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We investigate the double differential neutrino-carbon quasielastic cross sections as measured by the
MiniBooNE experiment. Our present treatment incorporates relativistic corrections in the nuclear response
functions and includes the multinucleon component. We confirm our previous conclusion that it is possible to
account for all the data without any modification of the axial mass. We also introduce the Q2 distribution for
charged and neutral current. The data point at a sizable multinucleon component beside the genuine quasielastic
peak. They are also indicative of the collective character of the nuclear response, of interest for hadronic physics.
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I. INTRODUCTION

Recent data on neutrino-nucleus scattering have improved
our understanding of the neutrino-nucleus interaction, needed
for neutrino oscillation experiments where nuclear targets are
involved. Among the results on partial cross sections, the
quasielastic one turns out to be very important [1,2]. An
outcome of these data was the display of an “anomaly” in
the quasielastic cross section on 12C. This quantity can be
fitted by a relativistic Fermi gas model only at the price of
a modification of the axial form factor with an axial mass
MA = 1.35 GeV, instead of the usual value MA = 1.03 GeV
as measured in deuteron bubble chamber experiments. For
nuclear physicists accustomed to the complexity of the many-
body nuclear system, this anomaly is likely to reflect the
many-body aspect of the problem. Indeed we have pointed
out [3,4] that, depending on the detection method, certain types
of inelastic events can simulate quasielastic ones. This is the
case for interactions leading to a final state with two or more
nucleons ejected, if a quasielastic event is defined as one with
only a muon in the final states, as in MiniBooNE. Multinucleon
processes occur by nuclear correlations, with or without Delta
excitation. We have argued that this is the likely explanation
of the anomaly showing that an evaluation can account for
the excess cross section without any modification of the axial
mass. After this suggestion, a number of articles [5–11] have
discussed the problem of multinucleon emission and whether
it could account for the anomaly, with various conclusions,
critical or supportive of our result.

Our previous works only dealt with the quasielastic cross
section as a function of the neutrino energy. In the comparison
with the experimental data, the uncertainties linked to the
fact that the neutrino spectrum is broad are of experimental
origin because the extraction of the energy dependence of the
cross section involves a reconstruction of the neutrino energy
whereas in the theoretical evaluation the neutrino energy is

just an input. In the present work we discuss the double
differential cross section. This is a directly measured quantity,
free from the uncertainty of neutrino energy reconstruction.
However, there remains an uncertainty on the theoretical side
because the measured double differential cross section refers
to the broad spectrum of neutrino energies. The theoretical
predictions imply a convolution on this spectrum, which could
be a source of error. Nevertheless, a good agreement with
theory for the double differential cross section speaks in favor
of the importance of the role of multinucleon emission process.
In the present article we will also discuss the role played by
relativistic kinematics. The momenta and energies involved in
these neutrino reactions are rather large. For the MiniBooNE
experiment the neutrino energy extends to �2 GeV and the
ejected nucleon kinetic energy in a quasielastic process can be
a few hundred MeV making a nonrelativistic approximation
questionable. Indeed, it was pointed out that conclusions on
the role of the multinucleon process are doubtful within a
nonrelativistic framework [7]. It is one of the aims of this
work to answer these criticisms. To improve our description
we introduce in the present work relativistic modifications of
the nuclear response, as proposed in [12,13]. To single out their
influence we keep for all the remainder of the description the
same input parameters that we used in our previous work, in
particular, as concerns the description of the two particle–two
hole (2p-2h) processes, for which we use our parametrization
deduced from the work of Alberico et al. [14] on the 2p-2h

contribution to the transverse response. Remember that we also
have a 3p-3h contribution, taken from Ref. [15]. All together
we denote the sum by np-nh. We also keep the same values of
the parameters of the particle-hole (p-h) force which governs
the collective aspect of the nuclear response via the random
phase approximation (RPA). We will show that although the
relativistic treatment improves the description of the double
differential cross section it is nearly without influence on the
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FIG. 1. (Color online) Regions of the quasielastic response of a
Fermi gas. For relativistic kinematics, see shaded area (red) delimited
by the two corresponding continuous lines. In the nonrelativistic case
the horizontal arrow shows the two limiting lines (black). The central
dashed lines show the position of the quasielastic peak in the two
cases. The remnant three lines represent the neutrino hyperbolas
defined by Eq. (2) for a muon kinetic energy Tμ = 250 MeV and
three muon emission angles: cosθ = 0.9 [dot-dot-dashed line (blue)],
cosθ = 0 [dot-dashed line (green)], and cosθ = −0.9 [dotted line
(turquoise)].

integrated quasielastic cross sections. Our previous conclusion
on the role played by the multinucleon processes in the axial
anomaly is not an artifact of the nonrelativistic treatment of

our earlier works. Then we give the single differential cross
sections, that is, integrated over the muon energy, or the muon
angle, and the Q2 distribution not only for charged current
(CC) but also for neutral current (NC).

II. ANALYSIS OF DIFFERENTIAL CROSS SECTIONS

For a given “quasielastic” event the muon energy Eμ (or
kinetic energy Tμ) and its emission angle θ are measured. The
neutrino energy Eν is unknown. In the experimental analysis
a specific assumption is made concerning the quasielastic
character of the one muon events. Nuclear cross sections are
naturally expressed in terms of the nuclear responses, functions
of the energy and momentum transferred to the nuclear system,
ω = Eν − Eμ, and q = |�q| = | �pν − �pμ|. These are the natural
variables but they are not the measured quantities. For each
value of Eμ and θ several values of ω, hence of Eν = Eμ + ω,
are possible. The expression of the double differential cross
section in terms of the measured quantity is

d2σ

dTμdcosθ

= 1∫
�(Eν)dEν

∫
dEν

[
d2σ

dωdcosθ

]
ω=Eν−Eμ

�(Eν). (1)

In the numerical evaluations we use the neutrino flux �(Eν)
from Ref. [1].

The cross section of the right-hand side of Eq. (1), as
expressed in terms of the nuclear responses [3], is nonvanishing

-1 -0.5 0 0.5 1
0

5

10

15

20
MiniBooNE
QE
QE + np-nh

-1 -0.5 0 0.5 1
0

5

10

15

20

-1 -0.5 0 0.5 1
0

5

10

15

20

-1 -0.5 0 0.5 1
0

5

10

15

20

0 0.5 1
0

5

10

15

20

25

30

0 0.5 1
0

5

10

15

20

25

30

0.5 1
0

5

10

15

20

25

30

0.5 1
0

5

10

15

20

25

30

0.2 < Tμ < 0.3 GeV 0.3 < Tμ < 0.4 GeV 0.4 < Tμ < 0.5 GeV 0.5 < Tμ < 0.6 GeV

0.6 < Tμ < 0.7 GeV 0.7 < Tμ < 0.8 GeV 0.8 < Tμ < 0.9 GeV 0.9 < Tμ < 1 GeV

cos θ

d2 σ/
(d

co
sθ

 d
T μ)(

10
-3

9 cm
2 /G

eV
)

FIG. 2. (Color online) MiniBooNE flux-averaged CC “quasielastic” νμ-12C double differential cross section per neutron for several values
of muon kinetic energy as a function of the scattering angle. (Dashed curve) Pure quasielastic (1p-1h) cross section calculated in RPA, (solid
curve) with the inclusion of np-nh component. The experimental MiniBooNE points are taken from Ref. [1].
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FIG. 3. (Color online) MiniBooNE
flux-averaged CC genuine quasielastic
νμ-12C double differential cross section
per neutron for several values of muon
kinetic energy as a function of the scatter-
ing angle and calculated in RPA. (Dashed
curve) With relativistic corrections; (dot-
ted curve) without relativistic corrections.

in the regions of the ω and q plane where the responses
are nonzero, regions defined in the following. For a very
dilute Fermi gas the region of response is restricted to the
line of the quasielastic peak, namely ω = q2/(2MN ) in the
nonrelativistic case and ω = Q2/(2MN ) for the relativistic
kinematics. At finite density there is a spreading caused by the
Fermi motion and the region of response is delimited, when
q > 2kF , by the two lines ω± = (q2 ± 2qkF )/(2MN ), for the
nonrelativistic case and by ω± =

√
q2 ± 2qkF + M2

N − MN ,
for the relativistic one. For q < 2kF , the lower bound is the
ω = 0 axis in both cases. The two lines delimiting the regions
of response are represented in Fig. 1, together with the central
one which shows the position of the quasielastic peak, where
the response has its maximum, both in the relativistic and
nonrelativistic cases.

To illustrate how these regions are explored in neutrino
reactions we write the squared four-momentum transfer in
terms of the lepton observables,

Q2 = q2 − ω2 = 4(Eμ + ω)Eμsin2 θ

2
− m2

μ

+ 2(Eμ + ω)(Eμ − pμ)cosθ, (2)

with pμ = | �pμ|. For a given set of observables Eμ and θ this
relation defines a hyperbola in the ω and q plane [16]. The
asymptotes are parallel to the ω = q line and the intercept
of the curves with the ω = 0 axis occurs at a value of the
momentum,

q2
int = 4E2

μsin2 θ

2
− m2

μ + 2Eμ(Eμ − pμ)cosθ � 4E2
μsin2 θ

2
,

(3)

where the second expression is obtained by neglecting the
muon mass. With increasing Eμ or increasing angle, this point
shifts away from the origin. The neutrino cross section for
a given Tμ and θ explores the nuclear responses along the

corresponding hyperbola. In Fig. 1 the quasielastic peak lines
are shown together with some examples of hyperbolas. This
figure illustrates the problems associated with the nonrela-
tivistic kinematics: The intercept of the hyperbolas with the
quasielastic line disappears at large angles, which does not
occur in the relativistic case. There can also be two intercepts,
which is not realistic either. To suppress the pathologies of
the nonrelativistic dynamics and to implement the relativistic
corrections we use results from quasielastic electron scattering
studies [12,13]. They showed that a good approximation to
simulate a relativistic treatment starting from a nonrelativistic
frame is obtained with the substitution ω → ω(1 + ω

2MN
) in

the nuclear responses (which insures the right position of
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FIG. 4. (Color online) MiniBooNE flux-averaged CC “quasielas-
tic” νμ-12C double differential cross section per neutron for 0.4 GeV
< Tμ < 0.5 GeV as a function of the scattering angle calculated in
RPA with the inclusion of the np-nh component. (Solid curve) With
relativistic corrections; (dotted curve) without relativistic corrections.
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FIG. 5. (Color online) MiniBooNE
flux-averaged CC genuine quasielastic
νμ-12C double differential cross section
per neutron for several values of muon ki-
netic energy as a function of the scattering
angle. (Dashed curve) Calculated in RPA;
(dot-dashed curve) bare.

the quasielastic peak), and by multiplying the responses by
(1 + ω

MN
). Our present evaluations use these recipes and unless

specified otherwise the curves of this article are calculated in
this framework. Now in a realistic approach of the nuclear dy-
namics with correlations the nuclear region of response is not
restricted to the Fermi motion band around the quasielastic line
(as in Fig. 1) but it covers the whole ω and q plane from mult-
inucleon emission. As a consequence, for a given set of values
of Eμ and θ , all values of the energy transfer ω, hence of the
neutrino energy, Eν = Eμ + ω, contribute and one explores
the full energy spectrum of neutrinos above the muon energy.

The results of our present evaluation with the relativis-
tic corrections of the double differential cross section are
displayed in Fig. 2, with and without the inclusion of the
np-nh component and compared to the experimental data.
This evaluation, like all those in this article, is done with the
free value of the axial mass. The agreement is quite good in
all the measured ranges once the multinucleon component is
incorporated. Similar conclusions have been recently reported
in Ref. [9]. The relativistic corrections are significant, as
illustrated in Fig. 3 which compares the two approaches for the
genuine quasielastic contributions. The relativistic treatment,
which suppresses the kinematical pathologies, improves the
description, in particular, in the backward direction. This is
illustrated in Fig. 4 in the case 0.4 GeV < Tμ < 0.5 GeV in
which the 2p-2h component was added for comparison with
data. The good agreement with data of Fig. 2 is absent in the
nonrelativistic case.

Our responses are described, as in our previous works [3,4],
in the framework of random phase approximation. Its role
is shown in Figs. 5 and 6 where the double differential
cross sections as a function of cosθ or Tμ are displayed
with and without RPA. The RPA produces a quenching and
some shift toward larger angles or larger Tμ. In Fig. 6 we
present the comparison with data adding the np-nh to the
genuine QE with or without RPA. The fit is significantly

better in the RPA framework, reflecting the collective character
of the nuclear response. The RPA quenching of the cross
sections results from the repulsive nature of the p-h force,
embodied in the Landau-Migdal parameter g′. A large part
of this quenching arises from the mixing of the p-h states
with �-hole ones. This is the Lorentz-Lorenz effect, which
concerns exclusively the spin isospin response, hence the axial
or magnetic matrix elements. In the graphical illustration of
the response, the Lorentz-Lorenz effect on the quasielastic
one is illustrated in Fig. 7. Figure 6 shows the dominance of

0 0.5 1 1.5 2
Tμ (GeV)

0

5

10

15

20

25

30

d2 σ/
(d

co
s

θ  
dT

μ) (
10

-3
9  c

m
2 /G

eV
) MiniBooNE

QE RPA +np-nh
QE bare + np-nh
QE bare
QE RPA
QE RPA without LL quenching

0.8 < cos θ < 0.9

FIG. 6. (Color online) MiniBooNE flux-averaged CC quasielastic
νμ-12C double differential cross section per neutron for 0.8 < cosθ <

0.9 as a function of the muon kinetic energy. (Dashed curve) Pure
quasielastic calculated in RPA; (solid curve) RPA quasielastic with
the inclusion of np-nh component; (dot-dot-dashed) bare quasielas-
tic with the inclusion of np-nh component; (dot-dashed curve)
bare quasielastic; (dot-dashed-dashed) RPA quasielastic without the
Lorentz-Lorenz (LL) quenching.
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FIG. 7. Lowest-order contribution of Lorentz-Lorenz effect on
the quasielastic response. The wiggled lines represent the external
probe, and the dashed lines an effective interaction between nucleon
hole and � hole.

the Lorentz-Lorenz quenching effect in the RPA quenching
of the neutrino cross section. The Lorentz-Lorenz effect was
first predicted for the axial β-decay matrix elements [17]; in
this case its existence was controversial. A similar concept
was shown by Alberico et al. [18] to apply to the spin-isospin
nuclear responses in the region of the quasielastic peak at finite
momenta. With the introduction in Ref. [18] of the collective
character of the nuclear responses via an RPA treatment, the
Lorentz-Lorenz mixing effect naturally appeared. However,
on the experimental side, the transverse (magnetic) part of the
inclusive electron scattering data have not clearly established
the collective nature of this response nor the Lorentz-Lorenz
quenching, because they are mixed with other effects. It is
interesting that they seem to show up in neutrino reactions.
It is, in fact, the integration over the energy transferred to
the nuclear system which is contained in these cross sections
which allows more easily the emergence of their gross features,
an unexpected outcome of these data.

In the following we analyze the single differential cross
sections, integrated over one of the two independent variables,
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FIG. 8. (Color online) MiniBooNE flux-averaged CC “quasielas-
tic” νμ-12C differential cross section per neutron as a function of
the muon kinetic energy. (Dashed curve) Pure quasielastic (1p-1h)
cross section; (solid curve) with the inclusion of np-nh component;
(dotted line) pure quasielastic with nonrelativistic kinematics. The
experimental MiniBooNE points are taken from Ref. [1].
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FIG. 9. (Color online) MiniBooNE flux-averaged CC “quasielas-
tic” νμ-12C differential cross section per neutron as a function of the
muon scattering angle. Note that to compare with data the integration
is performed over the muon kinetic energies 0.2 GeV < Tμ < 2.0 GeV.
(Dashed curve) Pure quasielastic (1p-1h) cross section; (solid curve)
with the inclusion of np-nh component; (dotted line) pure quasielastic
with nonrelativistic kinematics. The experimental MiniBooNE points
are taken from Ref. [1].

muon energy or angle, with and without the np-nh contribu-
tion. These are displayed in Figs. 8 and 9. The agreement
of the integrated cross sections with the data is good in
both cases if the multinucleon contribution is included, as
displayed in Figs. 8 and 9. Here, contrary to the previous case,
the relativistic corrections have a small influence. A single
integration nearly washes out the relativistic effects. This is a
fortiori true for the total cross section.

Finally we show in Fig. 10 the single differential cross
section with respect to Q2, which was historically of interest
for the determination of the axial form factor. Figure 10 shows
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FIG. 10. (Color online) MiniBooNE flux-averaged CC Q2 distri-
bution per neutron. (Dashed curve) Pure quasielastic (1p-1h); (solid
curve) with the inclusion of np-nh component; (dot-dashed line) bare
distribution. The experimental MiniBooNE points are taken from
Ref. [1].

055502-5



M. MARTINI, M. ERICSON, AND G. CHANFRAY PHYSICAL REVIEW C 84, 055502 (2011)

0 0.5 1 1.5 2
Q

2
 (GeV

2
)

0

1

2

3

4

dσ
/d

Q
2  (

10
-3

9  c
m

2 /G
eV

2 )

MiniBooNE
QE RPA + np-nh
QE RPA
QE bare

NC

FIG. 11. (Color online) MiniBooNE flux-averaged NC Q2 distri-
bution per nucleon. (Dashed curve) Pure quasielastic (1p-1h); (solid
curve) with the inclusion of np-nh component; (dot-dashed line) bare
distribution. The experimental MiniBooNE points are taken from
Ref. [2].

that here also the fit is good without any modifications of
the axial mass but provided the multinucleon component is
incorporated. In this figure the existence of a large Q2 region,
Q2 � 0.2 GeV2, in which RPA is practically without influence
is of great interest. It allows one to single out the need for the
np-nh contribution without any interference from the RPA
effects. At low Q2 where the bare description without np-nh

is able to reproduce the data the RPA quenching is then needed
to compensate the enhancement from the np-nh contribution.
We remind that in the absence of quantitative evidence in
the electron scattering data for the collective nature or the
Lorentz-Lorenz quenching, the parameters that govern this
effect are not in full control. The neutrino experiments will be
of great help to narrow their range.

On the experimental side the same differential cross section
but for neutral currents was recently published [2]. It is
interesting to compare it to our predictions. Here the final
lepton, a neutrino, is not observed and the transfer variable Q2

is obtained indirectly from the kinetic energy of the ejected
nucleons. In this case it is not quite clear how the multinucleon
component shows up in the experimental data. However, the
same problem of the axial mass also seems to emerge from
these data [19,20]. We have thus confronted our theory with
the published Q2 distribution. The data are for CH2 instead of
pure carbon as in our theory, but the difference between the
two cases was shown to be small [19]. The comparison of our
evaluation with data is shown in Fig. 11. It turns out that the
combination of RPA quenching and the 2p-2h piece leads to
a good agreement with data.

III. CONCLUSIONS

In conclusion we have investigated in this work more
in detail the neutrino-12C cross section in connection with
MiniBooNE data. The most significant quantity is the double
differential cross section, which does not imply any recon-
struction of the neutrino energy. To compare our theoretical
model to these data we have improved our original description
applying relativistic corrections. The agreement of our RPA
approach with data is quite good once the np-nh component is
included. It confirms our first suggestion that there is no need
for a change in the axial mass once the multinucleon processes
are taken into consideration. A good agreement is also found
for the (single) differential cross sections integrated over one
variable where the relativistic corrections play practically
no role. We have also examined the Q2 distribution, which
establishes the necessity of the multinucleon contribution,
independently of the RPA quenching. The same description
appears to be efficient for the Q2 distribution in the case of
neutral currents, although the role of the multinucleon compo-
nent in these experimental data is not obvious. Understanding
in detail the role of nuclear dynamics in neutrino-nucleus
interactions is important for the neutrino oscillation programs
(see, e.g., Ref. [21]) but beyond the question of the axial mass,
which is our main goal, our study also has an interest from
a purely hadronic viewpoint. The fact that a signature for the
RPA influence in the form of the Lorentz-Lorenz quenching,
a long-sought-after effect, seems to emerge from neutrino
reactions is an additional and unexpected outcome of our
study.
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