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Strong chromofields developed at early stages of relativistic heavy-ion collisions give rise to the collective
deceleration of net baryons from colliding nuclei. We have solved classical equations of motion for baryonic
slabs under the action of a time-dependent chromofield. We have studied the sensitivity of the slab trajectories
and their final rapidities to the initial strength and decay pattern of the chromofield as well as to the back-reaction
of produced plasma. This mechanism can naturally explain significant baryon stopping observed at Relativistic
Heavy Ion Collider corresponding to an average rapidity loss 〈δy〉 ≈ 2. Using a Bjorken-like hydrodynamical
model with a particle production source term, we also study the evolution of partonic plasma produced as the
result of chromofield decay. Due to the delayed formation and expansion of plasma, its maximum energy density
is much lower than the initial energy density of the chromofield. Predictions of baryon stopping for Pb + Pb
collisions at Large Hadron Collider energies were made.
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I. INTRODUCTION

It is expected that strong color fields are generated at
early stages of ultrarelativistic heavy-ion collisions. There
exist various suggestions concerning the space-time structure
of these fields from stringlike configurations as in the color
flux-tube model [1] to more complicated configurations
of the Weizsäcker-Williams type [2]. This picture is most
conveniently presented in the c.m. frame where two Lorentz
contracted nuclei look like thin sheets. After the intersection
these sheets acquire stochastic color charges as a result of
multiple soft gluon exchange. This leads to the formation
of strong longitudinal color fields in the space between the
receding sheets. A qualitative view of the nuclear sheets
and generated chromofields is presented in Fig. 1. At later
stages, the fields decay into quarks and gluons, which after
equilibration form a quark-gluon plasma. This process has
been studied by several authors under different assumptions
about the field decay mechanism (see, e.g., Refs. [3–6]).

Most calculations assume that after collision the nuclei
follow light-cone trajectories, thus disregarding their energy
losses for producing the chromofield. For instance, such an
assumption was made in the McLerran-Venugopalan (MV)
model [6,7], assuming that color sources are moving along the
light cone and produce classical Yang-Mills radiation (see also
Ref. [8]). Similar assumption was made also in Ref. [9], where
classical Yang-Mills equations were solved within the color
flux-tube model (FTM).

Such a recoilless approximation is irrelevant for studying
the baryon stopping. Obviously, the energy of produced
particles and fields is taken entirely from the kinetic energy of
colliding nuclei. As measured by the BRAHMS collaboration
[10], in central Au + Au collisions at highest Relativistic
Heavy Ion Collider (RHIC) energy

√
sNN = 200 GeV the

nuclear energy loss is very large, about 70% of the initial

kinetic energy. The peaks in the net-baryon rapidity distribu-
tion are substantially shifted toward the center of mass from
the initial rapidities ±y0. The average net-baryon rapidity loss
is estimated to be 〈δy〉 ≈ 2.0.

The problem of baryon stopping at RHIC has been
addressed recently by several authors. In particular, net-baryon
rapidity distributions were calculated within the microscopic
string-based models like Ultrarelativistic Quantum Molecular
Dynamics (UrQMD) [11] and Quark Gluon String Model
(QGSM) [12]. Although these models implement energy
and momentum conservation and thus predict a certain
baryon stopping, they are formulated in momentum space
and cannot give a space-time picture of this process. Also,
they are dealing with hadronic secondaries and therefore
preclude the quark-gluon plasma formation. The distribution
of valence quarks at midrapidities was also studied in Ref. [13]
within a QCD-motivated approach which, however, cannot
be applied for the fragmentation regions. Over a decade ago
the Parton cascade model (PCM) was developed based on
parametrization of the nucleonic parton distribution function
to describe the baryon rapidity distributions [14]. Moreover,
successful parametrization of the nuclear parton distribution
function can be also sufficient to reproduce net-baryon rapidity
density. Such parametrizations were proposed in [15]. From
the website of Ref. [16] the Fortran subroutine generating
parton distribution functions for most nuclei in Mendeleev’s
table can also be downloaded.

In Ref. [17] a simple space-time model was proposed, where
baryon stopping was directly linked to the formation of strong
chromofields. The nuclear trajectories were calculated there
under the assumption that the field is neutralized at some sharp
proper time τ = √

t2 − z2 = const . In this paper we improve
this model for the general case when both the time-dependent
chromofield and partonic plasma are present. It is remarkable
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FIG. 1. (Color online) Longitudinal and transverse components
of MV chromofield produced by stochastic color charges generated
on nuclear sheets after collision, as proposed in Ref. [2]. Directions
of the field can be opposite, but total force between the slabs is
attractive. Each slab area is subdivided on smaller elements or spots
of minimal area s⊥ = πa2 = π

Q2
s
, which can be resolved by a hard

probe of given energy. The classical field produced between two
spots with opposite charges Qi has a color flux-tube configuration
displayed on the bottom figure.

that the nuclear trajectories can be expressed in a simple analyt-
ical form for an arbitrary time dependence of the chromofield.
The basic idea is the same as in Ref. [17], i.e., to derive
equations of motion of the baryonic slabs from the energy and
momentum conservation laws. This approach makes it possible
to relate the degree of baryon stopping and the energy density
of partonic plasma to the strength of the chromofield generated
at the initial stage of the reaction. A short presentation of our
results was given previously in Ref. [18].

II. BARYONIC SLABS

We consider only beam energies so high that before
collision the nuclei can be thought of as very thin, Lorentz-
contracted sheets. Each sheet is divided into many small
elements or slabs of transverse area σ0 labeled by an index
a where a = p for the projectile nucleus and a = t for the
target nucleus (see Fig. 1). Each slab is characterized by a
baryon number Na , which is assumed to be strictly conserved.

We decompose a nucleus-nucleus collision into a multitude
of pairwise collisions of individual slabs from projectile and

target nuclei. Moreover, we assume that before and after the
overlap at t = 0, both slabs propagate as rigid bodies in
opposite directions along the beam axes z. The energy and
momentum of slab a per unit area is parametrized in terms of
its mass Ma and longitudinal rapidity Ya (for more details see
Ref. [19]):

Ea = Ma cosh Ya, Pa = Ma sinh Ya. (1)

It is convenient to express Ma as

Ma = m⊥Ña, (2)

where m⊥ =
√
m2

N + 〈p⊥〉2 is the baryon mean transverse
mass, which is written in terms of the mean transverse
momentum 〈p⊥〉. As it is demonstrated later, the time evolution
of 〈p⊥〉τ strongly depends on the interaction with partonic
plasma.

In the Glauber model [20] the average number of partici-
pants at impact parameter b is determined by integration over
a transverse plane:

Npart(b) =
∫

d2s[Ñp(b, s) + Ñt (b, s)], (3)

where

Ña(b, s) = AaTa(b, s){1 − [1 − σNNTā(b, s)]Aā } (4)

is the number of participants from the nucleus a at transverse
coordinate s. Here Aa and Aā are baryon numbers of colliding
nuclei, ā = p for a = t and vice versa, and σNN is the total
inelastic NN cross section. The profile function Ta(b, s) is
introduced by integration of the baryon number density along
the beam axis:

Ta(b, s) = 1

Aa

∫
ρa(r)dz. (5)

Below we use for ρa(r) a Woods-Saxon parametrization
consistent with nuclear data. It is obvious that the slab baryon
number is given by

Na(b, s) = σ0Ña(b, s). (6)

The number of nucleon-nucleon collisions within the slab area
σ0 is

Ncoll(b, s) = σ0σNNApAtTp(b − s)Tt (s). (7)

The value of σ0 serves as the coarse-graining scale for sampling
stringlike configurations stretched between the slabs. Final
results are not very sensitive to the choice of σ0, and below we
take it equal to the inelastic NN cross section σNN .

III. REGION BETWEEN THE SLABS

At sufficiently high collision energies the slabs will go
through each other, leaving behind a very unusual region
occupied by strong chromofields and newly produced partons.
It is most likely that vacuum condensates will be destroyed
in this region so that chromofields and partons will live in
a background of the perturbative QCD vacuum. We call this
region a “QCD vacuum bubble” or simply, a “bubble.” With
time the bubble will expand, predominantly in the longitudinal
direction, following the receding nuclear sheets. It is natural to
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assume that chromofields and partons can exist only inside the
bubble. By expanding the bubble the color charges, localized
on baryonic slabs, do work against the physical vacuum at
the expense of their kinetic energy. This picture follows from
the Color Glass Condensate (CGC) initial state proposed
in Ref. [2] and studied in numerous subsequent works. In
general, both transverse and longitudinal fields can exist in
bubble [6]. As shown in Ref. [21] by a numerical solution of
the classical Yang-Mills equation, longitudinal chromoelectric
and chromomagnetic fields practically of the same magnitude
appear on the very early stage of reaction. The transverse
components of the chromofield, which certainly appear in
the Weizsäcker-Williams picture [2], in average will also act
for the deceleration of color charges, but we shall put aside
this issue until more detailed consideration. From a somewhat
different point of view, the field configurations between the
slabs can be represented as a collection of strings stretched
between the projectile and target slabs. If the density of strings
per unit transverse area is n and string tensions for each string
are equal to σi = σ , then the energy density associated with
this stringy field configuration is

εf = 1
2 (E + B)2 = nσ. (8)

In ultrarelativistic heavy-ion collisions the string density
may be so high that the individual string picture becomes
meaningless. As pointed out by several authors [22,23], at
sufficiently high n the strings will fuse or even form percolated
clusters, leading to more complicated configurations (see
below). The energy-momentum tensor inside the bubble can
be generally represented as

T μν = T μν
vac + T

μν

field + T
μν

part, (9)

where the terms in the right-hand side (rhs) correspond to the
vacuum, chromofield, and partonic contributions, respectively.
In the simplest consideration the vacuum contribution can be
written as

T μν
vac = Bgμν, (10)

where B is the “bag constant.” In a particular case when only
the longitudinal chromofield is present, the energy-momentum
tensor has the form

T
μν

field = εf diag(1, 1,−1,−1), (11)

where εf is the energy density of the field. As explained in
Ref. [24], by performing a proper Lorentz boost, one can
obtain this diagonal form for the energy-momentum tensor
for any field configuration, except the case when E and B are
perpendicular and have equal values. By inspecting Eqs. (10)
and (11) one can notice that the vacuum contribution corre-
sponds to a positive energy density εvac = B and a negative
isotropic pressure pvac = −B, but the pressure associated with
the chromofield is anisotropic, i.e., negative in the longitudinal
direction and positive in the transverse direction with respect to
the field. Therefore, particularly when εf = B the transverse
pressure vanishes. This observation was used by several
authors (see, e.g., Refs. [5,25–27]) for modeling the color flux
tube by combining chromo-electro-magnetic and scalar fields.
At the same time, the longitudinal pressure components for
both the vacuum and the chromofield are both negative and act

against of expansion of the bubble. In our calculations below
we disregard effects of the transverse pressure on the slabs’
longitudinal motion.

The last term in Eq. (9) is associated with the partonic
contribution. This could be minijets produced at the very early
stage of the collision [4], or partons produced later at the
decay of the chromofield. We parametrize this contribution in
a general form appropriate for a perfect fluid,

T
μν

part = (ε + p)uμuν − pgμν, (12)

where ε and p are the energy density and pressure of
partonic plasma, and uμ is its collective four-velocity. Different
physical situations can be modeled by choosing different
equations of state p(ε), ranging from a free-streaming partonic
system (p = 0) to an ideal Quark-Gluon Plasma (QGP) (p ≈
ε/3). For our numerical simulations further on we will use only
an ideal gas equation of state. Again, we assume that at early
stages the plasma only expands in the longitudinal direction,
i.e., uμ = γ (1, 0, 0, v) and γ = 1/

√
1 − v2.

IV. INITIAL CHROMOFIELD ENERGY DENSITY

In this section we follow the ideas formulated in Refs. [2,6]
and widely referred to now as the color glass condensate
initial state. Within this picture random color charges are
generated on the nuclear sheets as a result of soft gluon
exchange at the interpenetration stage of a nuclear collision.
In a single event these charges fluctuate from point to point
in the transverse plane. The charges also fluctuate from event
to event, so that in average over many events the areal charge
is zero. It is convenient to introduce the color charge density
ρ(η, b, s) as a function of coordinate in the transverse plane:
(b, s) and longitudinal pseudorapidity, η = 1

2 ln t+z
t−z

. Following
Refs. [2,6] we assume it as a stochastic variable distributed
with the Gaussian weight:

P [ρ] ∼ exp

[
−

∫
dηd2s

1

2μ2
a(η, b, s)

T rρ2(η, b, s)

]
, (13)

where μ2
a is the corresponding variance. For our estimates

below we disregard possible dependence of μa on (b,s) and
η. Then, after integrating out η in Eq. (13) we introduce a
new color charge density as a function of only transverse
coordinates,

ρ(b, s) =
∫

dηρ(η, b, s), (14)

which is treated as a random variable with the Gaussian weight

P [ρ] ∼ exp

(
− 1

2μ2
a

∫
d2sT rρ2(b, s)

)
, (15)

where T r is taken over color indices.
These fluctuations are characterized by a certain scale in the

transverse plane, which is related to the saturation scale A ≈
1

Qs
introduced in high-density QCD [28]. Since the transverse

size of the baryonic slabs σ0 is assumed to be much larger,
this means that many stringlike configurations (flux tubes) are
stretched between the receding slabs. In this situation we can
divide each slab into n small elements with equal transverse
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area A = π
Q2

s
, corresponding to the resolution scale ∼ 1

Qs
of

the hard probe at given energy, so that they cover the total slab
area, i.e., σ0 = nA. Each flux-tube configuration connects the
spots of opposite charge ±Qi as in a capacitor. In the Abelian
approximation the chromofield strength in a static flux tube is
obtained from the Gauss theorem [5],

Ei = Qi

A ≡ ρi. (16)

Then the force acting between opposite spots or string tension
σi is

Fi = 1
2QiEi = 1

2ρ2
i A = Aεi = σi, (17)

where εi is the energy density of the chromofield in the
color flux tube. For simplicity we neglect contribution of
the bag constant here. It is important to note that all flux
tubes produce attractive force between opposite spots on the
projectile and target slabs. The force lines and their structure
are schematically displayed in Fig. 1. The total force acting on
each slab is then

Fa =
n∑

i=1

Fi = 1

2
A

n∑
i=1

ρ2
i , a = p, t. (18)

Accordingly, we can represent the integral in Eq. (15) as the
sum over all elements, so that

P (ρ1, . . . , ρn) ∼ exp

(
−A

2

n∑
i=1

ρ2
i

μ2
i

)
=

n∏
i=1

exp

(
−Aρ2

i

2μ2
i

)
.

(19)

Obviously, the event-by-event distribution of color charge in
each element follows the Gaussian distribution:

P (ρi) =
√

A
2πμ2

i

exp

(
−Aρ2

i

2μ2
i

)
. (20)

Therefore, in accordance with Eq. (17) mean values of force
acting between two spots and the initial chromofield energy
density are expressed as

< Fi >= μ2
i

2
, 〈εi〉 = μ2

i

2A . (21)

The next step is to calculate the distribution of the total force
acting between the slabs for an ensemble of events. This
distribution is obtained by integrating δ(F − ∑

i Fi) over all
charge densities ρi with weight P (ρi). Taking for simplicity
μ2

1 = . . . = μ2
n = μ2, we have

w(F ) =
n∏

i=1

(∫ ∞

−∞
P (ρi)dρi

)
δ

(
F − 1

2
A

n∑
k=1

ρ2
k

)

=
( A

2πμ2

)n/2 ∫
δ

(
F − Aρ2

2

)
exp

(
−ρ2

μ2

)

× 2πn/2

�(n/2)
ρn−1dρ = 1

�(n/2)μ2

(
F

μ2

)n/2−1

e
− F

μ2 .

(22)

In the second expression we have used O(4) symmetry of the
integrand and made transformation to spherical coordinates in

n-dimensional ρ space. As a result we get a γ distribution
which has the following first moments:

< F >= n

2
μ2, σF =

√
n

2
μ2. (23)

One can see that the parameter μ2 introduced in Refs. [2,6]
in fact determines the mean force between the slabs and its
dispersion. It is more convenient to express the mean energy
density of the chromofield in the space between the slabs as

εf (τ0) = < F >

σ0
= μ2

2A . (24)

Determination of parameter μ2 is somewhat ambiguous.
Discussion on this matter can be found in Ref. [8]. Therefore
we have to use some approximation for εf (τ0). We will follow
a simple parametrization proposed in Ref. [17],

εf (τ0) = ε0

(
s

s0

)λ

[Ncoll(b, s)]β, (25)

where ε0 has a sense of the mean energy density in an individual
string and is considered as an adjustable parameter. The initial
time scale τ0 corresponds to chromofield formation time which
is equal to time necessary for nuclear pancakes to pass through
each other. It was estimated in Ref. [29],

τ0 = 1

Qs

e−κ/αs , (26)

where κ is some parameter. We assumed this time τ0 ≈
0.01 fm. This time corresponds to κ

αs
= 2.81 at saturation

momentum value Qs = 1.2 GeV, calculated in Ref. [30],
which corresponds to central Au + Au collisions at RHIC
energies. The second factor is motivated by the small x

behavior of the gluon structure function, which is consistent
with λ = 0.3 [31]. The last geometrical factor is introduced to
take into account the fact that, in the case of independent
strings the field energy density should be proportional to
the number of binary NN collisions (β = 1), but at higher
energies percolated clusters of strings can be formed. As
shown in Refs. [22,23], this should lead to β = 0.5. Below
we assume that β = 1. Moreover, we have neglected rapidity
dependence of εf (τ0) as follows from the transition from
Eq. (13) to Eq. (15). We used different values of parameter
ε0 within the range 0.2 − 3.0 GeV/fm3. The inelastic NN

cross section at RHIC energy has value σNN = 4.21 fm2 [32].
Thus, the “charged spots” on the transverse plane, where the
color charge is essentially nonzero, have the characteristic area
A = π

Q2
s

≈ 0.09 fm2.

V. EVOLUTION OF THE CHROMOFIELD

At t > 0 the region occupied by the field expands following
color sources at the baryonic slabs. In the other words
the field is nonzero only in the region constrained by the
instantaneous slab positions, zt (t) < z < zp(t). At later time
the field decays gradually into quark and gluon pairs. For
our further discussion we use the light-cone variables τ , η.
We incorporate approximate boost invariance of the field
configurations by assuming that the field energy density is
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a function of the proper time only, εf (τ ). This means that
we disregard the finite size and edge effects which have been
studied previously by several authors [33,34]

Let us consider several examples. In the FTM [1,3,4] the
field decay is caused by the quark and gluon pair creation via
the Schwinger mechanism [35]. Quite generally the evolution
equation for the field energy density can be written as [4]

dεf

dτ
= −[κ(2εf )5/4 + 2σcεf ], (27)

where the first term comes from the pair creation and the
second one accounts for the ohmic heating of produced
partons. In Ref. [3] the constant κ was estimated in the Abelian
approximation for massless partons,

κ = (4παs)5/4ζ (5/2)

16π3
[νB + (1 − 2−3/2)νF ], (28)

where νB(F ) is the degeneracy factor for bosons (fermions)
and αs is the strong fine-structure constant. Corresponding
degeneracy factors for quarks and gluons are

νF = νq = 2NcNf , νB = νg = 2
(
N2

c − 1
)
, (29)

where Nc = 3 is the number of colors, and Nf is the number
of quark flavors. In the numerical simulations we take Nf =
2.5 to take into account a nonzero mass of strange quarks.
Expressions for the color conductivity σc can be found in
Refs. [4]. At σc = 0 Eq. (27) has a simple analytical solution
[4],

εf (τ ) = εf (τ0)

[
1 + τ

τd

]−4

, (30)

where τd = 2/[κ(2ε0)1/4] is a characteristic decay time and ε0

is the initial field energy density. A somewhat different decay
law of chromofield, 1 − (τ/τd )3, was suggested in Ref. [5].

In the CGC model (Refs. [2,6]) the gluon field evolution
is governed by nonlinear equations derived from the QCD.
Without going into detail, we point out only that according
to this model the chromofield has not only a transverse but
also a longitudinal component. Moreover, the longitudinal
fields dominate at the early times. This follows from results of
Ref. [6], which were derived for the low-density limit in the
covariant gauge,

x+A− + x−A+ = 0. (31)

In this gauge, light-cone vector potentials of the chromofield
are expressed as

A± = ±x±α(τ, x⊥), (32)

where x± = (t ± z)/
√

2 are the light-cone coordinates and
function α(τ, x⊥) is a perturbative solution of the classical
Yang-Mills equation, where color charge density serves as the
expansion parameter. As shown in the same paper, its Fourier
transform over transverse coordinates is given by the Bessel
function,

αk(τ ) = αk(τ0)
2

ωkτ
J1(ωkτ ), (33)

where ωk =
√

k2
⊥, and k⊥ is the transverse wave vector. A

longitudinal field configuration of this type was used recently

in Ref. [36] as the external potential for the pair production
problem in the (1 + 1)-dimensional Dirac equation. Using
standard definitions, one can get the longitudinal field strength
for mode k⊥ as

Ez(τ, k⊥) = 2αk + τ
dαk

dτ
= αk(τ0)J0(ωkτ ),

(34)
Bz ≈ Ez.

Accordingly, the field energy density can be expressed as

εf (τ ) = 1
2

(
E2

z + B2
z

) = εf (τ0)J 2
0 (ωkτ ). (35)

This solution describes damped oscillations with the char-
acteristic period ∼ 1/ωk . Asymptotically the amplitude of
oscillations decreases as 1/τ . In our estimates below we take
ωk = k⊥ ≈ Qs , where Qs is a saturation scale (Refs. [6,30]).
Since the field regeneration is physically unrealistic, we cut
evolution on the first zero of the Bessel function at τ =
2.4/Qs = 0.4 fm for Qs = 1.2 GeV.

Besides these two cases of field decay, we also consider an
exponential decay,

εf (τ ) = εf (τ0)e−�τ , (36)

which follows from Eq. (27) when the ohmic heating term is
dominating. In this case � = 2σc, and we take � ≈ 2.5/fm in
the numerical calculations.

VI. CREATION OF PARTONIC PLASMA

Decay of the chromofield results in the production of
quarks and gluons that eventually leads to the formation of
thermalized quark-gluon plasma. We are not going to study
here all aspects of the thermalization process. Instead, we
adopt a simple picture which is often used for describing the
reheating process in cosmological inflation models (see, e.g.,
[37]). Namely, we assume that the energy and momentum of
the classical field are transferred into the equilibrated partonic
plasma. In Ref. [17] this process was assumed to happen at a
fixed proper time τ = const . Then the energy and momentum
conservation equations take a simple form,

T
μν

partd�ν = T
μν

fieldd�ν, (37)

where the hypersurface separating the region of field and the
region of plasma is parametrized as

d�μ = d2s(dz, 0, 0,−dt). (38)

Using Eqs. (11) and (12) we can rewrite these equations
explicitly as

[(ε + p)γ 2 − p]dz − [(ε + p)γ 2v]dt = (εf + B)dz, (39)

[(ε + p)γ 2v]dz − [(ε + p)γ 2v2 + p]dt = (εf + B)dt, (40)

where dz and dt are taken along the hyperbola τ = const , i.e.,
tdt − zdz = 0. One can easily see that these equations require

v(τ0) = z

t
, ε(τ0) = εf (τ0), (41)
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which are exactly the Bjorken initial conditions for scaling
hydrodynamics [38].1

In a more realistic consideration one should deal with a
continuous transformation of chromofield into plasma. Still,
one can derive a simple equation for the plasma evolution
even in this more general case. This is achieved by using the
local energy-momentum conservation equations, ∂νT

μν = 0,
which give generalized hydrodynamical equations. We assume
that the chromofield energy density and the plasma energy
density are functions of the proper time only and are defined
in the finite interval of η: ηt (τ ) � η � ηp(τ ). As follows from
Eqs. (39) and (40), in this case produced plasma has a Bjorken-
like velocity field, v = z

t
, and the hydrodynamical equations

reduce to

∂ε

∂τ
+ ε + p

τ
= −∂εf

∂τ
. (42)

This equation contains in the rhs the source term due to
the parton production from the chromofield. For given εf (τ )
Eq. (42) has a simple analytical solution. Taking the equation
of state for plasma in the form p = c2

s ε with constant sound
velocity cs , we get

ε(τ ) = [ε(τ0) + εf (τ0)]
(τ0

τ

)1+c2
s − εf (τ )

+ 1 + c2
s

τ 1+c2
s

∫ τ

τ0

εf (τ )τ c2
s dτ. (43)

Here the initial condition for ε and εf is defined at proper time
τ0, which, in principle, can be moved arbitrarily close to zero.
Now one can study dynamics of the plasma formation from
the initial state, where the energy density was mainly stored in
the chromofield.

To illustrate the general trend, let us consider an exponential
field decay εf (τ ) = εf (τ0) exp [−�(τ − τ0)], where the decay
rate is controlled by parameter � ≈ 2.5/fm. The integral
in Eq. (43) can be done analytically for c2

s = 0. This case
corresponds to free-steaming partons (p = 0) and is especially
appropriate for the early stages of plasma evolution. Equation
(43) gives in this case

ε(τ ) = ε(τ0)
τ0

τ
+ εf (τ0)

[(
1 + 1

τ0�

)
τ0

τ

−
(

1 + 1

τ�

)
exp [−�(τ − τ0)]

]
, (44)

where ε(τ0) is the initial energy density of partons (minijets). It
is easy to find that starting from the initial state without partons
ε(τ0) = 0, the plasma energy density reaches its maximum
value, εmax ≈ 0.3εf (τ0), at τmax ≈ 1.79/�. A similar behavior
was found in Ref. [4] for the power-law field decay defined
by Eq. (30), where εmax is only about 0.2εf (τ0). In the
aforementioned paper the initial field energy density was
taken for the minijet initial state and evolution was started
at τ0 = 0.1 fm. In our calculations we start evolution at

1In Ref. [17] the terms with dt in the l.h.s. of Eqs. (39) and (40)
were missing that lead to an erroneous result for εf (τ0) as a function
of η.

FIG. 2. Evolution of the chromofield (solid line) and QGP
(dashed line) energy density in units of the initial chromofield energy
densities ef (τ0) for different assumptions concerning chromofield
decay: (a) exponential decay (τd = 0.6 fm); (b) power-law decay
(τd = 0.6 fm); (c) CGC decay (evolution is cut at the first zero of
Besel function τ = 2.41/Qs fm, see the text); and (d) “cosh-like”
chromofield decay (τd = 0.6 fm).

even earlier time τ0 = 0.01 fm, corresponding to chromofield
formation time (Ref. [29]), and we also neglect the minijet
contribution to the energy density.

A substantial reduction of the plasma energy density as
compared with the initial field energy density is the common
feature of all realistic calculations with the continuous plasma
production. This important observation must be taken into
account when estimating initial energy density of the plasma
by extrapolating backward the hydrodynamical evolution.

We have considered several functional forms for the time
dependence of the chromofield, resulting in the different
plasma production rates and baryon deceleration patterns. Cor-
responding results are displayed in Fig. 2 for the exponential
and power law of chromofield decay, as well as for the CGC
and “cosh-like” cases. The “cosh-like” field decay given by

εf (τ ) = εf (τ0)

cosh4[(τ − τ0)/τd ]
(45)

was proposed in Ref. [39] to study e+e− pair creation in the
pulse of a strong laser field. It is seen that the maximum plasma
energy density reaches only 20% of the εf (τ0) for the power
law (30) and 40% for the CGC (35) decay law. Among all
considered cases, the exponential decay law [Fig. 1(a)] leads
to the longest survival of the chromofield and the slowest
production of the partonic plasma.

VII. EQUATIONS OF MOTION

After the collision at t = 0, the trajectories of the projectile
and target slabs, zp(t) and zt (t), are affected by the energy and
momentum losses due to the generation of classical fields and
production of partons.
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First assume that the chromofields and partonic plasma
are confined between the baryonic slabs. Therefore the slabs
have normal vacuum from one side and excited QCD matter
from the other. Then the infinitesimal decrement of the
four-momentum of a slab a, dP

μ
a , after traversing distance dz

in time dt , must be equal to the increment of the energy and
momentum contained in the QCD bubble. The latter quantities
can be expressed in terms of the energy-momentum tensor as
dP

μ
a = T μνd�ν , where d�ν is an infinitesimal four-vector

orthogonal to the hypersurface constrained by dt, dz, and
unit transverse area [40]. Assuming that the chromofield has
only longitudinal components, the energy and momentum
conservation equations can be written as

dEa = −[T 00dz − T 03dt], (46)

dPa = −[T 30dz − T 33dt]. (47)

Equations (46) and (47) describe the classical trajectories
of baryonic slabs, zp(t) and zt (t), with the initial condi-
tions zp(τ0) = zt (τ0) ≈ 0, yp(τ0) = y0, yt (τ0) = −y0. Using
Eqs. (10), (11), and (12), these equations can be rewritten in
explicit form (for brevity we drop index a),

dE = −[A(τ )γ 2 + B(τ )]dz + [(A(τ )γ 2v]dt, (48)

dP = −[A(τ )γ 2v]dz + [A(τ )γ 2v2 − B(τ )]dt, (49)

where we have simplified the notations as

A(τ ) = ε + p,B(τ ) = εvac + εf − p. (50)

It is worth noticing that A(τ ) is in fact the plasma enthalpy
density, and B(τ ) is the total longitudinal pressure taken with
negative sign. Let us rewrite the instantaneous slab velocity V

and the local parton velocity v as

V ≡ dz

dt
= tanh Y, v = z

t
= tanh η. (51)

Then one can derive simple kinematic relations, valid on the
slab trajectories,

dt

dτ
= cosh Y

cosh (Y − η)
,

dz

dτ
= sinh Y

cosh (Y − η)
,

(52)

τ
dη

dτ
= tanh (Y − η).

Now we can combine Eqs. (48), (49), and (52) to the following
two equations:(

dE

dτ

)2

−
(

dP

dτ

)2

=
(

dM

dτ

)2

− M2

(
dY

dτ

)2

= [A(τ ) +B(τ )]2 tanh2 (Y − η) − B2(τ ),

(53)

E

(
dE

dτ

)
− P

(
dP

dτ

)
= M

(
dM

dτ

)
= −A(τ )M sinh (Y − η). (54)

After combining Eqs. (53), (54), and (52) one has

M

τ

dY

dη
= A(τ ) sinh (Y − η) − B(τ )

sinh (Y − η)
. (55)

After some additional algebra we obtain two coupled equations
governing the motion of the baryonic slab:

dP̃

dτ
= −B(τ ) − P̃

τ
, (56)

dM2

dτ
= −2A(τ )P̃ , (57)

where P̃ = M sinh (Y − η) is the slab momentum in the local
frame moving with the slab pseudorapidity η. It is interesting
that the plasma enthalpy density A(τ ) has dropped out from
Eq. (56). In other words, the slab acceleration is determined
entirely by the pressure difference B(τ ) = εvac + εf − p from
inside and outside the QCD bubble. Obviously, the slab will
decelerate only if B(τ ) > 0, i.e., when the field and vacuum
pressure dominates over the counterpressure of the plasma.
Such a situation is expected at early stages of the reaction
when partonic plasma is in the free-streaming regime (p ≈ 0).
At later stages, when the field decays and plasma pressure
builds up, the slab may reaccelerate again. The origin of this
effect is very simple: when deriving Eqs. (56) and (57) we have
implicitly assumed that the plasma particles, whose trajectories
are intercepted by the slab trajectory, are absorbed by the slab.
This explains also the increase of the slab mass, as predicted
by Eq. (56), at A(τ ) > 0 and Y < η.

Equation (56) has an obvious solution,

P̃ (τ ) = P̃0
τ0

τ
− 1

τ

∫ τ

τ0

B(τ ′)τ ′dτ ′, (58)

where the initial condition P̃ (τ0) = P̃0 is imposed. In the
case of free motion [B(τ ) = 0] the first term in this equation
describes gradual alignment of the initial velocity V0 = tanh Y0

along the ray z
t

= V0 or limτ→∞ η(τ ) = Y0. From Eq. (57) one
obtains the expression for the effective slab mass squared:

M2(τ ) = M2(τ0) − 2
∫ τ

τ0

A(τ ′)P̃ (τ ′)dτ ′, (59)

where M(τ0) ≡ M0 is the initial slab mass, which was
generated due to hard gluon exchange at early times, τ ∼ 0.

One can use the same equations to study another extreme
situation, when the slabs are transparent for the partonic
plasma produced at the early stages. If the plasma expands
to the regions beyond the slabs, its pressure from inside and
outside is equal, and one can simply drop it out from the
energy-momentum conservation equations (48) and (49). It is
equivalently to redefine the functions in Eq. (50) as

A(τ ) = 0, B(τ ) = εf (τ ). (60)

In other words the slab’s motion is only affected by the
residual chromofield. This case is considered below in order to
understand the role of plasma back reaction (see Sec. VIII B).

Despite their simple form, Eqs. (56) and (57) reflect
the important physics of ultrarelativistic nuclear collisions.
Namely, they allow a study of the influence of a chromofield
decay scenario and plasma back reaction on the baryon
stopping. Integration of Eq. (56) was carried out by the routine
based on a Chebyshev interpolation algorithm [41]. For the
number of interpolation nodes N = 40, the 5% accuracy
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was achieved as follows from the comparison with analytical
results for a constant field [Eq. (64)].

VIII. SOME INTERESTING EXAMPLES

In this section we present analytical and numerical results
for several physically interesting cases.

A. Vacuum cleaner

Let us first discuss a simplest case when the region between
the slabs is represented by the perturbative QCD vacuum
characterized by the bag constant B. This is, of course, a
nonrealistic situation when no chromofield or partonic plasma
is produced as the result of binary slab collisions. The baryonic
slabs work in this case as a vacuum cleaner, removing all
nonperturbative condensates from the region between them
and forcing transition into a false vacuum state. As follows
from Eq. (57) at A(τ ) = 0, the slab mass remains constant,
M(τ ) = M(τ0) = M0. Then the deceleration equation (58) has
a very simple solution:

P̃ (τ ) = P̃0
τ0

τ
− B

2τ

(
τ 2 − τ 2

0

)
. (61)

Taking τ0 = 0 we get

sinh (Y − η) = −
(

Bτ

2M0

)
. (62)

On the other hand, from Eq. (55) with A = 0 and B(τ ) = B =
const one finds that

dY

τdη
= − B

M0 sinh (Y − η)
= 2

τ
. (63)

With the initial condition η(τ0) = Y0, this leads to the relation
η = (Y + Y0)/2. Finally we obtain the slab trajectory,

η(τ ) = Y0 − Arcsinh

(
Bτ

2M0

)
. (64)

In a similar context this solution was earlier discussed in
Ref. [42]. If the vacuum bubble would exist forever, Eq. (64)
would predict a “yo-yo”–type motion for slab pairs [43]. In
particular, the slabs will go through the turning point (Y = 0) at
τ1 = 2M0 sinh (Y0/2)/B or t1 = M0 sinh Y0/B. Later on they
collide again at η = 0 and t = 2t1 and so on. Parametrically,
the period of oscillations is long because it is proportional to
sinh Y0, where Y0 is the initial beam rapidity. In reality the
vacuum bubble will decay in a much shorter time.

B. Stringy state

Now we consider multistring configurations where only the
longitudinal chromo-electromagnetic fields are present. This
case represents the earliest stages of the deceleration process
when the fields are strong and almost no partonic plasma is
present. Since in this case A(τ ) = 0, the slab mass remains
constant, M = M0, irrespective of time dependence of the
field. Possible scenarios of the field evolution are described in
Sec. IIC.

(a) (b)

(c) (d)

FIG. 3. Projectile and target slab trajectories on the t − z plane
(left panels), and projectile (upper curves) and target (lower curves)
slab rapidities as functions of proper time (right panels) calculated for
constant chromofield. Different pairs of curves correspond to various
parameters e0 displayed in the figure. Results are shown for two
cases: (a, b) equal slabs with Np = Nt = 2.58 representing a central
Au + Au collision, and (c, d) Np = 1.01, Nt = 5.56 representing
peripheral collision.

Let us represent the field energy density as εf (τ ) =
εf (τ0)f (x), where εf (τ0) is its initial value parameterized
in Eq. (25), and f (x) is an arbitrary (decreasing) function
of the dimensionless variable x = τ/τd , with τd being a
characteristic decay time. Obviously, f (x0) = 1, where x0 =
τ0
τd

. By introducing the dimensionless parameter

α = εf (τ0)τd/M0, (65)

we can rewrite Eq. (58) with P̃0 = 0 as

sinh (Y − η) = −αF (x), F (x) ≡ 1

x

∫ x

x0

f (x ′)x ′dx ′. (66)

From Eq. (55) we get

dY

dη
= −α

xf (x)

sinh (Y − η)
= xf (x)

F (x)
. (67)

After differentiating Eq. (66) by x and eliminating dY/dη

by Eq. (67) we get an explicit expression for the slab
pseudorapidity:

η(x) = η(x0) −
∫ x

x0

αF (x ′)√
(αF (x ′))2 + 1

dx ′

x ′ . (68)

Now calculations can be easily done for any specific f (x).
For instance, the choice f (x) = 1 corresponds to the time-
independent chromofield, εf (τ ) = εf (τ0), which is formally
equivalent to the false vacuum case considered in the previous
section. In this case F (x) = x/2 (for x0 = 0) and, apart from
notations, Eq. (68) gives the same result as Eq. (64). Numerical
calculations of slab rapidities Ya(τ ) and slab trajectories za(τ )
corresponding to this case are displayed in Fig. 3. At each
intersection of slab trajectories, the constant chromofield
changes sign and initial conditions are recalculated. Each
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instant of collision of two slabs corresponds to their maximum
rapidities. This can be easily seen in the behavior of trajectories
and rapidities of two identical slabs [Figs. 3(a) and 3(b)].
In this case laboratory time coincides with the proper time,
t1 = τ1. In asymmetric collisions [Figs. 3(c) and 3(d)] energy
loss of the smaller projectile slab is larger than energy loss
of the target slab. After the second collision the projectile
slab reaccelerates and gains kinetic energy larger than the
initial one. Deceleration and reacceleration of the target
slab is smaller due to its larger mass. This periodic motion
states a challenge for the numerical simulations. Sufficient
accuracy to find initial conditions at each intersection point was
achieved only by increasing the number of nodes in Chebyshev
interpolation from 40 to 60. It is seen that the constant
chromofield leads to the yo-yo–type motion of baryonic slabs,
with the period strongly dependent on the initial slab rapidity
and the chromofield energy density. This is in direct analogy
with the Lund model for e+e− annihilation [44] and other
string-based models. The principle difference in our approach
is that we describe the coherent action of many stringlike
configurations (17).

Let us consider now several more realistic time-dependent
fields as discussed in Sec. V:

(1) The field evolution motivated by the Schwinger mecha-
nism [Eq. (30)] is described by f (x) = (1 + x)−4, which
gives

F (x) = 1

x

∫ x

0

x ′dx ′

(1 + x ′)4
= x(3 + x)

6(1 + x)3
. (69)

(2) The exponential decay, f (x) = e−γ x with γ = �τd = 1,
corresponds to

F (x) = 1

x

∫ x

0
e−x ′

x ′dx ′ = 1

x
(1 − e−x). (70)

(3) The CGC-motivated decay, which leads to sharp disap-
pearance of the field at τd ≈ 2.4/Qs , i.e., to F (x) = const

at x > 1.

In Figs. 4–6 we show the slab trajectories za(τ ) as a
function of proper time. It is instructive to compare them with
trajectories calculated for the constant field (Fig. 3). Due to
the fast decay of the chromofield we generally do not observe
any traces of the yo-yo motion. Peripheral collisions with large
εf (τ0) and without taking into account plasma back reaction
gives the largest deceleration of the projectile slab [Fig. 7(d)].
The increasing of impact parameter and ε0 will eventually lead
to reversal of the slab trajectories and their further collisions.
The back reaction of the plasma generates a strong push to the
slabs. For comparison, the distance between colliding slabs
with equal baryon number (Np = Nt = 5.74) corresponding
to the proper time τ = 1.91 fm for the case with plasma back
reaction, is �z = 64.54 fm, and for the case when plasma
back reaction was not taken into account, is �z = 25.35 fm,
if εf (τ0) parameter ε0 = 1 GeV/fm3 was chosen, and the
power of chromofield decay was considered. Numerical results
for evolution of the collective slab rapidities are presented
in Figs. 7–9. Calculations were performed for the values of
parameter ε0 ranging from 0.2 to 1.0 GeV/fm3 and two values
of impact parameter. By comparing left and rights panels,

(a) (b)

(c) (d)

FIG. 4. Projectile (right curves) and target (left curves) slab
trajectories on z − τ plane calculated for the exponential chromofield
decay with τd = 0.4 fm. Different pairs of curves correspond to the
different parameters ε0 displayed in the figure. Results are shown
for two cases: (a, b) equal slabs with Np = Nt = 5.8 representing a
central Au + Au collision, and (c, d) Np = 2.0, Nt = 8.8 representing
a central d + Au collision. Left and right panels show the calculations
with and without the back reaction of produced plasma, respectively.

one can see in this figures that the slab dynamics is strongly
affected by the plasma back reaction. Namely, the plasma back
reaction leads to rapid saturation of the baryon rapidity loss
with increasing εf (τ0). It is seen also that the rapidity lost
by the smaller slab is significantly larger than the bigger one.
This is, of course, a direct consequence of Newton’s law that
the equal forces cause larger deceleration for less massive
bodies. This result is in agreement with STAR measurements
for net-baryon spectra reconstructed from net-� production
spectra in d + Au collisions, Ref. [45].

In Fig. 10 projectile rapidity loss is displayed as a function
of beam rapidity calculated in the wide interval from RHIC
to Large Hadron Collider (LHC) energies at the different
parameters ε0. It is seen that strong counterpressure of plasma

(a) (b)

(c) (d)

FIG. 5. The same as Fig. 4 but for the power-law chromofield
decay.
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(a) (b)

(c) (d)

FIG. 6. The same as Fig. 4 but for the CGC decay law of
chromofield decay Eq. (35), with Qs = 1.2 GeV.

on slabs leads to slight violation from the linear growth of
baryon energy loss with increasing the ε0.

In Fig. 11 we show the evolution of the projectile slab
energy loss �Ep(τ ) per baryon, defined as

�Ep(τ ) = [M0 cosh Y0 − Mp(τ ) cosh Yp(τ )]/Np, (71)

where M0 is the initial slab mass and Mp(τ ) is the projectile
slab mass calculated by formula (59), and Np is the baryon
number of projectile slab. The additional slab transverse mass
Mp(τ ) is generated entirely due to interaction with produced
plasma. To demonstrate the strength of this interaction, in

(a) (b)

(c) (d)

FIG. 7. Projectile (upper curves) and target (lower curves) slab
rapidities as functions of proper time calculated for the exponential
law of chromofield decay with τd = 0.6 fm. Different pairs of
curves correspond to different parameters ε0 displayed in the figure.
Results are shown for two cases: (a, b) equal slabs with Np = Nt =
5.8 representing a central Au + Au collision, and (c, d) Np =
2.0, Nt = 8.8 representing a central d + Au collision. Left and right
panels show the calculations with and without the back reaction of
produced plasma, respectively.

(a) (b)

(c) (d)

FIG. 8. The same as Fig. 7 but for the power law of chromofield
decay with τd = 0.6 fm.

Fig. 12 we show the evolution of the baryon transverse mo-
mentum. The maximal value of baryon transverse momentum
for central collisions is quite large: 〈p⊥〉 = 3.5 GeV if we
take as initial value 〈p⊥〉 ≈ 1 GeV, which was extracted
from experimental data [10]. To obtain such a low value of
baryon transverse momentum one has to take into account
partial transparency of slabs with respect to the produced
plasma. This can be implemented by assuming that plasma is
created not uniformly on the whole hypersurface τ = const ,
but only on the part of it which is sufficiently far from
the ends (edge effect). Thus, in a more realistic calculation,
dependence of the plasma energy density on pseudorapidity
should be explicitly taken into account. When the plasma
back reaction is disregarded, the slab mass remains constant
in the course of evolution. Therefore, we should assume that
the observed value of the baryon transverse momentum was
generated already at the very early stage of the collisions, i.e.,

(a) (b)

(c) (d)

FIG. 9. The same as Fig. 7 but for the CGC decay law of
chromofield decay [Eq. (35)], with τd = 0.4 fm.
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(a) (b)

(c) (d)

FIG. 10. (Color online) Projectile slab rapidity loss as a function
of initial beam rapidity calculated for the power law of chromofield
decay. Different curves correspond to the different values of parameter
ε0 displayed in the figures. Color charge is assumed fixed. Results
are shown for the two cases: (a, b) equal slabs with Np = Nt =
5.75 representing a central Au + Au collision, and (c, d) Np =
2.01, Nt = 7.65 representing central d + Au collision. Left and right
panels show the calculations with and without the back reaction of
produced plasma, respectively. The filled square corresponds to SPS
data, and the filled triangle to RHIC data

at τ ∼ τ0. Then the initial slab rapidities should also be shifted
from y0 to y0 = Arccosh(

√
s

2m⊥
). From Fig. 11 one can see that

the 70% energy loss observed by the BRAHMS collaboration
for central Au + Au collisions at

√
s = 200 AGeV can be

(a) (b)

(c) (d)

FIG. 11. Evolution of the baryon energy loss from the projectile
nucleus calculated for power-law chromofield decay with τd =
0.6 fm. Different curves correspond to the different values of
parameter ε0 displayed in the figures. Results are shown for the two
cases: (a, b) equal slabs with Np = Nt = 5.75 representing a central
Au + Au collision, and (c, d) Np = 2.01, Nt = 7.65 representing
central d + Au collision. Left and right panels show the calculations
with and without the back reaction of produced plasma, respectively.

(a)

(b)

FIG. 12. Evolution of the baryon transverse momentum calcu-
lated for the power law of chromofield decay at different parameters
ε0 indicated in the figure. Results are shown for two cases:
(a) Np = Nt = 5.75 representing central Au + Au collisions, and
(b) Np = 2.01, Nt = 7.65 representing central d + Au collisions.

explained by the action of the chromofield with the energy
density of about 20 GeV/fm3 (ε0 � 0.5 GeV/fm3).

C. Partonic wind

In this subsection we address the question of how the
baryon slab trajectories are affected by the collective partonic
flux from the central region. The calculations can be done
analytically for a steplike evolution of the chromofield,
εf (τ ) = εf (τ0)θ (τd − τ ). In this case the partonic plasma is
produced at a fixed proper time τ = τd , exactly as postulated
in the Bjorken model [38]. An interesting observation for this
case is that predictions can be made without knowledge of
equation of state. According to Eqs. (43) and (50), the pressure,
energy density, and enthalpy density of partonic plasma at later
times (τ > τd ) evolve as

p(τ ) = c2
s ε(τ ) = c2

s εf (τ0)
(τd

τ

)1+c2
s

,

(72)

A(τ ) = (
1 + c2

s

)
εf (τ0)

(τd

τ

)1+c2
s

,

where c2
s is the constant sound velocity. From Eq. (58) we

find that due to the action of the chromofield at τ < τd ,
the slab momentum decreases on the value P̃ (τd ) − P̃ (0) =
−εf (τ0)τd/2. The additional momentum change due to the
partonic wind at τ > τd is found from Eq. (58) with B(τ ) =
−p(τ ):

P̃ (τ ) − P̃ (τd ) = −ε0τ
2
d

2τ
− ε0τd

(
c2
s

1 − c2
s

)[(
τd

τ

)c2
s

−
(

τd

τ

)]
.

(73)

According to Eq. (59) with A(τ ) from Eq. (72), the
additional slab mass squared due to plasma absorption is given
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by

M2(τ ) − M2(τ0) = − ε2
0τ

2
d

1 − c2
s

(
1 − 3c2

s

x1+c2
s

+ 1 + c2
s

x2c2
s

+ 2
(
c2
s − 1

))∣∣∣∣
τ/τd

1

, (74)

where x = τ
τd

is a new variable. Asymptotically at τ → ∞
dependence on the sound velocity in the relative mass squared
increment drops out:

M2 − M2
0

M2
0

= 2α2. (75)

Parameter α was introduced in Eq. (65). Let us take
ε0 = 1.0 GeV/fm3, which according to Eq. (25) corresponds
to average energy density for central Au + Au collisions
εf (τ0) = 30.65 GeV/fm3. The initial mass per unit area of
the central slab is M(τ0) = 2.89 GeV/fm2. The characteristic
time of chromofield decay was chosen as τd = 0.6 fm. For
these values parameter α is estimated as α = 6. This eventually
leads to an increase of the slab mass by ∼8.5 times, which is
obviously unrealistic.

IX. SUMMARY

A new model was proposed where net-baryon stop-
ping and associated particle production are attributed to
strong chromofields generated at early stages of a heavy-ion
collision.

In this model the Lorentz contracted nuclei (nuclear sheets)
are divided into small slabs which are pairwise connected by
the color flux tubes. The QGP is produced as a result of the
chromofield decay. Equations describing slab trajectories as
well as time evolution of their masses and rapidities are derived
from explicit energy-momentum conservation across the slab.
The creation and evolution of the plasma was described by a
simple hydrodynamical equation with a simple source term

corresponding to chromofield decay. The stochastic nature
of color charges based on the CGC model was also taken
into account. Different scenarios of chromofield decay were
studied numerically. It was shown that due to the delayed
QGP production its maximum energy density reaches only
20%–40% of the initial chromofield energy density. Baryon-
rich as well as baryon-free components of the QGP are
treated as ideal fluids. Interaction between these fluids leads
to increasing slab temperature and, therefore, to increasing
transverse momentum of produced baryons.

In the case of the power law of chromofield decay, the ob-
served net-baryon rapidity loss in central Au + Au collisions at
RHIC energy

√
s = 200 A GeV, 〈δy〉 ≈ 2, can be reproduced

if the initial energy density is εf (τ0) = 99.55 GeV/fm3 in the
variant of calculations, which takes into account plasma back
reaction (〈δy〉 = 1.94), and a smaller value of initial chro-
mofield energy density εf (τ0) = 19.91 GeV/fm3 should be
taken if there is no plasma back reaction (〈δy〉 = 2.01) (see also
Fig. 10). Extrapolation to the LHC energy

√
s = 5500 A GeV

leads to 〈δy〉 = 2.31 in the case with plasma back reaction and
〈δy〉 = 3.92 in the case without plasma back reaction, with
initial chromofield energy densities εf (τ0) = 265.05 GeV/fm3

and εf (τ0) = 53.81 GeV/fm3, correspondingly.
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