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The baryon self-energies are expressed in terms of the QCD condensates of the lowest dimension in symmetric
and asymmetric nuclear matter within the QCD sum-rule approach. The self-energies are shown to satisfy the
Gell-Mann–Okubo relations in the linear SU(3) breaking approximation. The results are in qualitative agreement
with those obtained by the standard nuclear physics methods.
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I. INTRODUCTION

The study of the in-medium interactions of the octet of
baryons is one of the hot topics in nuclear physics. While many
years of theoretical and experimental investigation provided
a very precise phenomenology of nucleon interactions, the
hyperon properties in nuclear matter remain much less known.

The experimental information on the hyperon in-medium
interactions mainly comes from the hypernuclear physics.
In the past years, an impressive experimental data on �

hypernuclei has been accumulated providing a potential depth
U� ≈ −30 MeV at the saturation density ρ0 = 0.17 fm−3 [1].
On the other hand, the unavailing search for � hypernuclear
states [2] and the study of �− atoms [3–5] show strong
evidence for a repulsive nature of the �-hyperon potential in
nuclear matter. The � nuclear interactions seem to be attractive
with the potential U� ≈ −18 MeV [6–8]. Finally, the hyperon-
hyperon interactions were not really measured, there is just a
handful of double � hypernuclear events [9]. Of course, the
hypernuclear data is limited to the isospin-symmetric matter
at the saturation density.

However, the hyperon in-medium potentials are essential
for the determination of the composition of neutron star matter
[10,11]. For example, in the case of an attractive �-hyperon
potential, the �− can appear even before the � hyperon in
dense matter, but if the �-hyperon potential is repulsive then
� hyperons are not populated at all. The hyperon population
largely influences the mass-radius relation and maximum mass
of neutron stars, the cooling of neutron stars, the stability
with regard to the emission of gravitational waves, and the
possible early onset of the QCD phase transition in the neutron
star cores [10]. Finally, the knowledge of hyperon in-medium
properties is required to investigate an exciting possibility of
strange hadronic matter [12] stable against strong-interaction
decays.

There are several theoretical approaches to the problem
of hyperon interactions in nuclear matter. The traditional
method is based on the relativistic mean-field approximation
(RMF) with effective meson-hyperon couplings fixed from
the hypernuclear data and supplemented by the flavor SU(3)
considerations [13,14]. A wide range of predictions was
obtained in this approach, depending on the set of parameters
chosen to describe the avaliable data.

Another commonly used method is based on the Brueckner-
Hartree-Fock (BHF) approximation [15–17] with the soft-
core hyperon-nucleon potentials [18,19] extracted from the

YN -scattering experiments. In general, the BHF approach
successfully reproduces available hypernuclear data; however,
the uncertainties in the scarce hyperon-scattering data lead to
large differences in the resulting YN in-medium potentials.

One more method for the calculation of the � and � mass
shifts is provided by the chiral perturbation theory (ChPT) [20].
However, this approach is limited to low densities up to 0.4ρ0,
and, even in this region, uncertainties are high since one has to
determine 12 low-energy constants from the fits to the scarce
experimental data on the hyperon-nucleon scattering.

Finally, there is a possibility to study the density depen-
dence of the hyperon properties within the QCD sum-rule
approach which is based on the dispersion relations for
the correlation functions of corresponding hadronic currents.
Initially, the QCD sum-rule approach was developed to express
vacuum characteristics of mesons in terms of expectation
values of QCD operators known as “condensates” [21]. The
sum-rule approach was also applied to the calculation of
nucleon properties in vacuum [22,23]. Later, it was suc-
cessfully extended to the studies of nucleon self-energies
in nuclear matter [24–26] as well as to the calculation of
the nucleon-nucleus scattering amplitude [27] and in-medium
modifications of vector-meson properties [28]. An alternative
version of the finite-density QCD sum rules, based on the
Lehmann representation for the Green function, has been
also developed [29] and applied to the calculation of �- and
�-hyperon properties in symmetric nuclear matter [30–33]. In
contrast to other nuclear physics methods, the finite-density
sum-rule approach does not rely on phenomenological baryon
parameters. The baryon in-medium properties are expressed in
terms of the QCD condensates, which can be either calculated
in a model-independent way or related to observables.

In this article, the finite-density QCD sum-rule approach
[26] is extended to the calculation of the baryon octet properties
in nuclear matter. The baryon self-energies are expressed in
terms of the lowest dimension quark and gluon condensates
taken in the gas approximation. It is known that the SU(3)
symmetry breaking in the baryon octet in-medium properties
is caused both by the nonvanishing strange quark mass ms

and the SU(3) asymmetric quark composition of the medium
itself. We will show in this paper that the baryon self-energies
satisfy the Gell-Mann–Okubo relations in the linear SU(3)
breaking approximation. The numerical results are obtained
for the symmetric and asymmetric nuclear matter and studied
as functions of the scalar quark condensate. Compared to
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Refs. [30–33], we concentrate on the effects of the broken
SU(3) symmetry in the baryon octet and extend the hyperon
sum rules to the case of asymmetric nuclear matter providing
a framework for the calculation of the neutron star equation of
state within the QCD sum-rules approach. The properties of the
� hyperon in nuclear matter are considered for the first time.

The structure of the paper is as follows. In Sec. II, the
QCD sum rules for the baryon octet in vacuum are reviewed.
In Sec. III the finite-density QCD sum rules are generalized
to the case of the matter consisting of an arbitrary mixture
of baryons, the approximate solutions are obtained and the
numerical results in the symmetric and asymmetric nuclear
matter are discussed. In Sec. IV, the results are compared
to experimental data and predictions of other approaches. A
summary is provided in Sec. V. Corrections caused by the
nonlocal structure of the condensates are discussed in the
Appendix.

II. BARYON OCTET IN VACUUM

The QCD sum-rule approach in vacuum is based on the
dispersion relation for the correlation function

�B0(q2) = i

∫
d4xeiq·x〈0| T jB(x)j̄B(0) |0〉, (1)

where T denotes the time-ordered product and jB is the local
three-quark current with quantum numbers of the baryon in
interest. The usual choice for the proton current is [22,34]:

jp = εabc

(
uT

a Cγμub

)
γ5γ

μdc , (2)

where a, b, and c are the color indices; T denotes the transpose,
and C is the the charge conjugation matrix. The currents for
other members of the baryon octet may be obtained by the
flavour SU(3) transformation of the proton current [35].

The general idea of the QCD sum rules is to approach the
bound-state problem in QCD from the asymptotic freedom
side. At large negative q2, the correlation function �B0(q2)
is approximated by the power series in q−2 known as the
operator product expansion (OPE) [36]. On the other hand,
the imaginary part of �B0(q2) at q2 > 0 can be described in
terms of the observable hadrons. Two momentum regions are
connected in the dispersion relation for the function �B0(q2):

�B0(q2) = 1

π

∫
Im �B0(k2)

k2 − q2
dk2. (3)

At large negtive q2, the left-hand side of this equation is
approximated by several lowest terms of OPE �B0(q2) ≈
�OPE

B0 (q2) with the coefficients containing the expectation
values of the local quark and gluon field operators.

The phenomenological right-hand side of Eq. (3) is usually
considered in the “pole + continuum” model where the lowest
lying pole in Im �B0(k2), corresponding to the baryon in inter-
est, is separated from the higher k2 singularities approximated
by the continuum [21]:

Im �B0(k2) = λ2
Bδ

(
k2 − m2

B

) + 1

2i
θ
(
k2 − W 2

B

)

�OPE

B0 (k2),

(4)

where λB and mB are the baryon residue and mass while WB

represents the effective continuum threshold value. 
�OPE
B0 (k2)

denotes a discontinuity caused by logarithmic terms of the
perturbative expansion of the correlation function. Thus the
dispersion relation (3) takes the form:

�OPE
B0 (q2) = λ2

B

m2
B − q2

+ 1

2πi

∫ ∞

W 2
B


�OPE
B0 (k2)

k2 − q2
dk2. (5)

The perturbative expansion at the left-hand side be-
comes increasingly valid for large |q2| = Q2, while the
“pole + continuum” assumption becomes more accurate when
|q2| decreases. Usually, a certain intermediate region of q2

values is considered where approximations on both sides of
Eq. (3) are believed to be valid. To improve the overlap of two
approximations, the Borel transform is usually applied to both
sides of Eq. (5) converting a function of Q2 into the function
of the Borel mass M2 [21].

The correlation function �B0(q2) can be decomposed into
two structures:

�B0(q2) = q̂�
q

B0(q2) + I�I
B0(q2) , (6)

where I represents the identity matrix and q̂ = qμγ μ. The
Borel transformed dispersion relations for the structures
�

q

B0(q2) and �I
B0(q2) are known as QCD sum rules in vacuum

[22]:

�
q

B0(M2) −
∫ ∞

W 2
B


�
q

B0(k2)

2πi
e−k2/M2

dk2 = λ2
Be−m2

B/M2
, (7)

�I
B0(M2) −

∫ ∞

W 2
B


�I
B0(k2)

2πi
e−k2/M2

dk2 = mBλ2
Be−m2

B/M2
,

(8)

It is convenient to write these equations in a compact form as
follows:

Ll
B0

(
M2,W 2

B

) = Rl
B0

(
M2,mB, λ̃2

B

)
, l = q, I, (9)

where Ll
B0(M2,W 2

B) represent the left-hand sides of the sum-
rule equations [Eqs. (7)–(8)] multiplied by the factor 32π4

while the right-hand sides are expressed as

Rq

B0

(
M2,mB, λ̃2

B

) = λ̃2
Be−m2

B/M2
, (10)

RI
B0

(
M2,mB, λ̃2

B

) = mBλ̃2
Be−m2

B/M2
, (11)

with λ̃2
B = 32π4λ2

B .
The sum rules for baryons are usually considered in a

certain interval of the Borel mass M2, where the contribution
of the continuum and higher OPE corrections are found to be
relatively small [37]:

0.8 GeV2 < M2 < 1.4 GeV2. (12)

The unknown values mB , λB , and W 2
B are obtained by

minimization of the function

χ2
(
mB, λ̃2

B,W 2
B

) =
∑

j

∑
l=q,I

[Ll
B0(Mj ) − Rl

B0(Mj )

Ll
B0(Mj )

]2

, (13)

which insures the most accurate approximation of
Ll

B0(M2,W 2
B) by Rl

B0(M2,mB, λ̃2
B) with Mj being a set of

points evenly spaced within the fiducial interval (12). There is
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also an alternative approach based on the logarithmic measure
[37,38].

Initially, the QCD sum-rule approach was applied to the cal-
culation of the baryon masses in Refs. [22,23,37,39]. In the
nucleon case, the following expressions were obtained for the
left-hand sides:

Lq

N0

(
M2,W 2

N

) = A0 + A4b + A6a
2 + A8μ

2
0a

2, (14)

LI
N0

(
M2,W 2

N

) = B3a + B7ab + B9a
3, (15)

where μ2
0 = 0.8 GeV2, while for quark and gluon condensates

the following traditional notations are used:

a = −(2π )2〈0|q̄q|0〉, b = (2π )2〈0|αs

π
G2|0〉. (16)

The numerical value for the quark condensate 〈0|q̄q|0〉 =
−(0.24 GeV)3 was obtained from the well-known Gell-Mann–
Oakes–Renner relation [40] while the value of the gluon
condensate 〈0| αs

π
G2|0〉 = (0.33 GeV)4 was extracted from the

analysis of leptonic decays of ρ and φ mesons and supported
by the QCD sum-rule analysis of the charmonium spectrum
[41]. Note that isotopic invariance is assumed for the light
quark condensates with q denoting the light quark field, while
higher-dimensional quark condensates are considered in the
factorization approximation: 〈0|q̄qq̄q|0〉 = (〈0|q̄q|0〉)2 [21].

The coefficients An and Bn are functions of M2 and W 2
N

with the subscript denoting the dimension of the corresponding
condensate:

A0 = M6E2

L4/9
, A4 = M2E0

4L4/9
, A6 = 4

3
L4/9,

A8 = − 1

3M2L2/27
, B3 = 2M4E1,

B7 = −1

9
, B9 = 272αs

81πM2L1/9
,

These expressions depend on the continuum threshold via the
functions En defined as:

En = 1 − e−x

n∑
k=0

xk

k!
, x = W 2

B

M2
. (17)

Finally, the function L = L(M2) accounts for the leading
logarithmic corrections [21]:

L(M2) = ln M2/�2

ln ν2/�2
. (18)

Here � = �QCD = 0.15 GeV, while ν = 0.5 GeV is the OPE
normalization point.

The expression for the nucleon mass as function of Borel
mass M and continuum threshold WN directly follows from
Eqs. (9), (14), and (15):

mN

(
M2,W 2

N

) = B3a + B7ab + B9a
3

A0 + A4b + A6a2 + A8μ
2
0a

2
. (19)

Note, that this expression was obtained in the chiral SU(2)
limit (mu = md = 0 and 〈0|ūu|0〉 = 〈0|d̄d|0〉). In the case of
hyperons, the strange quark mass ms and the difference in
values of strange an light quark condensates become important.
The value of the strange quark mass ms is about 150 MeV
with the uncertainty of 20% [42]. The deviation of the strange
quark condensate from the light quark condensate is usually
described by the parameter γ :

γ = 〈0|s̄s|0〉
〈0|ūu|0〉 − 1. (20)

The value γ = −0.2 is usually accepted [35,38,39]. Following
general QCD sum-rule technics, one may obtain the mass
formulas for hyperons with the condensates accounted up to
dimension 9 [39,43,44]:

m� = (B3 + B7b)
(
1 − γ

3

)
a + B9(1 + γ )a3 − 1

3

[
S0 − S4b − 4S6

(
1 − γ

2

)
a2

]
ms

A0 + A4b + (
A6 + A8μ

2
0

)(
1 + 4γ

3

)
a2 + [

1
3S3(1 − 3γ ) − S5(1 − γ )μ2

0

]
ams

, (21)

m� = (B3 + B7b)(1 + γ )a + B9(1 + γ )a3 + (S0 − S4b + 2S6a
2)ms

A0 + A4b + (
A6 + A8μ

2
0

)
a2 − (

S3 + S5μ
2
0

)
(1 + γ )ams

, (22)

m� = (B3 + B7b)a + B9(1 + γ )2a3 + 3S6(1 + γ )a2ms

A0 + A4b + (
A6 + A8μ

2
0

)
(1 + γ )2a2 − 2S5(1 + γ )μ2

0ams

, (23)

where Si are coefficients in the additional terms linear in ms :

S0 = 2M6E2

L8/9
, S4 = M2E0

4L8/9
, S6 = 4

3
,

(24)

S3 = 2M2E0

L4/9
, S5 = 1

3L26/27
.

Considering the chiral SU(3) limit (γ,ms → 0), one can check
that the expressions for hyperon masses [Eqs. (21)–(23)]
reduce to the the nucleon mass formula (19). Moreover,

Gell-Mann–Okubo mass relation

2(mN + m�) = m� + 3m�, (25)

which is a direct consequence of the symmetry breaking in
the (3̄, 3) term of the SU(3) Hamiltonian, is automatically
satisfied up to the terms linear in ms and γ [39]. However,
one has to keep in mind that this property is valid only in
the limit of equal continuum threshold values W 2

N = W 2
� =

W 2
� = W 2

�.
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TABLE I. Values of mB , λ̃2
B , and W 2

B from the minimization
procedure.

B m
exp
B (GeV) mB (GeV) λ̃2

B (GeV6) W 2
B (GeV2)

N 0.940 0.934 1.897 2.119
� 1.116 1.103 3.189 3.069
� 1.193 1.104 3.066 3.157
� 1.314 1.207 4.069 3.729

The parameters mB , λ̃2
B , and W 2

B , which minimize the func-
tion (13), are shown in Table I. The obtained baryon masses
agree with the experimental values within 10% accuracy. The
systematic underestimates can be attributed to the fact that
radiative corrections [45] or nonperturbative effects due to
instantons [46,47] may be important.

Variation of the strange quark mass and the parameter
γ results in significant changes of the hyperon masses and
their relative order. Therefore, it is instructive to consider
approximate expressions for the hyperon masses as functions
of the involved parameters. Multiplying both sides of the QCD
sum rules by exp(m2

B/M2), one may notice that the functions

Ll
B0(M2,W 2

B)em2
B/M2

should not depend on the Borel mass.
A simple check ensures that the leading OPE terms, multi-
plied by the factor exp(m2

B/M2), can also be approximated
by the constants in the range (12) within 10% accuracy.
Referring to this observation, let us introduce the following
notation:

X̄n

(
mB,W 2

B, λ̃2
B

) = Xn

(
M2,W 2

B

)
exp

(
m2

B/M2
)

λ̃2
B

, (26)

where Xn stands for the functions An, Bn, or Sn, while the
overline denotes averaging over the Borel mass range (12).
The numerical values for Ān, B̄n, and S̄n were calculated at
values of mB , W 2

B , and λ̃2
B from the minimization procedure

and provided in Table II. The mass formulas (19) and (21)–
(23) then can be expressed in terms of the averaged values
Ān, B̄n, and S̄n instead of M2-dependent functions. Such
expressions reproduce the values of the baryon masses, fitted
via χ2 (13), with an accuracy of the order of 0.5%. For
example, in the case of nucleon and � hyperon, one can
write

m̄N = 1.61a − 0.10ab + 0.43a3

0.38 + 0.22b + 1.97a2 − 0.37μ2
0a

2
, (27)

m̄� = 1.91a − 0.08ab + 0.36(1 + γ )2a3 + 3.93(1 + γ )a2ms

0.65 + 0.20b + (
1.61 − 0.31μ2

0

)
(1 + γ )2a2 − 0.42(1 + γ )μ2

0ams

, (28)

where all values are expressed in powers of GeV. These expres-
sions for the baryon masses reveal the relative contributions
of different OPE terms providing a convenient way to study
the dependence on the condensate values. Similarly, using the
expressions for the hyperon masses, it is easy to show that
reasonable variations of ms and γ values do not allow tuning
all hyperon masses to their experimental values. Therefore,
we will apply conventional values of ms = 150 MeV and
γ = −0.2 in the finite-density QCD sum-rule analysis.

III. BARYON OCTET IN NUCLEAR MATTER

In this section, we will develop the framework for the
calculation of the baryon octet parameters in nuclear matter
following the finite-density sum-rule approach reviewed in
Ref. [26].

A. QCD sum rules in nuclear matter

The propagation of a system with four-momentum q in
nuclear matter is described by the correlation function as
follows:

�Bm(q2) = i

∫
d4xeiq·x〈M| T jB(x)j̄B(0) |M〉, (29)

where |M〉 is the ground state of nuclear matter. Considering
the nuclear matter as a system of A nucleons with momenta

pi , one may introduce the vector

p =
∑

pi

A
, (30)

which turns to p ≈ (m, 0) in the rest frame of the matter,
where m is the nucleon mass. The spectrum of the function
�Bm(q2) appears to be much more complicated than that of
�B0(q2); however, by fixing the value of s = (p + q)2, one
may separate the singularities connected with the matter itself
from those connected with the baryon in the matter [25–27].
In this article, the effects of the nucleon Fermi motion on the
baryon properties will be neglected; therefore, the threshold
value of s = (m + mB)2 will be used in the calculations

The general form of the polarization function in the nuclear
matter can be presented as:

�Bm(q) = q̂�
q

Bm(q2, s) + I�I
Bm(q2, s) + p̂

m
�

p

Bm(q2, s).

(31)

The in-medium QCD sum rules are then derived as the
Borel-transformed dispersion relations for the components
�i

Bm(q2, s):

�i
Bm(q2, s) = 1

π

∫
Im �i

Bm(k2, s)

k2 − q2
dk2, i = q, I, p.

(32)
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TABLE II. Values Ān, B̄n, and S̄n averaged over the Borel mass range according to Eq. (26) in powers of GeV.

B Ā0 Ā4 Ā6 Ā8 B̄3 B̄7 B̄9 S̄0 S̄3 S̄4 S̄5 S̄6

N 0.38 0.22 1.97 −0.37 1.61 −0.10 0.43 – – – – –
� 0.54 0.20 1.63 −0.31 1.76 −0.08 0.36 0.87 1.61 0.16 0.21 1.32
� 0.58 0.21 1.70 −0.32 1.87 −0.09 0.37 0.94 1.69 0.17 0.22 1.38
� 0.65 0.20 1.61 −0.31 1.91 −0.08 0.36 – – – 0.21 1.31

It was shown that the spectrum of the function �Bm(q2, s)
can be described by the “pole + continuum” model similarly
to the vacuum case, at least until the terms of the order ρ2

are included in the OPE [26]. One may consider a general
expression for the propagator of the baryon B in nuclear
matter:

G−1
B = (

G0
B

)−1 − �B, (33)

where G0
B = (q̂ − mB)−1 is the free baryon propagator and �B

is a general expression for the baryon self-energy in nuclear
matter:

�B = q̂�
q

B + p̂

m
�

p

B + I�I
B. (34)

Inverting G−1
B , we find for the in-medium baryon propagator:

GB = ZB

q̂ − p̂�V
B /m + m∗

B

q2 − m2
Bm

, (35)

where ZB = [(1 − �q)(1 + �V
B /m)]−1, while �V

B and m∗
B

correspond to the vector self-energy and the effective mass
in nuclear physics:

�V
B = �P

B

1 − �
q

B

, m∗
B = mB + �I

B

1 − �
q

B

. (36)

For the new position of the baryon pole mBm we find:

m2
Bm = (s − m2)�V

B /m − (
�V

B

)2 + m∗2
B

1 + �V
B /m

. (37)

Following definitions, accepted in nuclear physics, it
is also convenient to introduce the scalar self-energy
�S

B = m∗
B − mB and the nonrelativistic baryon potential

UB = �V
B + �S

B .
The Borel transformed sum-rule equations take the form

(l = q, I, p):

Ll
Bm

(
M2,W 2

Bm

) = Rl
Bm(M2) (38)

with the phenomenological right-hand side:

Rl
Bm(M2) = ξ lλ̃2

Bme−m2
Bm/M2

, (39)

where λ̃2
Bm = 32π4ZBλ2

Bm is the effective value of the residue
for the baryon B in nuclear matter. The values of ξ l are
determined from Eq. (35):

ξq = 1, ξp = −�V
B , ξ I = m∗

B. (40)

The left-hand sides of the sum-rule equations [Eq. (38)] are
calculated by use of the OPE approach:

Ll
Bm

(
M2,W 2

Bm

)
= 32π4

[
�l

Bm(M2, s) −
∫ ∞

W 2
Bm


k2�l
Bm(k2, s)

2πi
e−k2/M2

dk2

]
.

(41)

Similarly to the vacuum case, we can express baryon effective
masses and vector self-energies via the left-hand sides of the
sum-rule equations as follows:

m∗
B

(
M2,W 2

Bm

) = LI
Bm

(
M2,W 2

Bm

)
Lq

Bm

(
M2,W 2

Bm

) , (42)

�V
B

(
M2,W 2

Bm

) = −Lp

Bm

(
M2,W 2

Bm

)
Lq

Bm

(
M2,W 2

Bm

) . (43)

For the calculation of baryon in-medium properties, we will
consider only leading OPE terms which density dependence
is briefly reviewed in the next subsection.

B. Condensates in nuclear matter

In this subsection, we consider the condensates in the
nuclear matter of density ρ consisting of an arbitrary mixture of
the baryon octet members B = p, n,�,�+, �0, �−, �0, �−
with concentrations cB .

The lowest order of OPE in a medium can be presented
in terms of the vector and scalar quark condensates. We
will consider only leading local condensates and omit the
contribution of the nonlocal parts which are suppressed
compared to the leading one (see Appendix A). The vector
quark condensate is defined as

vi
μ(ρ) ≡ 〈M|q̄iγμqi |M〉, (44)

where qi denotes u, d, or s quarks. In the rest frame of nuclear
matter, the vector condensates take the form vi

μ(ρ) = vi
0(ρ)δμ0,

where the functions vi
0(ρ) are linear in the nuclear matter

density ρ:

vi
0(ρ) = viρ, vi =

∑
B

ni
BcB, (45)

with ni
B = 〈B|q̄iγ0qi |B〉 denoting the number of valence

quarks of flavor i in baryon B. For the ordinary nuclear matter
consisting of protons and neutrons only, it is convenient to
define isospin symmetric and asymmetric combinations [48]:

v = vu + vd = 〈p|ūγ0u + d̄γ0d|p〉 = 3, (46)

v− = vu − vd = 〈p|ūγ0u − d̄γ0d|p〉 = 1. (47)
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While due to the vector current conservation the vector
condensates are exactly linear in ρ, the scalar quark conden-
sates κi

m(ρ) ≡ 〈M|q̄iqi |M〉 are more complicated functions of
density. However, in the gas approximation, they can also be
expressed by the linear functions of ρ:

κi
m(ρ) ≈ κi

0 + κiρ, κi =
∑
B

κi
BcB, (48)

where κi
0 = 〈0|q̄iqi |0〉 while κi

B denote baryon matrix
elements,

κi
B = 〈B|q̄iqi |B〉. (49)

Following Ref. [48], we introduce isospin symmetric and
asymmetric combinations of the light quark expectation
values:

κ = κu
p + κd

p = 〈p|ūu + d̄d|p〉, (50)

ζ = κu
p − κd

p = 〈p|ūu − d̄d|p〉. (51)

The expectation value κ is directly related to the pion-
nucleon σ term σπN [49]:

κ = 2σπN

mu + md

(52)

with mu ≈ 4 MeV and md ≈ 7 MeV denoting the current
masses of the light quarks. The σ term can be extracted in
several ways, i.e., from the subthreshold extrapolation of the
πN scattering amplitude; however, there is a large discrepancy
between the results (see Ref. [26] for references). Assuming
the conventional value of σ ≈ 45 MeV [50], one would obtain
κ ≈ 8, while with the latest results of σ ≈ 60 MeV, the value
of κ ≈ 11 is preferred [26].

In contrast, the expectation value of ζ is not restricted by
experimental data; therefore, some model assumptions on the
quark structure of the nucleon are required. If the nucleon is
treated as a system of valence quarks and isospin-symmetric
sea of quark-antiquark pairs, the expectation value ζ is
determined by the contribution of the valence quarks. We will
use the value of ζ = 0.54, obtained in the perturbative chiral
quark model (PCQM) [51] which was used in Ref. [52], for
the calculation of in-medium four-quark condensates.

The strange quark expectation value κs
p = 〈p|s̄s|p〉 is

usually parameterized in terms of the strange quark content
y as follows:

y = 2〈p|s̄s|p〉
〈p|ūu + d̄d|p〉 = 2κs

p

κ
. (53)

The parameter y is strongly correlated with the value of the
σ term. The value σ ≈ 60 MeV corresponds to the large
y ≈ 0.35, while the conventional value of σ ≈ 45 MeV is
consistent with the smaller strange quark content y ≈ 0.2. In
the PCQM approach [53], one gets y = 0.08 in support of
the smaller strange quark content. We will use y = 0.08 as a
default value in this article since the values y = 0.2 or 0.35
would correspond to too many strange quarks in the nucleon,
in contradiction with the naive nonrelativistic quark model.
We will also study the sensitivity of the baryon self-energies
with respect to the strange quark content parameter.

The scalar quark condensate was also considered beyond
the gas approximation in the framework of the meson-
exchange model of nucleon-nucleon interactions [24,25]. It
was shown that the nonlinear contribution to the scalar
condensate may be responsible for the saturation mechanism.
However, the nonlinear terms appear to be small compared to
the linear term up to the saturation density; therefore, they will
be ignored in the framework of this article.

The gluon condensate in nuclear matter can be also
considered in the gas approximation:

gm ≡ 〈M|αs

π
G2|M〉 ≈ g0 + gρ, (54)

where g0 = 〈
0
∣∣ αs

π
G2

∣∣ 0
〉
is the vacuum expectation value while

g is the nucleon matrix element,

g = 〈N |αs

π
G2|N〉. (55)

The value of g was calculated in Ref. [54] by averaging the
trace of the QCD energy-momentum tensor. In the chiral SU(3)
limit, one gets g = − 8

9m, which is sufficient for our analysis
referring to the small contribution of the gluon condensate [26].

As for the scalar quark expectation values 〈H |q̄iqi |H 〉 in
hyperons H = �,�,�, they cannot be directly related to
observables and some model assumptions are necessary. One
option is to apply the Hellmann-Feynman theorem to the QCD
Hamiltonian density and relate the scalar quark expectation
value to the derivative dmH /dmqi

[55] as follows:

mqi
〈H |q̂q|H 〉 = mqi

dmH

dmqi

. (56)

The functions mH (mqi
) and corresponding derivatives can be

deduced from ChPT [32] or vacuum QCD sum rules. Note,
however, that numerical results of this article will be limited to
the case of the nonstrange nuclear matter consisting of protons
and neutrons only; thus, we will not need the values 〈H |q̂q|H 〉
in the present calculations. Nevertheless, our approach can be
easily extended to the case of an arbitrary mixture of baryons.

C. Sum rules in the gas approximation

Following Ref. [26], we can express the left-hand sides (41)
as a sum of vacuum expressions and terms linear in density ρ:

Ll
Bm

(
M2,W 2

Bm

) = Ll
B0

(
M2,W 2

Bm

) + Xl
B

(
M2,W 2

Bm

)
ρ,

(57)

where l denotes the structures q, I , and p. Note that
Lp

B0(M2,W 2
Bm) ≡ 0 while the vacuum expressions Lq,I

B0 are
calculated at density-dependent continuum thresholds WBm.
The functions Xl

B can be expressed in terms of quark and gluon
expectation values vi , κi , and g, considered in the previous
subsection:

X
q

B = A
g

Bg + Av
B

∑
i

ai
vBvi + msA

κ
B

∑
i

ai
κBκi, (58)

XI
B = Bκ

B

∑
i

bi
κBκi + msB

v
B

∑
i

bi
vBvi, (59)

X
p

B = P v
B

∑
i

pi
vBvi, (60)

055205-6



QCD SUM RULES FOR THE BARYON OCTET IN NUCLEAR . . . PHYSICAL REVIEW C 84, 055205 (2011)

where the Borel transformed OPE coefficients A
g

B , Aκ
B , Av

B ,
Bκ

B , Bv
B , and P v

B read as follows:

A
g

B = π2M2E0

L4/9
, Av

B = −8π2

3

(s − m2)M2E0 − M4E1

mL4/9
,

(61)

Aκ
B = 4π2M2E0, Bv

B = 4π2 (s − m2)M2E0 − M4E1

mL8/9
,

(62)

Bκ
B = −4π2M4E1, P v

B = −32π2

3

M4E1

L4/9
. (63)

These expressions depend on the Borel mass M2 and on W 2
Bm

via the functions E0(W 2
Bm/M2) and E1(W 2

Bm/M2) which are
taken at density-dependent continuum threshold values. Note
that the coefficients [Eqs. (61)–(63)] also depend on s which
was fixed in the dispersion relation for the correlation function.
Analogous expressions were obtained in the finite-density
sum-rule approach based on the Lehmann representation for
the Green function [30,31] where the dispersion relation was
written in the q0 complex plane at fixed three-momentum
q. In the latter case, the Borel transformed OPE coefficients
[Eqs. (61)–(63)] appear to depend on the momentum q instead
of the s invariant.

The coefficients ai
vB , ai

κB , bi
vB , bi

κB , and pi
vB are shown

in Table III. They depend on the baryon isospin projection
I3B responsible for the splitting of baryon self-energies in the
(n, p) and (�−, �0) isospin doublets and the (�−, �0, �+)
triplet. However, in the isospin symmetric nuclear matter,
the terms, proportional to I3B , cancel out, and the isospin
symmetry for the baryon self-energies is restored.

Let us study the symmetry properties of the obtained
expressions. It is easy to check that, in the chiral SU(3)
limit (ms → 0), the SU(3) symmetry remains broken due
to different coefficients ai

vB , bi
κB , and pi

vB accompanying

TABLE III. The coefficients ai
vB , ai

κB , bi
vB , bi

κB , and pi
vB in

Eqs. (58)–(60).

B N � � �

au
vB 1 5

6
1
2 (1 + I3�) 1

2 (1 + 2I3�)

ad
vB 1 5

6
1
2 (1 − I3�) 1

2 (1 − 2I3�)

as
vB 0 2

6 1 1
au

κB 0 − 4
3 0 0

ad
κB 0 − 4

3 0 0

as
κB 0 2 1 0

bu
vB 0 1

3 −1 − I3� 0

bd
vB 0 1

3 −1 + I3� 0

bs
vB 0 − 2

3 2 0

bu
κB 1 − 2I3N

4
3 0 1 + 2I3�

bd
κB 1 + 2I3N

4
3 0 1 − 2I3�

bs
κB 0 − 2

3 2 0

pu
vB 1 + 3

2 I3N
11
24

7
8 (1 + I3�) 1

8 (1 + 2I3�)

pd
vB 1 − 3

2 I3N
11
24

7
8 (1 − I3�) 1

8 (1 − 2I3�)

ps
vB 0 26

24
2
8

14
8

light and strange quark condensates for different baryon
species. However, the SU(3) symmetry is restored in the
SU(3) symmetric matter with equal scalar and vector quark
compositions (vu = vd = vs and κu = κd = κs), providing
degenerate functions Xl

B and, hence, equal effective masses
(42) and vector self-energies (43) for the baryon octet.
Moreover, in the isospin symmetric matter, the functions
Xl

B satisfy relations similar to the Gell-Mann–Okubo mass
formula,

2
(
Xl

N + Xl
�

) = Xl
� + 3Xl

�, (64)

which are valid in the limit of equal effective continuum
thresholds for the terms, proportional to the gluon and light
quark condensates, and for the terms linear in ms , κs , or vs .
Under this approximation, the same relations also hold for the
effective baryon masses and vector self-energies:

2(m∗
N + m∗

�) = m∗
� + 3m∗

�, (65)

2
(
�V

N + �V
�

) = �V
� + 3�V

�. (66)

Of course, these relations should be valid for any model based
on the SU(3) symmetry-breaking hypothesis.

Exact solutions for the baryon effective masses and vector
self-energies, as well as in-medium effective thresholds W 2

Bm

and residues λ2
Bm, could be found by minimization of the

function similar to Eq. (13). Note, however, that exact solutions
of the nucleon sum rules, accounting for four-quark conden-
sates and nonlocalities of the lowest dimension condensates,
resulted only in slight changes of the continuum threshold
W 2

Nm up to the saturation density [52]. Therefore, we can
safely consider approximate solutions described in the next
subsection.

D. Approximate solution

In this subsection, we consider an approximate solution for
the sum-rule Eqs. (42) and (43) by replacing the in-medium
continuum threshold W 2

Bm by its vacuum value W 2
B [26].

m∗
B

(
M2,W 2

B

) = LI
B0

(
M2,W 2

B

) + XI
B

(
M2,W 2

B

)
ρ

Lq

B0

(
M2,W 2

B

) + X
q

B

(
M2,W 2

B

)
ρ

, (67)

�V
B

(
M2,W 2

B

) = −X
p

B

(
M2,W 2

B

)
ρ

Lq

B0

(
M2,W 2

B

) + X
q

B

(
M2,W 2

B

)
ρ

. (68)

We can divide both numerators and denominators by
Lq

B0(M2,W 2
B ) and express m∗

B and �V
B in the form which

is generally accepted in nuclear physics as follows:

m∗
B

(
M2,W 2

B

) = mB

(
M2,W 2

B

) + F I
B

(
M2,W 2

B

)
1 + Fq

B

(
M2,W 2

B

) , (69)

�V
B

(
M2,W 2

B

) = − Fp

B

(
M2,W 2

B

)
1 + Fq

B

(
M2,W 2

B

) , (70)

where

F l
B

(
M2,W 2

B

) = Xl
B

(
M2,W 2

B

)
Lq

B0

(
M2,W 2

B

)ρ. (71)
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TABLE IV. The values Āg , Āv , Āκ , B̄v , B̄κ , P̄v , averaged at
vacuum continuum thresholds (in powers of GeV). The numbers
are round off to integer values.

B N � � �

Ā
g

B 9 8 8 8

Āv
B −48 −55 −65 −74

Āκ
B 44 39 41 40

B̄κ
B −32 −35 −37 −38

B̄v
B 58 68 80 90

P̄ v
B −69 −75 −80 −82

Applying the vacuum sum rule, one gets:

F l
B

(
M2,W 2

B, λ̃2
B

) = Xl
B

(
M2,W 2

B

)
exp

(
m2

B/M2
)

λ̃2
B

ρ. (72)

Similar to the vacuum case, one can average the functions
F l

B over the Borel mass range at the vacuum continuum
threshold and express them in terms of the average values
for the functions Āg , Āv , Āκ , B̄v , B̄κ , P̄v:

F̄q

B =
(

Ā
g

Bg + Āv
B

∑
i

ai
vBvi + msĀ

κ
B

∑
i

ai
κBκi

)
ρ, (73)

F̄ I
B =

(
B̄κ

B

∑
i

bi
κBκi + msB̄

v
B

∑
i

bi
vBvi

)
ρ, (74)

F̄p

B =
(

P̄ v
B

∑
i

pi
vBvi

)
ρ, (75)

where the meaning of the overline was defined in Eq. (26). The
values Āg , Āv , Āκ , B̄v , B̄κ , P̄v , averaged at vacuum continuum
thresholds for N , �, �, and � baryons, are shown in Table IV.
Then the effective baryon masses and the vector self-energies
[Eqs. (69) and (70)] can be expressed in terms of average
values F̄ l

B and m̄B :

m̄∗
B = m̄B + F̄ I

B

1 + F̄q

B

, �̄V = − F̄p

B

1 + F̄q

B

. (76)

In the next subsection, we will study these approximate
solutions in the case of nonstrange nuclear matter.

E. Symmetric nuclear matter

Let us consider the nuclear matter, composed of protons and
neutrons with baryonic concentrations cp and cn, respectively.
We can also define the isospin asymmetry parameter β = cn −
cp, which is equal to 1 in the pure neutron matter. Then the
functions Xl

B can be expressed in terms of the nucleon matrix
elements v, v−, κ , ζ , and the strange quark content y:

X
q

B = A
g

Bg + Av
B(a+

vBv + a−
vBv−I3Bβ)

+msA
κ
B

(
a+

κBκ + a
y

κBκy
)
, (77)

XI
B = Bκ

B(b+
κBκ + b−

κBζ I3Bβ + b
y

κBκy)

+msB
v
B(b+

vBv + b−
vBv−I3Bβ), (78)

X
p

B = P v
B(p+

vBv + p−
vBv−I3Bβ), (79)

TABLE V. Coefficients a±
vB , b±

vB , a+
κB , b±

κB , a
y

κB , b
y

κB , and p±
vB .

B N � � �

a+
vB 1 5

6
1
2

1
2

a−
vB 0 0 − 1

2 −1
a+

κB 0 − 4
3 0 0

a
y

κB 0 2 1 0
b+

vB 0 1
3 −1 0

b−
vB 0 0 1 0

b+
κB 1 4

3 0 1
b−

κB 2 0 0 −2
b

y

κB 0 − 2
3 2 0

p+
vB 1 11

24
7
8

1
8

p−
vB − 3

2 0 − 7
8 − 1

4

with coefficients a±
vB , b±

vB , a+
κB , b±

κB , a
y

κB , b
y

κB , and p±
vB

summarized in Table V.
In the symmetric nuclear matter, all β-dependent terms

vanish, and the approximate solutions (76) can be written in a
simple form:

m̄∗
B = m̄B + [

B̄κ
Bκ(b+

κB + b
y

κBy) + msB̄
v
Bb+

vB

]
ρ

1 + [
Ā

g

Bg + Āv
Ba+

vB + msĀ
κ
Bκ

(
a+

κB + a
y

κBy
)]

ρ
,

(80)

�̄V
B = −P̄ v

Bp+
vBvρ

1 + [
Ā

g

Bg + Āv
Ba+

vB + msĀ
κ
Bκ

(
a+

κB + a
y

κBy
)]

ρ
.

(81)

The obtained density dependence for the baryon effective
masses and the vector self-energies is shown in Fig. 1 for the
default values κ = 8 and y = 0.08. One can observe that the
ratios m∗

B/mB for N , �, and � follow an almost identical trend
and are around 0.8 at the saturation density. This coincidence
is related to the fact that the main contribution to the effective
masses comes from the term proportional to the coefficient
b+

κB which is equal to 1 for N and � and 4
3 for � (see Table V).

In case of �, there are two additional terms in the numerator
of Eq. (80), proportional to b

y

κ� and b+
v�, which compensate

the difference of b+
κ� = 4

3 from b+
κN = b+

κ� = 1. On the other
hand, the coefficient b+

κB for � is equal to 0 and the main
contribution to the density dependence of the � effective mass
comes from the term proportional to the strange quark content
y and the strange quark mass ms . The interplay of these terms
results in a positive slope of the � effective mass.

The slope of the vector self-energy �V
B , shown in Fig. 1, is

basically determined by the coefficient p+
vB in the numerator of

Eq. (81). According to Table V, the vector self-energies for N ,
�, �, and � should approximately scale as 1: 11

24 : 7
8 : 1

8 in contrast
to the prediction 1: 2

3 : 2
3 : 1

3 of the naive quark model. Different
continuum thresholds result in different average values for
the functions P̄ B

v which effects the deviation from the scaling
1: 11

24 : 7
8 : 1

8 . The ratio of the nucleon vector self-energy to the
vacuum nucleon mass is about 36% at saturation density which
is in agreement with results obtained in Ref. [48] for the lowest-
order condensates.
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0.0 0.2 0.4 0.6 0.8 1.21.0

FIG. 1. The density dependence of the baryon effective mass m∗
B (a) and the vector self-energy �V

B (b) in the symmetric nuclear matter.

It is also instructive to study the dependence of the baryon
effective masses and vector self-energies on the expectation
value κ and the strange quark content y which appear
to be somewhat ambiguous according to the discussion of
Sec. III B. As for the vector self-energy, its dependence on
the scalar quark expectation values is marginal according
to Eq. (81), since it comes only from the term proportional
to ms in the denominator. Moreover, in case of N and �

baryons, this dependence completely vanishes since a+
κN =

a+
κ� = a

y

κN = a
y

κ� = 0. Numerical analysis shows that any
reasonable variations of κ and y do not change the values of
the � and � vector self-energies within the accuracy of 0.5%.

On the other hand, the parameters κ and y play important
roles in the calculation of the baryon effective mass since
they appear in the leading terms in the numerator of Eq. (80).
Variation of the baryon effective masses versus κ at the
saturation density is illustrated in Fig. 2. One can observe that
the effective masses for N , �, and � baryons drop down from
0.8 mB to ∼0.65 mB when κ is varied from the conventional
value κ = 8 to the value κ = 11, which is favored by the recent
results on the nucleon σ term. On the other hand, the � effec-
tive mass has only marginal dependence on κ since b+

κ� = 0.
Finally, the variation of the baryon effective masses versus

the strange quark content y is illustrated in Fig. 3. In the

FIG. 2. Baryon effective masses as functions of κ at the saturation
density.

case of N and � baryons, there is no dependence on y since
a

y

κB = b
y

κB = 0 for B = N,�. The effective mass for the �

hyperon changes by about 5% when the strange quark content
y varies from 0 to the somewhat extreme value of 0.35. On the
other hand, the effective mass for the � hyperon dramatically
depends on y since the strange scalar quark expectation value
appears in the leading term due to vanishing contributions of
the light scalar quark expectation values. Numerically, when
y increases from 0 to 0.35, the ratio m∗

�/m� drops down
from 1.1 to 0.8 approaching corresponding values for other
baryons. Thus, not only the value but also the sign of the
scalar self-energy for the � hyperon is sensitive to the strange
quark content y.

F. Asymmetric nuclear matter

Before discussing the asymmetric nuclear matter effects,
let us recall general isospin symmetry relations which are
automatically satisfied in the sum-rule approach:

�V
p (β) = �V

n (−β), m∗
p(β) = m∗

n(−β), (82)

�V
�+ (β) = �V

�−(−β), m∗
�+(β) = m∗

�−(−β), (83)

�V
�0 (β) = �V

�− (−β), m∗
�0 (β) = m∗

�−(−β), (84)

FIG. 3. Baryon effective masses as functions of y at the saturation
density.
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FIG. 4. The effective masses (a) and vector self-energies (b) for p, n, �+, �−, �0, and �− at β = 1 as functions of the baryon density.
The calculation was performed at κ = 8 and y = 0.08.

while � and �0 self-energies do not depend on the isospin
asymmetry. In the following, we will consider the extreme case
of neutron matter with the asymmetry parameter β = 1 for p,
n, �+, �−, �0, and �−, while the effects of another extreme
case of the proton matter with β = −1 can be obtained from
the isospin symmetry relations of Eqs. (82)–(84). The effective
masses and vector self-energies for p, n, �+, �−, �0, and �−
at β = 1 are shown in Fig. 4 as functions of the baryon density.

The splitting of the effective masses for nucleons is
determined by the I structure (78) resulting in negative
proton-neutron mass difference 
m∗

pn = m∗
p − m∗

n < 0 in the
neutron matter. This result is in agreement with leading OPE
calculations in Ref. [48]. Note, however, that inclusion of
higher-order OPE contributions would provide 
m∗

pn > 0
which is expected in the relativistic approaches [48]. In
contrast, the dominant contribution to the effective mass
splitting for � and � hyperons comes from the q structure (77)
resulting in relations m∗

�− > m∗
�0 > m∗

�+ and m∗
�− > m∗

�0 in
the neutron matter. Numerically, the splitting at the saturation
density is of about 6%, 7%, and 4% of the corresponding mass
for N , �, and � baryons.

The splitting of the vector self-energies is dominated by the
contribution of the p structure (79). The relative strength of the
splitting for different baryons mainly comes from the product
p−

vBI3B , thus N , �, and � splittings should approximately
scale as 6:7:1 in contrast to the naive quark counting model
which predicts the relation 1:2:1. Numerically, the vector
self-energy splitting at the saturation density is of about 170,
260, and 40 MeV for N , �, and � baryons, respectively, in
agreement with the approximate relation 6:7:1.

IV. DISCUSSION

In this section, we compare the obtained results with
experimental data and alternative theoretical models. The
nucleon in-medium properties have been already studied in
detail in Refs. [48,52]; therefore, we will concentrate on
the hyperon case. We will discuss the solutions of the sum-
rule equations obtained in the approximation of the vacuum

continuum thresholds (76) keeping in mind that exact solutions
based on the χ2 fit (13) may lead to somewhat different results.

Let us start with the � hyperon. The obtained scalar
self-energy �S

�(ρ0) ∼ −210 MeV is in good agreement with
the BHF calculations [15] where the value m∗

�/m� = 0.84
was reported. Moreover, the ChPT approach [20] provided
the scalar self-energy about 55 MeV at 0.4ρ0, which is close
to the value 65 MeV obtained with the sum-rule approach.
As for the vector self-energy, the value �V

�(ρ0) = 180 MeV
was obtained providing a nonrelativistic potential U�(ρ0) ∼
−30 MeV which is in surprisingly perfect agreement with
the hypernuclear data [1] and the BHF calculations [15].
Recall, however, that the � effective mass is highly sensitive
to κ = 〈N |ūu + d̄d|N〉 and, hence, to the value of the σπN

term. Changing the value from σπN = 45 to 60 MeV would
give much higher scalar self-energy and the potential would
appear to be much deeper.

On the other hand, the value of the effective mass m∗
�

dramatically depends on the strange quark content y. As-
suming y < 0.12, the value of m∗

� would grow with density
in agreement with the ChPT predictions [20]. However, for
the larger strange quark content values, one would get the �

effective mass decreasing with density, in support of the BHF
approach [15]. In any case, an account of the large vector
self-energy �V

� (ρ0) ≈ 0.3m� results in the repulsive �-
hyperon potential at the saturation density, in agreement with
experimental data [2–5]. Touching the � isospin triplet in
the neutron matter, we obtain the ordering �+, �0, �−
in increasing mass shift similar to BHF calculations [56].
Note also that the ChPT calculations [20] for the neutron
matter provided anomalous ordering of the effective masses
m∗

�0 > m∗
�− due to large isospin-symmetry violation effects.

As for the � hyperon, the density dependence of the scalar
self-energy appears to be similar to the nucleon case in contrast
to the expectations from the naive quark model �S

�/�S
N =

1/3. On the other hand, the � vector self-energy accounts
for about 1/8 of the nucleon self-energy. The large scalar
self-energy in combination with the small �V

� provides the
attractive potential U (ρ0) about −200 MeV which is an order
of magnitude larger than the value −18 MeV extracted from
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the experimental data [6–8]. Unfortunately, the � hyperon
is not considered in ChPT or BHF approaches due to lack
of �N-scattering data. Note, however, that the Gell-Mann–
Okubo-like formulas of Eqs. (65) and (66) could serve as
an SU(3)-motivated way for the tuning of the �-hyperon in-
medium potential.

The hyperon in-medium properties were also studied in
the RMF framework [13,14] where meson-hyperon coupling
constants were fixed to reproduce the hyperon in-medium
potentials at saturation density. This approach suffers from
large ambiguities since the isoscalar σ - and ω-meson couplings
appear to be highly correlated while the isovector-meson
couplings remain unconstrained by the hypernuclear data. As
discussed in Ref. [52], the lowest-order OPE terms, considered
in this article, correspond to exchanges by localized quark-
antiquark pairs or effective vector and scalar mesons between
baryons and nucleons in nuclear matter. Therefore, one could
use the obtained results as input for the calculation of the effec-
tive meson-baryon coupling constants in the RMF approach.

However, higher-order OPE terms appear to be numerically
important. For example, inclusion of nonlocal vector
condensate and four-quark contributions would subtract 60 and
110 MeV from the lowest dimension value �V

N (ρ0) =
270 MeV [52]. The scalar self-energy �S

N (ρ0) = −140 MeV
would remain almost unchanged because the four-quark
condensates and nonlocal contributions would add about
−100 and 100 MeV, respectively [52]. Similarly, the
higher-order OPE terms should play an important role in the
hyperon sum rules.

V. SUMMARY

The QCD sum rules provide a unique consistent formalism
for investigation of the baryon octet in-medium properties.
In contrast to other approaches, the QCD sum rules do not
rely on phenomenological parameters of the baryon-meson
interactions.

In this paper, the baryon effective masses and vector self-
energies were expressed in terms of a few in-medium QCD
condensates of the lowest dimension which have been either
calculated or related to the observables. It was shown that
the effective masses and vector self-energies in the baryon
octet obey the relations similar to the Gell-Mann–Okubo mass
formulas up to the linear SU(3)-breaking terms. Moreover,
the coefficients in the OPE terms provide a peculiar SU(3)-
breaking pattern, e.g., vector self-energies in the symmetric
nuclear matter are predicted to scale approximately as 1: 11

24 : 7
8 : 1

8
for the N , �, �, and � baryons, respectively.

Numerical studies for the N , �, �, and � baryon properties
were carried out in both the symmetric and asymmetric
nuclear matter in the approximation that in-medium effective
continuum thresholds do not depend on density and remain
equal to vacuum ones. The hyperon effective masses reveal
a strong dependence on the values of the σπN term and the
strange quark content y which are known with poor accuracy.
Nevertheless, the obtained effective masses and vector self-
energies are in reasonable agreement with the results from
other nuclear physics methods.

The provided formalism can be extended to the case of
matter composed of an arbitrary mixture of baryons, which
is important in the calculations of the neutron star equation
of state. Moreover, contributions of the higher-dimensional
condensates and radiative corrections could be included in
order to improve the accuracy of the method.
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APPENDIX

Here we discuss the impact of the nonlocal structure of the
condensates which appear in the operator expansion. Let us
start from the scalar quark condensate 〈M|q̄(0)q(x)|M〉. The
spinor q(x) can be presented as

q(x) = q(0) +
∑
n=1

1

n!
xμ1 . . . xμn

Dμ1 . . . Dμnq(0), (A1)

with the usual replacement of the derivatives by their covariant
partners. Therefore, the nonlocal scalar quark condensate can
be expressed as a series of local condensates with the following
derivatives:

〈M|q̄(0)q(x)|M〉 = 〈M|q̄q|M〉 + xμ〈M|q̄Dμq|M〉
+ 1

2xμxν〈M|q̄DμDνq|M〉 + · · · . (A2)

The contribution of the scalar quark condensate in the
correlation function reads:

�s(q) ∼
∫

d4x
〈M|q̄(0)q(x)|M〉

x6
eiq·x. (A3)

Here irrelevant numerical factors are omitted. The contribution
of the leading term of expansion Eq. (A2) is

�s0(q) ∼ 〈M|q̄q|M〉
∫

d4x

x6
eiq·x ∼ 〈M|q̄q|M〉 q2 ln(−q2).

(A4)

The condensate 〈M|q̄Dμq|M〉 vanishes in the chiral limit [57]
while the contribution of the next term can be expressed as

�s2(q) ∼ 〈M|q̄DμDνq|M〉
∫

d4x

x6
xμxνeiq·x

∼ 〈M|q̄DμDνq|M〉 ∂2

∂qμ∂qν

∫
d4x

x6
eiq·x, (A5)

where the well-known equation xμeiq·x = −i ∂
∂qμ

eiq·x was
used. After differentiation one gets

�s2(q) ∼ 〈M|q̄DμDνq|M〉
×

[
2gμν ln(−q2) + 4qμqν

q2
+ 2gμν

]
. (A6)

The condensate 〈M|q̄DμDνq|M〉 has the following Lorentz
structure:

〈M|q̄DμDνq|M〉 = 1

4
gμνc + pμpν

m2
d, (A7)
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where c and d are unknown functions of density. Thus, we can
express the contribution of �s2(q) as follows:

�s2(q) ∼ 2(c + d) ln(−q2) + 4d
(p · q)2

q2
+ 3c + 2d.

(A8)

Using the relation 2(p · q) = s − m2 − q2, we get

�s2(q) ∼ 2(c + d) ln(−q2)
(s − m2)2

q2
d − 2d(s − m2)

+ dq2 + 3c + 2d. (A9)

Thus, the first two terms in �s2(q) are suppressed compared
to the leading term �s0(q) while other terms are eliminated
by the Borel transform. Note also that the term ∼ln(−q2)
is canceled by the contribution of the 〈M|q̄gGn

αβσαβλnq|M〉
condensate [57].

Let us now study the impact of the nonlocal structure
of the vector quark condensate. As an example, consider
the contribution of the condensate θμ(x) = 〈M|ū(0)γμu(x) +
d̄(0)γμd(x)|M〉 in the proton correlation function,

�v(q) = 2i

π4

∫
d4x

x8
[x2θ̂ + 2x̂(x · θ )]eiq·x. (A10)

The leading contribution is obtained by setting u(x) = u(0)
and d(x) = d(0). After integration over x one gets

�v0(q) ∼ [2θ̂q2 + q̂(q · θ )] ln(−q2). (A11)

Let us now take into account the terms with derivatives,
n � 1. Using the equation xμeiq·x = −i ∂

∂qμ
eiq·x we can

present their contribution as a combination of terms ∼[(p ·
q) ∂

∂q2 ]nq2 ln(−q2) = O[q2 ln(−q2)] which appear to be of the
same order as the leading term and doubt the convergence of
the operator expansion. However, it was shown that the terms
with derivatives can be systematically taken into account by
considering the moments of the leading twist nucleon structure
functions [57]. The method of the Ref. [57] is briefly reviewed
in the following.

In general, the vector θμ(x) can be presented as

θμ(x) = pμ

m
φa(p · x, x2) + ixμmφb(p · x, x2). (A12)

We then can define

φi(p · x, x2) =
∫ 1

0
dα e−i(p·x)αfi(α, x2), (i = a, b),

(A13)

and express the contribution �v(q) in terms of the functions
fi(α, x2). In addition, we can consider the expansion of the
functions fi(α, x2) in powers of x2 which correspond to the
expansion of �v(q) in powers of q2. To obtain the terms of
the order q−2 it is sufficient to include two lowest terms of the
expansion in powers of x2:

fi(α, x2) = ηi(α) + 1
8x2m2ξi(α) + O(x4). (A14)

It can be shown that the function ηa(α) is just proportional
to the asymptotics of the proton structure function F3(α,Q2):
ηa(α) = ρF3(α) [57]. According to Eq. (A13), the expansion
of the function φa(p · x, 0) in powers of (p · x) can be

expressed in terms of the moments of the distributions F3(α)
which are well known (e.g., 〈F3〉 = 3, 〈F3α〉 = 0.32, 〈F3α

2〉 =
0.09) [57]. The first moment of the function ξa(α) also can
be expressed as 〈ξa〉 = ξNρ, where the factor ξN determines
the lowest-order power correction to the first moment of the
structure function [57]. The value ξN ≈ −0.3 was obtained in
the framework of the QCD sum-rules method [58].

On the other hand, the moments of the functions ηb(α) and
ξb(α) can be related to the moments of the functions ηa(α) and
ξa(α) with the help of equation Dμθμ(x) = 0 which follows
from the quark equation of motion taken in the chiral limit [57]:

〈ηb〉 = 1
4 〈ηaα〉, 〈ηbα〉 = 1

5

(〈ηaα
2〉 − 1

4 〈ξa〉
)
,

〈ξb〉 = 1
6 〈ξaα〉. (A15)

For the sake of simplicity, let us consider the leading terms
in expansion Eq. (A14). In this case, Eq. (A10) takes the
following form:

�v(q) = 2i

mπ4

∫ 1

0
dα

∫
d4x

x6
ei(q−αp)·x

×
{[

p̂ + 2
x̂(p · x)

x2

]
ηa(α) + 3im2x̂ηb(α)

}
.

(A16)

After integration over x one gets

�v(q) = 1

6mπ2

∫ 1

0
dα{[2p̂q ′2 + q̂ ′(p · q ′)]ηa(α)

+ 9m2q̂ ′ηb(α)} ln(−q ′2), (A17)

with q ′ = q − αp. The Borel transform of the q̂ and p̂

structures of this expression reads

�q
v (M2) = M2

12mπ2

∫ 1

0
dα e−X2(α)/M2{[M2+X2(α)−s + m2

+ 2αm2]ηa(α) − 18m2ηb(α)}, (A18)

�p
v (M2) = M2

12mπ2

∫ 1

0
dα e−X2(α)/M2

×{[−(M2 + X2(α))(4 + 5α) + 5α(s − m2)

− 6α2m2]ηa(α) + 18αm2ηb(α)}, (A19)

where X2(α) = α
1+α

(s − m2 + αm2). The expansion of the

function e−X2(α)/M2
includes the terms [(s − m2)/M2]n ≈

[2.65 GeV2/M2]n which look frightening at the considered
values of M2 close to 1 GeV2 since they can spoil the
operator expansion. However, one can see that the terms
[(s − m2)/M2]n are multiplied by the factors αn. The function
η(α) has maximum values in the region α = 0.15–0.20 and the
integral over the product η(α)e−X2(α)/M2

is dominated by these
values of α; therefore, the factor e−X2(α)/M2

does not modify the
integrands strongly, causing, however, rather large corrections.
The insertion of e−X2(α)/M2

was found to diminish the values
of 〈F3〉 and 〈F3α〉 by ∼17% and 28% correspondingly [57].
Thus, the contribution of the nonlocal structure of the vector
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quark condensate is suppressed but appears to be numerically
important and will be taken into account in future papers.

While taking into account higher orders in the operator
expansion, it will also be important to consider the nonlocal
structure of the four-quark condensates which contribute to
the terms ∼q−2. Indeed, the four-quark condensates with
n derivatives result in the appearance of the contributions
∼(p·q

q2 )n 1
q2 = O(q−2). These terms can be systematically taken

into account by analogy with the case of the vector quark
condensate as was shown in Ref. [52].

Thus, we demonstrated that the nonlocal structure of
the quark condensates can be expressed in terms of the

higher moments and twists of the nucleon structure functions.
However, one has to keep in mind that the higher-order terms in
the expansion (A14) are not known. In addition, for the terms
∼q−4 we would need more complicated higher-twist operators
and their contributions are poorly known as well. Therefore,
the operator expansion can be systematically carried out only
up to terms ∼q−2, while the terms ∼q−4 could hardly be taken
into account.

We have showed that contributions of the nonlocal parts
of the quark condensates are suppressed compared to the
leading local parts; therefore, only leading local condensates
are considered in this article.
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