cases mean-field treatments
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FIG. 2. (Color online) Neutron density time evolution of a perturbed simple cubic lattice of oxygen isotopes with proton fraction xp = 0.5,

mean density 〈ρ〉 = 0.4ρ∞, and threshold density ρt = 0.04 fm−3.

lead to various metastable states for which the introduction of
small perturbations is susceptible to provoke the breaking of
the initial symmetries.

As underlined by other authors [21] the inner crust of a
neutron star is an extremely complex system in which the
appearance of disordered phases could be favored. There is
a special interest in investigating how nuclear matter, for a
given proton fraction, self-organizes dynamically under the
influence of the equation of state. In order to study the feasi-
bility of those disordered phases, perturbations of the initial
arrangements built in previous works have been introduced

and their influence on the overall dynamics has been analyzed.
To this end we considered SC lattices of oxygen isotopes,
with xp = 0.2 and 0.5, the positions of which have been
slightly shifted at random from the lattice sites at the initial
time.

The time evolution of the supercell density is represented
in Figs. 2 and 3 in the cases where the average density
is 〈ρ〉 = 0.4ρ∞ and the proton fractions are xp = 0.5 and
0.2, respectively. These shape sequences have been obtained,
respectively, with the threshold densities ρt = 0.04 and
ρt = 0.05.

FIG. 3. (Color online) Same as Fig. 2 with proton fraction xp = 0.2.
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FIG. 4. Neutron phase diagrams of perturbed simple cubic lattices of oxygen isotopes with proton fractions xp = 0.5 (a) and xp = 0.2 (b).

A gradual loss of the initial arrangement of nuclei is
observed in both pictures. From an ordered array of regular
deformed nuclei the system evolves toward a heterogeneous
configuration of clusters with different masses and shapes. The
small initial perturbations then generate sufficiently strong
density fluctuations so as to provoke a rearrangement of
matter molding heavy aggregates. A salient difference between
the two dynamics is the fact that isospin-asymmetric nuclei
tend to collapse into one large cluster occupying the whole
supercell, in contrast to the isospin-symmetric case in which
matter is mainly composed of small or intermediate mass
clusters. The fact that a lowering in the proton fraction
generates a single aggregate in the supercell (or, equivalently,
an infinite one taking periodic conditions into account) can
be interpreted as a consequence of the increase in neutron
wave functions diffusivity. Indeed, as the proton fraction
decreases, the number of dripped neutron increases and the
nucleons become more delocalized with significant overlap in
configuration space. Therefore the local competition between
nuclear and Coulomb interactions covers broader regions in
the three-dimensional space.

As stated before, structural phase diagrams allow us to
understand the occurrence of the different embedded structures
which appear for a given value of mean density as a function
of the threshold density. In perturbed lattices some amount
of energy is initially stocked in cluster collective modes,
providing us with the opportunity to explore the energy minima
manifold corresponding to the various density distributions.
Since mixed phases can appear simultaneously only the
most frequent structure is associated with a given value of
the threshold density for constructing the two-dimensional
structure diagram.

Figure 4 shows the phase diagrams corresponding to
the neutronic population of the perturbed oxygen lattice
with proton fractions xp = 0.5 (a) and xp = 0.2 (b). While
in the nonperturbed case slab structures were lacking, we
observe here that the inclusion of perturbations induces
the formation of planar structures and the disappearance
of rodlike structures in the case of the lowest protonic
fraction. In this case spongelike structures, which are a
consequence of SP wave function delocalization, are prepon-
derant and contribute to partially preserve the initial symme-
tries despite the strong reorganization of matter inside the
supercell.

V. INFLUENCE OF LATTICE SYMMETRIES

In the previous calculations SC primitive cells have been
utilized to construct the initial lattice due to their simplicity.
The next step was to implement other three-dimensional
crystal lattices displaying new symmetries and to analyze their
influence on the morphologic properties of the system. The
FCC primitive cell is represented in Fig. 5.

In this arrangement, the nuclei which are located at the
vertices of the cube contribute with a weight of 1/8 and those
in the center of the faces contribute with 1/2, the number of
nuclei being therefore equal to 4.

The time evolution of the supercell density is represented
in Fig. 6 in the case in which it is composed of individual FCC
cells of oxygen isotopes with proton fraction xp = 0.5. The
average density in the supercell is 0.4ρ∞ and the threshold
density is ρt = 0.04. The system has been initially perturbed
in the same way as in Sec. IV. Comparing the structures
of Fig. 6 with those of the SC case in Fig. 2, at equal
times, we see that the symmetry of the new initial condition
modifies the corresponding density evolution. Indeed, despite
the random perturbations imposed on the nuclei positions, the
system attempts to preserve symmetries exhibiting stringy or
cylindrical structures. At sufficiently long times, the dominant
arrangement at the supercell level is a single rodlike structure.

The corresponding phase diagram has been plotted in
Fig. 7(a), where the presence of cylindrical structures is
shown to be dominant for average densities higher than about
0.3ρ∞. By lowering the threshold density and making the bins
narrower, other structures such as slabs and bubbles are also
present. The nonuniformity of the density distribution is also
evidenced at higher density thresholds where the structure
diagram displays spherical-like structures.

FIG. 5. (Color online) Left: Schematic representation of an FCC
lattice. Right: An FCC primitive cell with four nuclei.
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FIG. 6. (Color online) Density profiles of a perturbed supercell of 0.5 proton fraction oxygen isotopes in FCC lattices. The mean and
threshold densities are 〈ρ〉 = 0.4ρ∞ and 0.04 fm−3, respectively.

In Fig. 7(b) we have represented the diagram corresponding
to the proton fraction xp = 0.2. In this case rods are nearly
missing, the dominant structures are spherical at low mean
densities, and, as this quantity increases, the system undergoes
a smooth transition toward more homogeneous density distri-
butions, the structures appearing only at higher ρt . This fact
can be seen as a consequence of the growth of the number of
dripped neutrons with the average density. Since these neutrons
are delocalized the corresponding wave functions are wider
and their contribution to the local density tends to fill up the
entire space. This clearly different behavior between the two

isospin asymmetries for the FCC lattice is not observed in the
SC case in Fig. 4.

The same kind of analyses have been performed with the
BCC unit cell, a schematic representation of which is given in
Fig. 8. In this arrangement there are two nuclei per unit cell:
one of them is located on the center and has a weight of 1, and
the others are placed at the eight corners, their corresponding
weights being 1/8.

In Fig. 9 we have plotted the time evolution of the spatial
density distribution in a perturbed BCC oxygen lattice with
proton fraction 0.5. The system evolves to a heavy cluster in

FIG. 7. Neutron phase diagrams of perturbed FCC lattices of oxygen isotopes with proton fractions xp = 0.5 (a) and xp = 0.2 (b).
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FIG. 8. (Color online) Left: Schematic representation of a BCC
cell. Right: Representation of two translated nuclei in the same
cell.

which the initial symmetries have been washed out. Comparing
the temporal evolutions of the three different configurations
(Figs. 2, 7, and 9) we see that the one corresponding to the
FCC cell arrangement is clearly the more stable in the sense
that matter remains in organized rodlike shapes for longer
times. These results evidence the stability of nonequilibrium
structures in FCC arrangements (Fig. 6) against SC or BCC
configurations for the same mean density.

This assertion goes along with the usual behavior of atomic
lattices in condensed matter approaches. A well-known result
in this field is the instability of SC lattices with central forces.
The situation is analogous in our description in the cases
in which the average densities are low. In that cases the
nuclear field between clusters, initially located in lattice sites,
is negligible. This is a conclusive result which endorses the fact
that the actual dynamical model is clearly sensitive to initial
lattice symmetries.

In Fig. 10 are represented the structure diagrams for
neutrons in the perturbed oxygen BCC lattice with proton
fractions xp = 0.5 (a) and xp = 0.2 (b).

The difference between the various lattice behaviors is
clearly emphasized in the asymmetric xp = 0.2 case, with
the appearance of larger regions with a homogeneous density
distribution beneath the bubble-like zone. These last structures
correspond to the lower values of the threshold density. It can
been easily seen that the area related to the homogeneous
density strongly increases when one switches from an SC
lattice to a BCC lattice and finally to an FCC one. This is
in obvious relation with the packing factor of the concerned
lattices, which grows, respectively, from 0.524 to 0.680 to
0.740.

VI. SENSITIVITY TO INITIAL NUCLEAR SPECIES

In order to investigate the influence of the charge and the
mass of nuclear species on the onset and on the dynamical
evolution of structures, iron nuclei with different isotopic
compositions have been considered. In Fig. 11 the phase
diagrams of SC iron lattices corresponding to proton fractions
xp = 0.5 (a) and to xp = 0.3 (b) are shown in the case in which
the initial state is not perturbed.

In both cases planar structures are mainly favored in a
wide range of threshold densities for all mean densities, the
broader contribution being in the case of asymmetric matter.
A good part of these diagrams concerns also rods for both
proton fractions at high threshold densities. On average, these
structures are preserved during times of the order of thousands

FIG. 9. (Color online) Density profiles of a perturbed supercell of 0.5 proton fraction oxygen isotopes in BCC lattices. The mean and
threshold densities are 〈ρ〉 = 0.4ρ∞ and 0.03 fm−3, respectively.
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FIG. 10. Neutron phase diagrams of perturbed BCC lattices of oxygen isotopes with proton fractions xp = 0.5 (a) and xp = 0.2 (b).

of femtometers/c. They are a direct consequence of the initial
lattice symmetries and of the anisotropic geometry of the iron
nuclei, which is no longer spherical as were oxygen nuclei in
the previous analysis.

The corresponding structure diagram can be conveniently
compared for oxygen and iron lattices through, respectively,
Figs. 11 and 1. In the latter, slablike shapes are present only
over a narrow density domain in asymmetric nuclear matter
and they are completely missing in the symmetric case. The
dynamical appearance of slablike structures in Fig. 11 can
be understood as the result of a subtle interplay between the
strong attractive mean field created by the massive iron nuclei
and the Coulomb interaction. The question of whether the
observed steady behavior for the nonperturbed iron lattice is
delayed or preserved in the presence of perturbations can be
addressed.

The time evolution of the spatial density of iron nuclei in
the symmetric xp = 0.5 case is exhibited in Fig. 12 with two
kinds of cells: SC in (a) and FCC in (b).

The overall mean density is 〈ρ〉 = 0.1ρ∞ in panel (a)
and 〈ρ〉 = 0.4ρ∞ in panel (b), the threshold density being
ρt = 0.05 fm−3 in both cases. In these calculations nuclei
positions have been randomly shifted from the lattice sites
at the initial time. The resulting structures for FCC cells
are mostly planar and still conserve the fingerprints of the
initial symmetries. The observed structures in the SC lattice
are the deformed individual iron nuclei which undergo shape
oscillations around their initial condition. The stability and

symmetry of nonequilibrium structures in the iron lattice seem
to not be substantially modified by perturbations, regardless of
cell type. This behavior can be interpreted as a consequence
of the relative weight of Coulomb and nuclear forces between
neighboring nuclei. Actually, the magnitude of the random
perturbations applied to both lattices are of the same order;
nevertheless, the corresponding effects are different. For
symmetric systems with the same average density, the long-
range Coulomb potential scales with (A1/A2)4/3, Ai being
the masses of nucleus i (here namely either the oxygen
nucleus or the iron nucleus), while the short-range nuclear
potential between nearest neighbors at low densities is weaker.
Comparatively, the Coulomb force strength involved in the
heaviest lattice is stronger than for the lighter one and
dominates the dynamics. On the other side, due to the distances
between nuclear sites in both systems, a small perturbation on
the iron lattice does not affect the dominant character of the
Coulomb force, whereas for the oxygen lattice the random
displacements can make neighboring nuclei sufficiently near
to feel the effects of the corresponding potential wells. This can
explain why with the onset of perturbations the initial oxygen-
like species evolves into a wide variety of exotic shapes or
even toward amorphous matter, while in the iron lattice the
matter self-organizes, exploring a restricted set of structures.

It is worthwhile to emphasize that the different behaviors
described here related to the two kinds of nuclear species
placed initially on the lattice sites agree with the trend
pointed out in thermodynamical [22] and in linearized Vlasov

FIG. 11. Neutron phase diagrams of nonperturbed iron isotopes with proton fractions xp = 0.5 (a) and xp = 0.3 (b) in simple cubic cell
lattices.
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FIG. 12. (Color online) Density profiles of perturbed iron lattices with 0.5 proton fraction using simple cubic [face-centered] cells (a) [(b)].
The mean densities are 〈ρ〉/ρ∞ = 0.1 in (a) and 0.4 in (b). The threshold density is 0.05 fm−3 in both cases.

dynamical approaches [23] with initial conditions provided
by uniform distributions at subsaturation densities. It is
mentioned that the treatment of the Coulomb interaction in a
globally neutral system, under the assumption of a uniform
distribution of electrons, induces a rigidity in the system
which tends to inhibit the onset of instabilities and symmetry
breaking.

VII. CONCLUSIONS

The microscopic DYWAN model has been recently devel-
oped in order to investigate the nuclear dynamics in the outer
layers of neutron stars. In this framework, the occurrence of
self-organized structures in nuclear matter has been established
[11] as well as the sensibility of their morphology to the
equation of state.

In this work, we first introduced a comparative analysis
with other approaches [4] which investigate the possible
morphological structures experienced in the crust through a
one-dimensional phase representation of the structure sorting
in terms of the average density. An equivalence between
the corresponding criteria for the structure recognition was
emphasized. Provided that the density of the system is
constrained to satisfy geometrical conditions, the structural
phase sorting is similar in both descriptions. Notwithstanding,
in the DYWAN model the implemented effective interaction
was different and the initial symmetries were fully conserved,
in accordance with a pure mean-field study.

Pursuing our first investigations [11], we have analyzed
the response of those structures to a variation of the initial
conditions in order to understand the relationship of our
results to various aspects such as lattice symmetries, symmetry
breaking, and nuclear species.

The issue of initial symmetry breaking is addressed as
follows: The positions of the nuclei have been slightly shifted
at random from the SC lattice sites for oxygen nuclei with
different isotopic compositions. The effects of perturbations
are to destroy the initial symmetries. Nevertheless, in the
case of the low proton fraction xp = 0.2 the initial lattice
regularity is merely preserved. This fact is illustrated when

the system aggregates in a single heavy cluster holding the
overall supercell. Conversely, in the xp = 0.5 case a variety
of irregularly distributed intermediate-mass clusters are found.
In addition, the corresponding phase diagrams in the ρt versus
〈ρ〉 plane reveals the occurrence of planar structures which
were lacking in the nonperturbed isospin symmetric case.

We analyzed the importance of cell symmetry by imple-
menting FCC and BCC lattices, in addition to the SC ones. In
all cases the system was subjected to initial perturbations. In
both FCC and BCC lattices the system evolves toward a single
cluster per supercell. In the former case a nonequilibrium
steady cylindrical structure is formed in symmetric systems.
In the latter the initial symmetries are washed out. By lowering
the proton fraction, the system enters into a uniform phase for
a wide density domain.

Finally, the sensitivity to the nuclear mass composition
has been considered by studying the evolution of a perturbed
iron lattice in SCC and FCC configurations. In both cases
the systems remain in a steady nonequilibrium state, which
corresponds to planar or to deformed spherical shapes,
depending on the choice of the threshold density value.

In the present version of the model, individual nucleons,
either bound or unbound, evolve in a self-consistent mean
field by holding in the entire supercell under periodic boundary
conditions. The occurrence of heavy aggregates and uniform
phases at low proton fraction is deeply related to the ability
of the model to describe the spreading of wave functions
widths corresponding to unbounded nucleons. Investigations
of the energy landscape in inhomogeneous nuclear matter at
subnuclear densities are the purpose of forthcoming investiga-
tions. Owing to the sensitivity of the system to the spatial
organization, such that several shapes and geometries can
exist at the same density in various areas of the star, refined
energy evaluations of the different structural phases will be
done, addressing specially the estimation of the liquid and
shell-energy contributions, which are naturally contained in
our self-consistent description. Nevertheless, the formation
and transitions between these nonequilibrium structures can
be strongly modified using more complex nonlocal effective
forces [24] and going beyond a pure mean-field description.
These investigations are currently in progress.
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