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Chiral symmetry in the low-energy limit of QCD at finite temperature
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We derive a nonlocal Nambu-Jona-Lasinio model from QCD with a form factor exactly obtained in the infrared
limit. Using this model, with all parameters properly fixed via QCD, we consider the case of finite temperature
and compute the solution of the gap equation at low temperature, small momentum, and zero chemical potential.
Taking the quark masses to be zero, we prove that the theory undergoes a phase transition with a critical
temperature that is exactly determined. These results prove unequivocally that the picture of the vacuum of QCD
as a liquid of instantons is a very good approximation.
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I. INTRODUCTION

Currently, evidence for the existence of a phase transition
in QCD, at finite temperature and chemical potential, relies
on lattice computations. This was first realized in a pioneering
work by Fodor and Katz [1], and further backed up by more
recent studies [2–4], notwithstanding some criticisms that
were cast due to the infamous sign problem [5]. Studies
of the behavior of QCD at finite temperature and density,
from a theoretical standpoint, are generally performed using
phenomenological models such as the Nambu-Jona-Lasinio
model or a sigma model. The appearance of the infamous
sign problem in lattice analysis has prompted some authors
to introduce an imaginary chemical potential [6–8], and the
need for a consistent agreement between lattice computations
and theoretical models has prompted the introduction of more
general models using the Polyakov loop. In this framework
some authors were able to prove the existence of a statistical
confinement of quarks and to describe the phase diagram of
QCD [9,10]. The relevant point to note for our purposes is
that, when quark masses are taken into account, instead of a
real phase transition there is a crossover between a confined
and a deconfined phase. In the same range of temperatures,
broken chiral symmetry is also seen. But when the chemical
potential and the masses of the quarks are taken to be zero, a
first-order phase transition is indeed expected at a given critical
temperature.

It is clear from this situation that a proof based on first
principles of at least a chiral symmetry breaking, starting
from the equations of QCD, does not exist yet. Efforts in this
direction date back to the 1980s, when chiral perturbation
theory was used initially [11–13] but did not produce a
value for the critical temperature. The difficulty lies in our
inability to obtain a model for the low-energy behavior of
QCD directly from theory. Quite recently, we were able to
prove that a nonlocal Nambu-Jona-Lasinio model describes
such a low-energy limit for QCD [14–16], and this result has
been obtained also by Kei-Ichi Kondo [17]. The crucial point
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in our derivation has been an analytical closed form for the
gluon propagator in the limit of very low energies [18,19].

The form of the gluon propagator is an essential cornerstone
result that permits one to perform explicitly numerous low-
energy computations directly from the equations of QCD.
This is clearly shown in a recent paper by Hell et al. [20].
The authors were able to give a complete account of a
nonlocal Nambu-Jona-Lasinio model, at both zero and finite
temperatures, but they only guessed the form of the propagator
by using the idea that the ground state of QCD is that of a liquid
of instantons [21]. We will show below that our scenario is
perfectly consistent with this view. We show that the theory, at
zero chemical potential and zero quark mass, indeed undergoes
a symmetry breaking at low temperature, and we obtain the
critical temperature computed on the lattice. We note, however,
that the value of the critical temperature obtained from lattice
computation is uncertain, with two groups obtaining different
values. But for our purposes it is enough to be in the right
range.

This article is structured as follows. In Sec. II we present
results in the infrared limit of QCD. In Sec. III we show a
derivation of the nonlocal Nambu-Jona-Lasinio model from
QCD. In Sec. IV we solve the gap equation at low temperature
and low momentum, giving the main result. In Sec. V we give
our conclusions.

II. QCD IN THE INFRARED LIMIT

As usual, our starting point will be the generating functional
of QCD. We take

SQCD = −1

4

∫
d4x TrF 2 +

∫
d4x

∑
q

q̄(x)

(
i∂/ − g

λa

2
A/a

)

× q(x) −
∫

d4x(c̄a∂μ∂μca + gc̄af abc∂μAbμcc),

(1)

where Fa
μν = ∂μAa

ν − ∂νA
a
μ + gf abcAb

μAc
ν , g is the coupling,

which in this case is dimensionless, q(x) are the quark
fields, Aa

μ(x) are the vector potentials of the Yang-Mills
field, and ca is the ghost field. So, it straightforward to write
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down

ZQCD[j, η̄, η, ε̄, ε] = N
∫

[dA][dq̄][dq][dc̄][dc]

× eiSQCDei
∫

d4x
∑

q [η̄q (x)q(x)+q̄(x)ηq (x)]

× ei
∫

d4x ja
μ(x)Aμa (x)ei

∫
d4x(ε̄aca+c̄aεa ). (2)

Our aim is to find a proper approximation in the low-energy
limit. We will perform an expansion in the inverse of the
’t Hooft coupling. In order to manage this functional, it is
essential to find a way to reduce this theory to a simpler one.
We seek set of classical solutions, in the proper infrared limit of
the coupling going to infinity, to start a perturbation series for
a quantum field theory that holds in the same approximation
of strong coupling. A posteriori, we will verify the soundness
of our choice of classical solutions to obtain a quantum field
theory by comparison with numerical solutions on the lattice
and with Dyson-Schwinger equations.

A. Gluon propagator

With this aim in mind, we have recently proved the
following theorem, which holds just for classical solutions
and produces an asymptotic mapping between the scalar field
and the Yang-Mills theory in the limit of the coupling going
to infinity:

Mapping Theorem. An extremum of the action

S =
∫

d4x

(
1

2
(∂φ)2 − λ

4
φ4

)

is also an extremum of the SU(N) Yang-Mills Lagrangian
when one properly chooses Aa

μ with some components being
zero and all others being equal, and when λ = Ng2, where g is
the coupling constant of the Yang-Mills field when only time
dependence is retained. In the most general case the following
mapping holds:

Aa
μ(x) = ηa

μφ(x) + O(1/
√

Ng),

where ηa
μ is a constant that becomes exact for the Lorenz

gauge.
A first proof of this theorem was given in Ref. [18] and,

after a criticism by Terence Tao, a final proof was presented
in Ref. [19], with which Tao agreed [22]. In the following we
give a cursory proof for the sake of completeness, but it should
be kept in mind that here we are still working with classical
solutions. So, let us consider the equation of motion of the
scalar field,

∂2φ + λφ3 = 0. (3)

Now we consider a gradient expansion for this equation in the
following way. Let us rescale the time variable as t → √

λt .
The above equation becomes

∂2
t φ + φ3 = 1

λ
�φ, (4)

and we are in a position to apply perturbation theory to this
equation in the limit λ → ∞, setting φ = ∑∞

n=0 λ−nφn. We
note at this point a peculiarity of perturbation expansions for

nonlinear differential equations. Let us consider the small-
perturbation case and just rescale the field as φ → ξφ, where
ξ a function of the coupling λ. Applying this rescaling to
Eq. (3), we get

∂2φ + λξ 2φ3 = 0. (5)

Now we take λ′ = λξ 2 and our perturbation expansion is now
for λ′. So, our weak perturbation series appears to be arbitrary,
and—because of the time rescaling—this also applies to the
strong perturbation series we are considering. Indeed, our
strong perturbation series is just dual to the weak one and
must share the same properties (see Ref. [23]). What makes
this arbitrariness irrelevant is that the perturbation series must
be mathematically consistent and one must impose λ → 0 for
a weak perturbation and λ → ∞ for the strong one. But these
are formally an infinitesimal quantity and an infinite one, and
multiplying them by a constant is irrelevant: Our expansion
will just get an overall multiplying constant ξ . So, in the
leading-order equation, one has the equation ∂2

t φ0 + φ3
0 = 0,

which yields the solution

φ0 = μ21/4sn

(
1

21/4
μt + θ

)
, (6)

where μ and θ are two integration constants that can be applied
depending on space variables. But if these are taken to be
exactly constant, we have discovered a set of exact solutions
of the equation we started with. Now one can do a Lorentz
boost and transform this into a covariant set of massive exact
solutions [24]. In this case, doing a Lorentz boost yields a
resummation of all the perturbation series in the inverse of λ.

Now let us consider Yang-Mills equations for a generic
SU(N) group and a generic gauge:

∂μ∂μAa
ν −

(
1 − 1

α

)
∂ν

(
∂μAa

μ

) + gf abcAbμ
(
∂μAc

ν − ∂νA
c
μ

)
+ gf abc∂μ

(
Ab

μAc
ν

) + g2f abcf cdeAbμAd
μAe

ν = 0. (7)

As for the scalar field, we implement a strong coupling
expansion with the rescaling t → √

Ngt and impose the
expansion Aa

μ = ∑∞
n=0(

√
Ng)−nAa(n)

μ . At the leading order
of the expansion one gets the equation

∂2
t Aa(0)

ν −
(

1 − 1

α

)
∂2
t A

a(0)
0 δν0 + f abcf cdeAbμ(0)Ad(0)

μ Ae(0)
ν

= 0. (8)

Now we find a set of components of the Yang-Mills field,
chosen to be all equal, that reduces this leading-order equation
to the one of the scalar field ∂2

t φ0 + φ3
0 = 0, provided we do

the identification λ = Ng2. We can write

Aa
μ(t, 0) = ηa

μφ(t, 0) + O

(
1√
Ng

)
. (9)

A Lorentz boost restores covariance and creates η coefficients
depending on momentum. The η coefficients can be fixed
through a gauge choice. For example, in the Landau gauge
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one can have

ηa
μηb

ν = δab

(
ημν − pμpν

p2

)
. (10)

We now share couple of important considerations. First, we
see that gauge invariance is not lost due to the mapping and
that this mapping is an asymptotic one, holding in the limit
of the coupling going to infinity. So, these classical solutions
can be used in the infrared limit of a quantum field theory,
preserving the substantial physical behavior in the ultraviolet
limit of the quantum theories for the scalar and the Yang-Mills
fields (triviality and asymptotic freedom, respectively).

Now let us evaluate the two-point function for the Yang-
Mills field. One gets immediately

Dab
μν(x − y) = 〈

T Aa
μ(x)Ab

ν(y)
〉

= ηa
μηb

ν〈T φ(x)φ(y)〉 + O(1/
√

Ng)

= ηa
μηb

ν�(x − y) + O(1/
√

Ng), (11)

where we have set �(x − y) = 〈T φ(x)φ(y)〉 for the two-point
function of the scalar field. So, we need to identify the two-
point function for the scalar field in the proper limit. Indeed, we
have recently proved [25,26] that in the limit of the coupling
going to infinity, the scalar field reaches a trivial infrared fixed
point, and the two-point function is exactly determined as

�(p) =
∞∑

n=0

Bn

p2 − m2
n + iε

, (12)

where

Bn = (2n + 1)
π2

K2(i)

(−1)n+1e−(n+1/2)π

1 + e−(2n+1)π
, (13)

and K(i) = ∫ π/2
0 dθ/

√
1 + sin2 θ ≈ 1.3111028777. The spec-

trum of the theory, in the strong coupling limit, is given by

mn =
(

n + 1

2

)
π

K(i)

(
Ng2

2

)1/4

�. (14)

From the mass spectrum we can identify a string tension that
will be useful in the following. We set, using the mapping
theorem,

√
σ =

(
Ng2

2

)1/4

� = (2πNαs)
1/4�. (15)

Here � is an arbitrary parameter arising from integration of
the equations of the theory. So, being an integration constant,
it should be obtained from experiment. Finally, we note the
following functional expansion for the generating functional
of the Yang-Mills theory [27,28] that holds in a strong coupling
limit:

Aa
μ = �

∫
d4y Dab

μν(x − y)jbν(y) + O(j 3). (16)

The mapping theorem grants that the propagator in this
equation is the same as that given in Eq. (12) with a proper
choice of the η parameters. The form of the propagator shared
by the two theories in the infrared limit is evidence that both
theories are trivial in the infrared case, provided that a kind
of Källen-Lehman representation with a nonpositive definite

spectral function holds (see, e.g., Ref. [29]). This can also be
seen by the form of the spectrum that has only free quasiparticle
states but no bounded interacting states. This by no means
implies that QCD is trivial; rather this theory is infrared safe
due to the presence of quarks.

B. Consistency of the choice of the classical solutions

So far, we have chosen a set of classical solutions and built
upon them a quantum field theory without any support or proof
of this choice being the right one. Indeed, we have seen that
this construction is self consistent provided that we consider
an increasingly large coupling, but we cannot claim that other
solutions exist that would providing a proper description in
the same limit or that the gauge configurations would grant
an optimal saddle point for the path integral of the theory. So,
the only way we have to be sure that this picture is the proper
one is to compare it with numerical data. On the lattice, very
large volumes were considered for the gluon propagator in
the Landau gauge in Refs. [30–32], while in Refs. [33,34]
a numerical solution for Dyson-Schwinger equations was
provided.

Our aim will be to show how, with increasing volume, the
numerical data and our analytical results tend to coincide.
Numerical Dyson-Schwinger equations represent our infinite-
volume limit and we expect a very near coincidence of results
in this case.

We consider two kind of lattice computations: A set of
volumes up to 804 directly obtained with measurements on
the lattice for SU(3), and measurements at 1284 from Fig. 2
in Ref. [31] for SU(2). We are able to show in this way that,
by increasing the volume, our propagator describes even more
accurately the one measured on the lattice in the deep infrared.
We would like to point out that the mass gap is different for
these two cases as it depends on the value of β that, just for this
section, has nothing to do with temperature but is the coupling
on the lattice. Figures 1–3 depict the situation with volumes
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FIG. 1. (Color online) Gluon propagator in the Landau gauge for
SU(3), 804 with a mass gap of m0 = 321 MeV.
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FIG. 2. (Color online) Gluon propagator in the Landau gauge for
SU(2), 1284 with a mass gap of m0 = 555 MeV.

taken to be increasingly large on the lattice, to match even
better our gluon propagator. Note that we consider a weak
dependence on the gauge group as shown in Ref. [35], which
is fully consistent with our discussion above.

This agreement between lattice computations at increasing
volume and the perfect match for the numerical Dyson-
Schwinger equations with our propagator give strong support
to our picture, and to the view that the our choice of classical
solutions provides a correct starting point for a perturbative
quantum field theory in the infrared limit.

C. QCD in the infrared limit

Now we apply the Landau gauge through Eq. (10) and
change the potential through Eq. (16), obtaining at the leading
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FIG. 3. (Color online) Gluon propagator in the Landau gauge for
SU(3) obtained by numerically solving Dyson-Schwinger equations,
with a mass gap m0 = 399 MeV.

order, after noting that the ghost field decouples at this order,

SQCD = 1

2

∫
d4x d4yjaμ(x)Dab

μν(x − y)jbν(y) +
∫

d4x

×
∑

q

q̄(x)

(
i∂/ − g

λa

2
γ μ�

∫
d4y Dab

μν(x − y)jbν(y)

− g2�
λa

2
γ μ

∫
d4y ′ Dab

μν(x − y ′)

×
∑
q ′

q̄ ′(y ′)
λb

2
γ νq ′(y ′)

)
q(x) + O(1/

√
Ng). (17)

Now we use the propagator (11), obtaining in the end

SQCD = 1

2

∫
d4x d4y jaμ(x)�(x−y)ja

μ(y) +
∫

d4x
∑

q

q̄(x)

×
(

i∂/ − g
λa

2
γ μ�

∫
d4y �(x − y)ja

μ(y)

)
q(x)

− g2�

∫
d4x d4y ′ �(x − y ′)

∑
q

q̄(x)
λa

2
γ μq(x)

×
∑
q ′

q̄ ′(y ′)
λa

2
γμq ′(y ′) + O(1/

√
Ng). (18)

So, we see that the existence of the infrared trivial fixed point
in a pure Yang-Mills theory has the effect of recovering,
directly from QCD, a nonlocal Nambu-Jona-Lasinio model
always reducible to a local one [14,17]. The physics of this
model, both at zero and at finite temperature, has been fully
exploited by Hell, Cristoforetti, Roessner, and Weise [20],
with the substantial difference that they are forced to guess
the form of the form factor (the gluon propagator) using a
model of a liquid of instantons. Here the form factor is directly
obtained from QCD, but we will see below that their guess is
excellent.

III. NONLOCAL NAMBU-JONA-LASINIO MODEL AND
THE GAP EQUATION

In order to completely define the model we must try to better
analyze the propagator. We realize from Eq. (12) that higher
excited states are exponentially damped, and so we can limit
our analysis to a single scalar field interacting with quarks.
So, we approximate the propagator as �(p) ≈ B0/(p2 −
m2

0 + iε), where m0 ≈ 1.19
√

σ and σ = (0.44 GeV)2 is the
string tension, and we neglect the other contributions coming
from higher excited states. This means that the Gaussian
term 1

2

∫
d4x d4y jaμ(x)�(x − y)ja

μ(y) can be rewritten in this
approximation using an arbitrary scalar field σ over which we
integrate as 1

2

∫
d4x[(∂σ )2 − m2

0σ
2], provided we take

σ =
√

3(N2 − 1)/B0�

∫
d4y �(x − y)j (y) (19)
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and use the currents as ja
μ = ηa

μj . So, one finally has

SQCD = 1

2

∫
d4x

(
1

2
(∂σ ) − 1

2
m2

0σ
2

)
+

∫
d4x

∑
q

q̄(x)

×
(

i∂/ − g

√
B0

3(N2 − 1)

λa

2
γ μηa

μσ (x)

)
q(x)

− g2�

∫
d4x d4y ′ �(x − y ′)

∑
q

q̄(x)
λa

2
γ μq(x)

×
∑
q ′

q̄ ′(y ′)
λa

2
γμq ′(y ′) + O(1/

√
Ng). (20)

We get a coupling for the σ field that can be ignored for our
purposes. In order to recover in full the nonlocal model of
Ref. [20], we have to identify the form factor depending on
the gluon propagator. We get immediately

G(p) = −1

2
g2

∞∑
n=0

Bn

p2 − (2n + 1)2[π/2K(i)]2σ + iε

= G

2
C(p), (21)

where G is the Nambu-Jona-Lasinio constant that in
our case is given by G = 2G(0) = (g2/σ )

∑∞
n=0 Bn/(2n +

1)2[π/2K(i)]2 ≈ 0.7854(g2/σ ) so that C(0) = 1, which is
definitely fixed according to QCD. In Ref. [20], a guess was
put forward for C(p) using the model of a liquid of instantons.
In Ref. [21] the form factor for this case takes the form

CI (p) = p2

(
πd2 d

dξ
[I0(ξ )K0(ξ ) − I1(ξ )K1(ξ )]

)2

,

ξ = |p|d
2

, (22)

where In and Kn are Bessel functions. In the following
we normalize this function to be 1 at zero momentum by
dividing it by CI (0). Weise et al. fix the functional form to
C(p) = exp(−p2d2/2) with d−1 ≈ 0.56 GeV in order to avoid
too much computational weight. We compared our C(p) with
that given in Ref. [20], fixing σ = (0.44 GeV)2 for the string
tension and using d−1 ≈ 0.58 GeV, similar to the guess by
Weiss et al. The result is presented in Fig. 4. The agreement
is so strikingly good with the instanton form factor that our
conclusions strongly support a description of the ground state
of QCD as an instanton liquid. This result was already pointed
out in Ref. [28] by comparison with lattice results [36] for the
running coupling in the infrared limit.

With the given expression for the form factor, which
represents one of the most important results given in this paper,
we are able to write the gap equation for massless quarks as
obtained from Ref. [20]:

M(p) = C(p)v (23)

and

v = 4NNf

m2
0 + 1/G

∫
d4p

(2π )4
C(p)

M(p)

p2 + M2(p)
, (24)
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FIG. 4. (Color online) Comparison between our form factor with
that used in Ref. [20] and the instanton liquid in Ref. [21] used as a
model in Ref. [20].

where v is the vacuum expectation value of the σ field, N is
the number of colors, and Nf is the number of flavors. Our
aim is to prove the existence of a phase transition at finite
temperature.

IV. FINITE-TEMPERATURE GAP EQUATION

We can evaluate the above results at finite temperature by
using Matsubara sums. So, finally we can write down the gap
equation as

M(ωk, p) = C(ωk, p)v (25)

and

v = 4NNf

m2
0 + 1/G

β−1
∞∑

k=−∞

∫
d3p

(2π )3
C(ωk, p)

× M(ωk, p)

ω2
k + p2 + M2(ωk, p)

, (26)

where the Matsubara frequencies are ωk = (2n + 1)πT and
n is an integer. The limits we are interested in are those at
small momentum and temperature. The first one is needed for
consistency with the Nambu-Jona-Lasinio model, while the
second is needed to identify the existence of a phase transition.
Now we are in a position to prove the existence of a critical
point for which v = 0 and chiral symmetry is restored. Setting
v = 0 in Eq. (26), we have to solve

4NNf

m2
0 + 1/G

β−1
∞∑

k=−∞

∫
d3p

(2π )3
C2(ωk, p)

1

ω2
k + p2

= 1. (27)

A possible study of this equation is through numerical
techniques. But taking a look at Fig. 4, after a simple numerical
evaluation we note that the form factor is about 0.8 for a
momentum of 260 GeV. Lattice computations such as those
in Refs. [1,3] estimate the critical temperature to be about
170 MeV, well below the limit where the form factor is
approximated by unity. This means that, for our aims, the
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form factor can be reduced to a step function that drops to zero
at about 300 MeV and is unity for lower energies. With this
crude approximation we are able to get an analytic expression
for the critical temperature. Indeed, in this case the integral
can be exactly evaluated and we get

T 2
c ≈ 3

π2

[
�2 − π2

NNf

(
m2

0 + 1

G

)]
, (28)

which proves, starting directly from QCD, that a critical
point indeed exists for which chiral symmetry is broken. This
formula is in close agreement with the one in a recent work by
Scoccola and Gómez Dumm [37]. The main difference is that
we have fixed the proper value of the mass gap m0 due to the
form factor.

Now we can get an estimation of �, a parameter otherwise
fixed by experiment for the Nambu-Jona-Lasinio model, by
fixing Tc = 0.17 GeV as given by lattice computations. Taking
σ = (0.44 GeV)2, g ≈ 3, N = 3, and Nf = 2 we get � =
0.77 GeV, a perfectly reasonable value for the Nambu-Jona-
Lasinio model. This value decreases by increasing the number
of flavors. So, from this computation we can conclude that
both groups in Refs. [3,4] get a perfectly reasonable value for
the crossover temperature, provided that it can be maintained
at zero quark mass and chemical potential.

V. CONCLUSIONS

We have successfully shown how the quantum field theory
of QCD reduces, in the low-energy limit, to a nonlocal

Nambu-Jona-Lasinio model with all parameters properly fixed
to physical values. In addition, the form of the gluon propagator
in such a low-energy limit is exactly known. This implies that,
when the computation is extended to a finite-temperature case,
there exists a phase transition with chemical potential and
quark masses set to zero.

This result should only be considered a starting point for
future analysis. The most important limitation of this work is
that we have not been able yet to accomodate the Polyakov
loop in this approach. Presently, this is an important tool for
understanding the phase diagram of QCD. It will be interesting
to see how the crossover emerges when one assumes a quark
mass different from zero and makes the gap equation more
complex with the introduction of a chemical potential. This is
our working program for the near future.
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