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Baryon kinetic energy loss in the color flux tube model
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One possible scenario of chromofield decay in its initial stage of evolution is Schwinger’s mechanism in
restricted volume. It is assumed that initial chromofield energy can be represented as a collection of color flux
tubes (CFT) stretched between receding nuclei. CFT expands up to some length until its breakup followed
by the production of soft partons. A new formula for initial chromofield energy density is derived from the
MacLerran-Venugopalan model to calculate CFT tension. It considers two possible ansatzes for saturation
momentum. Color charge screening by produced partons is taken into account as well. A new formula for
evolution of produced parton multiplicities based on the Wigner representation of the phase-space density of
probability is also derived.
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I. INTRODUCTION

After collision at ultrarelativistic energies, nuclei can be
thought of as two massive sheets leaving a strong gluon field
in their wake. In this case, leading partons (quarks and gluons)
lose part of their energy due to soft-gluon radiation which
forms a chromoelectromagnetic field [1]. It is convenient to
split the whole dynamical process into three basic stages. In
the first stage immediately after collision the nuclei, because
of multiple soft gluons exchange, acquire a stochastic color
charge. These color charges produce a multitude of color flux
tubes (CFT) occupying space between receding slabs. Shortly
afterwards these CFTs, or chromoelectromagnetic field energy,
is converted into parton pairs. And finally rescatterings in
a dense partonic system drive it quickly to local thermal
equilibrium.

This paper deals with chromoelectromagnetic field decay
with a subsequent parton plasma creation on the initial stage
of the reaction. Parton plasma production is a nonperturbative
mechanism. It can be described as the tunneling across the
energetic gap of width 2m⊥ between the virtual energetic
states inside the Dirac sea and continuum of real states or pro-
duced particles. A semiclassical or Wentzel-Kramers-Brillouin
(WKB) approach due to its simplicity is the most commonly
used method to tackle this problem [2,3]. However particle
creation is, essentially, a quantum relativity effect. Therefore
to study this process rigorously one has to solve the corre-
sponding wave equations: Dirac equation for quark-antiquark
pairs production, and Proca equation for gluon production.
In infinite volume the problem for fermions was solved by
Schwinger [4] by applying a Green’s functions approach.
However finite size effects should not be disregarded. For
instance as pointed out in Ref. [5] they are quite essential to
understanding baryon deceleration. As shown in Ref. [6] these
effects can be studied within a Green’s functions approach.
Expansion of Green’s functions on inverse field volume is
used in this paper to get finite size corrections to Schwinger’s
results.

Finite size effects in a transverse plane are usually taken
into account by applying MIT boundary conditions [7,9] for
a radial wave function. In Refs. [8,9] the influence of finite
CFT volume effects on parton production was investigated

by solving Dirac and Klein-Gordon equations. We modified
their results in order to take into account a CFT profile along
its length corresponding to different choices of saturation
momentum. It is also pointed out that averaging over all
possible CFT volumes is necessary to take into account its
expansion.

We applied results of the MacLerran-Venugopalan (MV)
model [10] to calculate the dispersion of color charges over
a CFT cross section and to calculate CFT tension. We found
the relationship between the probability of CFT decay, baryon
energy loss, and rapidity spectrum of produced partons.

As a further advance one can take our results for parton
distribution functions as initial conditions for the parton
cascade model (PCM) [11,12], or, assuming that immediate
thermalization is justified, these distributions can be used
as initial conditions for the thermal model as formulated in
our previous work [13], where temperature field evolution is
governed by a chromofield decay source term.

II. CFT TENSION AND INITIAL CHROMOFIELD
ENERGY DENSITY

In this section we model the highly nonperturbative
behavior of QCD in a confinement region in terms of CFT
and MV models. Let us start from the QCD Lagrangian and
corresponding field equations:

LQCD(x) = �̄(x)[iγ μDμ − m]�(x) − 1
4Fa

μνF
μν,a

× (sum runs over repeated indices) a = 1 . . . 8,

(1)

[iγ μDμ − m]�(x) = 0; (2)

DμF a
μν = �̄(x)γν

λa

2
�; (3)

Dμ = ∂μ − igs

λa

2
Ga

μ. (4)

It was observed quite long ago that confinement properties
of this field can be modeled by the simple linear potential

gs

λa

2
Ga

μ ⇒ [A0(z), 0]. (5)
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To calculate this potential we have to know the initial
chromofield energy density. It can be derived by following
the MV model and Color Glass Condensate (CGC) ideas
formulated in Refs. [10,16,17]. According to the MV model
random color charges are generated on the nuclear sheets as a
result of the soft-gluon exchange on the nuclei interpenetration
stage. These charges fluctuate from event to event, so that
the mean areal charge vanishes. In each event these charges
fluctuate from point to point in the transverse plane. Color
charge density, ρ(η, x⊥), is introduced as a random variable
which is a function of the coordinate in transverse plane and
pseudorapidity η = ln(x+/x−). This random color charge has
Gaussian distribution,

Wy0 [ρ] ∼ exp

[
− 1

2

∫
d2x⊥

∫ y0

−∞
dη

ρa(η, x⊥)ρa(η, x⊥)

λ(η, x⊥)

]
,

(6)

where y0 is a leading parton rapidity corresponding to some
moderate x0. Following Ref. [17] it is convenient to introduce
a new integrated-over-η random variable

ρ̃y0 (x⊥) =
∫ y0

−∞
dηρ(η, x⊥). (7)

Then the distribution function in terms of a new variable is
given by

P [ρ̃] ∼ exp

(
−1

2

∫
d2x⊥

ρ̃a
y0

(x⊥)ρ̃a
y0

(x⊥)

μy0 (x⊥)

)
,

(8)

μy0 (x⊥) =
∫ y0

−∞
dηλ(η, x⊥).

The value of parameter μ as shown in our previous paper [14]
can be derived from the MV model correlation condition for
color charge density averaged over the CFT cross section

〈ρ̃a(x⊥)ρ̃b(y⊥)〉 = μ(x⊥)

A δabδ(x⊥ − y⊥), (9)

where A is “charged spot”(CFT) cross section. Fluctuations
of color charge are characterized by a certain scale in the
transverse plane “charged spot”, which is related to the
saturation scale

ra ≈ 1

Qs,a

, a = p, t (10)

introduced in high-density QCD [19,20]. In this paper we
consider two variants to introduce saturation momentum. The
first one corresponds, as shown below, to a CFT cross section
which varies along its length between projectile and target
slabs:

Q2
s,a(x, x⊥) = Q2

0Na(x⊥)x−λ, x = p⊥√
s
ey, (11)

where Na(x⊥) is slab a baryon density per unit area, and Q0

is some fitting parameter. The second variant for saturation
momentum choice corresponds to the constant CFT radius
along CFT length

Q2
s,p = Q2

s,t = Q2
s (x, x⊥)

= Q2
0Min{Np(x⊥), Nt (x⊥)}x−λ, x = p⊥√

s
ey. (12)

In this variant, only interactions within a CFT cylinder are
possible. Therefore in the noncentral collision case some
fraction of partons remains intact because these partons do
not have partners to produce strings. We shall consider only
the first variant. Apparently results for the second variant can
be derived trivially from the results for the first.

Since the transverse size of the baryonic slabs is much larger
(∼ σNN , as assumed in previous work [13]), many string-
like configurations (CFT) are stretched between receding
slabs. Each such configuration connects the spots of opposite
charges, Qi , like in the capacitor. Let us consider some CFTs
in this configuration. A cross section Aa = πr2

a corresponding
to an intersection area with a slab surface at some point x⊥
characterized by a radius vector and impact parameter of
collision. Color charges on the spot in the projectile and target
nucleus due to color neutrality of the CFT are of the same
absolute value

Qp = ρpAp = Qt = ρtAt . (13)

This can be also easily understood by assuming that CFT
has a substructure represented as a batch of elementary quark-
antiquark and gluon strings. The density of this strings is noth-
ing else but a sum of distribution functions for valence quarks
and gluons per unit area, and is obviously proportional to
baryon number. However, in noncentral collisions the baryon
number for colliding slabs is different. Therefore the smaller
baryon density on projectile slab surface the larger color flux
cross section is needed to encompass incoming strings from
the target slab side and vice versa. On the other hand, smaller
baryon density per unit area corresponds to smaller saturation
momentum and therefore to a larger CFT cross section as
pointed out in the previous sentence. In particular, for central
collisions Ap = At . In the following discussion we consider
a general case of noncentral collisions, and, to be certain,
we assume that Ap > At . The chromoelectromagnetic field
strength between capacitor plates is

V = Vp + Vt = E + B,

E = Ep + Et , (14)

B = Bp + Bt .

Therefore the chromofield energy density within individual
CFT is

εi = 1
2 (E + B)2. (15)

In the Abelian approximation the chromoelectric field
strength in a flux tube produced by color charges on a nucleus
surface can be obtained by the Gauss theorem [7]:∫

Vad
2s = Qa. (16)

According to a numerical solution of the classical Yang-
Mills equation [1], only the longitudinal chromofield compo-
nent is present initially. Therefore the last equation can be
rewritten as

(
Ei

z + Bi
z

)
p

= Qi
p

Ap

≡ ρi
p. (17)
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By averaging over the ensemble of CFT stretched between
slabs we obtain the mean field energy density

εf (t0)= 1
2

〈
Trρ2

p(x⊥)
〉+ 1

2

〈
Trρ2

t (x⊥)
〉+〈Tr[ρp(x⊥)ρt (x⊥)]〉,

(18)

where Tr is taken over color indices. By using the color
neutrality condition in a flux tube ((13)) the latter expression
can be transformed to

εf (t0) =
〈
Trρ2

p(x⊥)
〉

2

(Ap

At

+ 1

)2

, (19)

where averaging is assumed over the ensemble of CFT
stretched between slabs. Assuming that quark and gluon
charges are not correlated 〈ρqρg〉 = 0, color charge density
squared averaged over a CFT area for a slab in a projectile
nucleus is given by

〈Trρ2(x⊥)〉 = Rp(x⊥)
μq(x⊥) + μg(x⊥)

A ,

μq(x⊥) + μg(x⊥)=g2
s

(
N2

c −1
) (

1

2Nc

Fq(x⊥)+NcFg(x⊥)

)
,

(20)

where Fq(x⊥) and Fg(x⊥) are quark and gluon local densities
of the slab. The projectile slab area fraction occupied by CFT
is denoted by Rp(x⊥). The slab is assumed to be located in
the vicinity of point x⊥ in the transverse plane. This parameter
takes into account a fraction of the slab area occupied by CFT,
and its value depends on the impact parameter and initial beam
energy. This factor is proportional to the fraction of nucleons
in the slab which produce CFT. At higher energies as follows
from Eq. (10) many CFT can be stretched between nucleons
in colliding slabs. Indeed for the saturation momentum value
Qs = 1.2 GeV, as proposed in Ref. [18], the CFT cross section
is A = 0.09 fm2. Then the maximum average number of CFT
which can be produced by each nucleon in the central slab in
a central gold-gold collision is

Ns = σNN

ANB

≈ 5,

where NB = 8.8 is the baryon number for the central slab. We
will call it a nucleon activation degree because the number of
CFT produced by the nucleon corresponds to its “activation
degree”. Since each CFT has all produced CFT intersect only
some fraction of overall slab surface. In our previous work [14]
this fraction was equal to one since the whole slab area was
assumed to be occupied by CFT.

As follows from Eq. (19) the initial chromofield energy
density is given by

εf (t0) = Rp(x⊥)
(
N2

c − 1
) (Ap

At

+ 1

)2
μq(x⊥) + μg(x⊥)

2Ap

,

μq(x⊥) = g2
s

2Nc

∫
d2k⊥

∫
dx

x
xf S

v (x, k2
⊥), (21)

μg(x⊥) = g2
s Nc

∫
d2k⊥

∫
dx

x
xGS(x, k2

⊥),

where xf S
v (x, k⊥) and xGS(x, k⊥) are two-dimensional parton

distribution functions within the slab area for valence quarks

and gluons, respectively. Let us remind the reader that each slab
is characterized by a baryon number per unit area and its area.
In our previous work [14] this area was assumed equal to σNN .
Valence quark distribution can be extracted from experimental
data. The initial gluon distribution can be taken from Ref.
[17]. It was obtained there by the interpolation between the
color glass condensate and Balitskiy-Faddeev-Kuraev-Lipatov
(BFKL) regimes

xGS(x, k⊥) = 1

πγ cᾱs

ln

[
1 +

(
Qs(x)2

k2
⊥

)γ ]
. (22)

Since in the CFT model the energy density is uniform
and time independent, the potential energy in the CFT gets
larger linearly with increase of its length: �E(t) = σz(t).
For the sake of simplicity we assume that the CFT length
increases with time as z(t) = t . However, in our previous
work [14] it was demonstrated that there is a small deviation
of CFT end trajectory from the light cone due to slab
deceleration induced by strong chromofields and plasma back
reactions.

The effect of dynamical color charge screening plays a
crucial role in this problem. We take it into account only in
a very simple way as was done by Matsui and Glendenning
for a quark-antiquark string in their paper [15]. As shown
in this work, the string tension is of only a half of its value
without screening due to the interaction between the quark and
antiquark of the produced pair. This result can be generalized
quite straightforwardly for CFT by taking into account that
the number of quark-antiquark and gluon strings inside CFT
is proportional to the baryon number within a given CFT cross
section. Hence according to Eq. (21) CFT tension is also only
of a half of its unscreened value:

�E = 1
2 ε̃f (t0)V, ε̃f (t0) = εf (t0) + B, (23)

where B is the bag constant. CFT volume V can be thought
of for the axial symmetry case as a frustum because areas of
the CFT intersecting projectile and target slab surface are not
the same Q

p
s �= Qt

s for a noncentral collision. By this way
in the first approximation we can take into account the color
charge screening effect to calculate transmission and reflection
amplitudes for pair production.

CFT tension can be represented as

σ (x⊥, z) = 1
2π℘2(z)ε̃f (t0) for r < ℘(z), (24)

where the CFT profile is given by

℘(z) = rt + rp − rt

L
z. (25)

Since the chromofield outside CFT vanishes, the vector
potential can be represented as varying in three characteristic
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regions:

A0(x⊥, r, z) =

⎧⎪⎨
⎪⎩

0 for z < L, r > ℘(z) (region I)

− ∫ z

0 σ (x⊥, z′)dz′ for 0 � z < L, r � ℘(z) (region II)

− ∫ L

0 σ (x⊥, z)dz for z � L (region III)

. (26)

III. INITIAL PARTON RAPIDITY DISTRIBUTION

According to three possible interactions described byLQCD,
string can decay into quark-antiquark or gluon pairs or into tree
gluons. It is believed that gluon self-interaction corresponding
to the last decay mode is responsible for confinement. We
assume that this mode is taken into account effectively by the
linear CFT potential.

In Refs. [8,9] Shrödinger-like equations with linear po-
tential in longitudinal direction were solved. Transmission
and reflection amplitudes in the longitudinal direction are
represented as combinations of parabolic cylinder functions.
These results can be extended for expanding CFT by applying
dynamic boundary conditions in the longitudinal direction.
Indeed to show this let us consider a sequence of time
instants {0 < t1 < · · · < tn}. At each instant ti CFT may
acquire some length Li = L(ti) (or decay at this length)
so that {0 < L1 < · · · < Ln} with corresponding reflection
amplitude (transmission amplitude) squared. Therefore the
CFT survival probability and CFT decay probability are
given by

pi = |R(p, Li, r)|2 (27)

and

p̄i = |T (p, Li, r)|2 , (28)

respectively. The total density of the probability that the
string will or will not decay over time period t which
corresponds to CFT length L(t) is given by summing up
probabilities corresponding to all intermediate CFT lengths
0 < Li = L(ti) < L:

psurvive =
N∑

i=0

pi , (29)

pdecay =
N∑

i=0

p̄i , (30)

which are reduced to integration over boundary conditions.
Time in this case plays the role of the continuously changing
parameter.

As shown in the previous section, the CFT vector potential
varies in three characteristic zones. In central collisions CFT
has cylindrical shape, and this problem can be solved by
separating the variables. The density of probability for parton
pair production corresponds to values of wave function in
zone III. The wave function in this region is represented

as

�B(F )(p, r, z) = TB(F )(p, L)R(p⊥, r, φ)

× exp(−iERt + ipz,Rz), (31)

where TB(F ) is transmission amplitude in longitudinal direc-
tions, RB(F ) is radial part of wave function, and φ is the
azimuthal angle:

ER = ω(p) + 1
2 ε̃f (t0)Vf ,

pz,R =
√

E2
R − m2

⊥,

where m2
⊥ = p2

⊥ + m2, and Vf is the CFT volume. Depen-
dence on azimuthal angle is introduced as einφ. The radial part
of the wave function in the case of scalar or vector particles
produced is expressed in terms of Bessel functions of n-th
order:

R(p⊥, r, φ) = einφJn(p⊥r). (32)

Applying MIT boundary conditions along CFT surface r =
1

Qs
, where Qs leads to a discretization of transverse momen-

tum.
To obtain the rapidity density of produced particles, as will

be shown later, it is necessary to know the density of probability
in phase space. Due to the uncertainty principle, the wave
function squared due to its locality cannot be used for this
purpose directly. However this problem can be solved by using
Wigner’s function. Wigner’s function for gluons(quarks) is
given by

Wgg(qq̄)(p, r) = νg,q

(2π )3

∫
d3v�

†
B(F )

(
z + vz

2
, r + vr

2
, φ + ϕ

2

)

×�B(F )

(
z − vz

2
, r − vr

2
, φ − ϕ

2

)
eipv,

× νg = N2
c − 1, νq = NcNf . (33)

The wave function �B is a solution of the Proca equation
for vector particles, and �F is a spinor solution of the Dirac
equation. Integration over distance between two points along
longitudinal coordinate leads to

1

2π

∫
dvze

i(pz−pz,R )vz = δ(pz − pz,R) (34)

which expresses a condition of energy conservation:

2ω(p) = −A0. (35)

Thus we get the following expressions for the Wigner’s
function corresponding to gluon (quark-antiquark) pair
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production from the CFT of given length Li :

Wgg(qq̄)(x⊥, p, r, Li)

= û†û
νg(q)

2π

∞∑
n=0

δ(pz − pz,R)|TB(F )(p⊥(n), pz, Li)|2

×
∫

dvrvrJn

[
p⊥(n)

(
r + vr

2

)]
Jn

[
p⊥(n)

(
r − vr

2

)]

×
∫

dϕei(p⊥vr cos(ϕ)−nϕ), (36)

where û is the spinor in the case of fermions. From conserva-
tion of energy it follows that

pz(n) =
√

A2
0

4
− [m⊥(n)]2 (37)

which means that the number of transverse states to be
considered obeys the inequality

m⊥(n) � − 1
2A0. (38)

Therefore an infinite sum over transverse states can be
converted into a finite sum

∞∑
n=0

δ(pz − pz,R) =
n0∑

n=0

δ[pz − pz(n)], (39)

when n0 can be found from m⊥(n0) = − 1
2A0.

According to Eq. (30) the total probability of CFT decay at
time moment t is given by

Pdecay(x⊥, t) = 2π

∫ t

0
dt ′vt (t

′)
∫ ∞

0
rdr

×
∫

d3pWdecay[x⊥, p, r, L(t ′)], (40)

where Wdecay = Wqq̄ + Wgg, and

vt = dL

dt

is CFT caps velocity. The transmission amplitude has to
be changed to a reflection amplitude for Wigner’s function
which corresponds to the event that CFT of length L will
not decay. We will call it the CFT survival Wigner’s function
Wfield(x⊥, p, r, L).

Now we can derive the relationship between energy stored
in the chromofield and initial parton rapidity distribution. In
the initial stage of the reaction all the kinetic energy lost by
baryons after collision is converted into a multitude of CFT.
The number of CFT stretched between slab i in a pairwise
slab-slab collision is

ni = Riσ0

Ai

, (41)

where σ0 is slab cross section, Ri is an average nucleon
activation degree, and Ai is an average CFT cross section
for slab i.

The average chromofield energy produced by N0 pairwise
slab collisions in nuclei overlap region is given by

Ef (b) =
∫ t

0
dt ′L(t ′)vt (t

′)
∫

rdr

∫
d3pσ0

×
N0∑
i=1

GiWfield(xi
⊥, p, r, t ′), Gi = σi

A i
, (42)

where σi is an average tension of the CFT produced by the
nucleon in the slab i, xi

⊥ is slab i coordinate, and b is an
impact parameter. Nucleon activation degree Ri is absorbed
in a CFT cross section. In a continuous limit this formula is
transformed to

Ef (b) =
∫

d2x⊥εf (x⊥, t),

εf (x⊥, t) = 2π

∫ t

0
dt ′L(t ′)vt (t

′)
∫

rdr

×
∫

d3pGWfield(x⊥, p, r, t ′),

G(r, L, x⊥) = σ (rp, L)

Ap(x⊥)
. (43)

Therefore chromofield energy converted into parton plasma
over time period t is given by

εp(x⊥, t) = 2π

∫ t

0
dt ′L(t ′)vt (t

′)

×
∫

rdr

∫
d3pGWdecay(x⊥, p, r, t ′). (44)

From this expression the evolution of spectrum of produced
partons can be readily obtained:

εp(x⊥, t) =
∫

d3p�(p, t) =
∫

d3pω(p)
dN

d3p
, (45)

where � = �qq̄ + �gg . Thus the rapidity distribution of quarks
and gluons generated in the slab-slab collision is calculated by
the formula

dNqq̄(gg)(x⊥, t)

dy
=

∫ ∞

−∞
d2p⊥�qq̄(gg)(p, t). (46)

IV. CONCLUSIONS

In this paper we found new formulas for chromofield energy
density and parton rapidity distribution evolution on the basis
of the CFT model. To calculate a CFT tension, which is
necessary to know in the CFT model, a new formula for initial
chromofield energy density on the basis of the MV model is
derived. The influence of centrality of collisions on parton
multiplicity is also investigated. Obtained results can serve as
a basis for numerical simulations targeted for the study of the
initial stages of reaction. They may help to understand the
relationship between nuclear parton distributions and spectra
of produced particles.
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