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Quark polarization in a viscous quark-gluon plasma

Xu-Guang Huang,1,2 Pasi Huovinen,2 and Xin-Nian Wang3,4,2

1Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main, Germany
2Institut für Theoretische Physik, Goethe-Universität, D-60438 Frankfurt am Main, Germany

3Institute of Particle Physics, Central China Normal University, Wuhan, 430079, China
4Nuclear Science Division, MS 70R0319, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Received 21 September 2011; published 21 November 2011)

Quarks produced in the early stage of noncentral heavy-ion collisions could develop a global spin polarization
along the opposite direction of the reaction plane due to the spin-orbital coupling via parton interaction in a
medium that has finite longitudinal flow shear along the direction of the impact parameter. We study how such
polarization evolves via multiple scattering in a viscous quark-gluon plasma with an initial laminar flow. The
final polarization is found to be sensitive to the viscosity and the initial shear of local longitudinal flow.
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I. INTRODUCTION

The observed jet quenching and collective phenomena in
high-energy heavy-ion collisions at the Relativistic Heavy Ion
Collider (RHIC) provide strong evidence of the formation of
strongly coupled quark-gluon plasma (QGP) [1,2]: The strong
quenching of high transverse momentum jets is understood
to be caused by parton energy loss induced by multiple
collisions of the leading parton with color charges in the
thermal medium [3–8]; the observed collective flow in the
final bulk hadron spectra indicates a hydrodynamic behavior
of the initial dense matter as an almost perfect fluid with a
very small shear viscosity [9,10], η/s � 0.5. The large jet
transport parameter from the observed strong jet quenching
and small shear viscosity inferred from the collective flow
can be connected to each other through a transport process
in a strongly coupled system [11]. They both describe the
ability of the medium partons to transfer momentum via strong
interaction in QCD and maintain local equilibrium. Globally,
such transport processes help to dissipate variations of flow
velocities and thus will reduce the anisotropic flow, which is
driven by the initial geometric anisotropy [9,10]. In this paper,
we discuss the possibility of global quark spin polarization
caused by such transport processes in noncentral high-energy
heavy-ion collisions.

It was first proposed by Liang and Wang [12] that global
quark polarization could occur in the QGP formed in a
noncentral heavy-ion collision. They argued that at a finite
impact parameter, the initial partons produced in the collision
can develop a longitudinal fluid shear distribution representing
local relative orbital angular momentum (OAM) in the same
direction as the global OAM of the noncentral nucleus-nucleus
collisions. Since interaction via one-gluon exchange in QCD
contains a spin-orbital coupling, the OAM could cause a global
spin polarization of quarks and antiquarks in the direction
parallel to the OAM. Such a global (anti)quark polarization
should have many observable consequences such as global
hyperon polarization [12,13], vector meson spin alignment
[12,14], and the emission of circularly polarized photons [15].
Predictions have been made [12,14–17] for these measurable
quantities as functions of the global quark polarization Pq .

Experimental measurements of the � hyperon polarization
with respect to the reaction plane at RHIC [18–25] place a
limit |P�,�̄| � 0.02 [19,24]. Such a limit puts a stringent test
on both the initial shear of longitudinal flow in noncentral
heavy-ion collisions [17] as well as the time evolution of the
polarization through transport processes.

The estimates of the global quark polarization in Ref. [12]
and in subsequent studies [16,17,26,27] were all obtained by
considering the polarization process for a single scattering
between quarks and thermal partons. However, one should
consider the effect of the multiple scattering and expect that
the quarks will be progressively polarized through multiple
scattering. Furthermore, with the minimum values of shear
viscosity η/s � 1/4π in QGP imposed by the quantum limit,
the local momentum shear, dpz/dx, of the fluid, that is,
the local OAM of interacting parton pairs, will decay with
time. This will lead to a nontrivial time evolution of quark
polarization P depending on the shear viscosity of the QGP
matter and the final state observed global polarization could
serve as a viscometer of QGP. In this paper, we focus on these
two issues with a simple and yet interesting hydrodynamic
evolution of a relativistic laminar flow between two frictionless
impenetrable walls.

The rest of the paper is organized as follows. In Sec. II,
we extend the calculation in Ref. [12] to the case of scattering
of an initially polarized quark in a static potential model. In
Sec. III, we study the relativistic laminar flow and compute
the decay of the longitudinal momentum gradient. The results
of Secs. II and III are applied to Sec. IV to study the time
evolution of the quark polarization.

II. POLARIZATION OF INITIALLY POLARIZED QUARKS

We consider two colliding nuclei with the beam projectile
moving in the direction of ẑ and the impact parameter b
defined as the transverse distance of the projectile from the
target nucleus along the x̂ direction as illustrated in the
upper panel of Fig. 1. The direction ŷ defines the reaction
plane, ŷ ∝ ẑ × x̂. The initial OAM of these two colliding
nuclei is along the direction opposite to the reaction plane
and could be very large. Given 1 fm < b < 10 fm, the initial
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OAM L0 � Ab
√

s/2 is roughly 105 � L0 � 106 for Au-Au
collisions at RHIC energy

√
s = 200 GeV and 3 × 106 �

L0 � 3 × 107 for Pb-Pb collision at Large Hadron Collider
energy

√
s = 5.5 TeV. Because of the unequal local number

density of the participant projectile and target nucleons at
various transverse positions, some fraction of this large OAM
could be transferred into the produced QGP matter in the
overlapping region. Such global angular momentum, however,
would never lead to a collective rotation of the system
since there is no strong binding or attractive interaction in
the partonic interaction at high energy. Instead, it could be
manifested in the finite transverse (along x̂) gradient of the
average longitudinal momentum pz per produced parton due
to the partonic interaction at high energy (see the lower
panel of Fig. 1). Given the range of interaction �x, two
colliding partons will have relative longitudinal momentum
�pz = �xdpz/dx with relative OAM Ly ∼ −�x�pz. This
relative OAM will lead to global quark polarization along −ŷ
through the spin-orbital coupling in QCD. This is essentially
the argument that was first proposed in Ref. [12]. It was found
that the quark polarization via a single scattering with given
relative momentum p reads

P ≡ �σ

σ
≡ σ↑ − σ↓

σ↑ + σ↓
= − πμp

2E(E + m)
, (2.1)

where σs, s =↑,↓ is the cross section of final quark with
spin s along ŷ, m is the mass of interacting quark, and μ

is the Debye screening mass of longitudinal gluon, μ2 =
g2(Nc + Nf /2)T 2/3. The initial relative momentum p can
be estimated as p � �xdpz/dx with �x ∼ μ−1 being the
characteristic range of interaction. Then p/μ is nothing but
the relative orbital angular momentum between the scattering
quarks, Ly ∼ −p/μ. In the nonrelativistic limit for mas-
sive quarks, P is proportional to the spin-orbital coupling
energy P ∝ ELS/μ, where ELS = ( 	L · 	S)(dV0/dr)/rm2 and
(dV0/dr)/r ∼ μ3 with typical interaction range r ∼ 1/μ.

The estimates in Refs. [12,16] and [17] were based on the
assumption that the initial quarks are not polarized. In order
to discuss the time evolution of the quark polarization via
multiple scattering, one must calculate the quark-quark cross
section of initially polarized quarks. Let the fraction of initial
quarks of spin λi/2 along ŷ be Rλi

= (1 + λiPi)/2 with Pi

being the initial polarization. The identity R+ + R− = 1 must
hold. Consider a quark with initial relative four-momentum
pμ = (E, p) and spin λi/2 scattering with a virtual gluon and
resulting in final spin λf /2; the cross section with fixed impact
parameter xT is

dσλf

d2xT

= CT

∑
λi

∫
d 2qT

(2π )2

∫
d 2kT

(2π )2
ei(kT −qT )·xT

×Rλi
Iλf λi

(kT , qT , E),

Iλf λi
≡ Mλf λi

(qT , E)M∗
λf λi

(kT , E), (2.2)

Mλf λi
(qT , E) = g

2E
ūλf

(pq)A/(qT )uλi
(p),

where CT = 2/9 is the color factor associated with the target,
qT (kT ) is the transverse momentum transfer from the virtual
gluon to quark, and p

μ

q(k) is the final four-momentum of

FIG. 1. (Color online) Illustration of noncentral collisions with
impact parameter b of two heavy nuclei with radii RA. The global
angular momentum of the produced matter is along −ŷ, opposite to
the reaction plane.

quark, p
μ

q(k) = pμ + [0, qT (kT )]. We use the screened static
potential model to calculate Mλf λi

in which Aμ = (A0, 0)
with A0(qT ) = g/(q2

T + μ2) [3].
For small angle scattering (which is justified when the

relative longitudinal momentum p is large), qT , kT ∼ μ � E,
one finds

Iλf λi
≈ g2

2
A0(qT )A0(kT )

{
1 + λiλf

+ 1

2E(E + m)
[(1 + λiλf )p · (qT + kT )

+ i(λi + λf )p · ŷ × (kT − qT )]

}
. (2.3)

From Eqs. (2.2) and (2.3), it is evident that the polarization
will not change if one averages the cross section over all
the possible directions of the parton impact parameter xT .
However, in noncentral heavy-ion collisions, the local relative
OAM Ly provides a preferred average reaction plane for parton
collisions. This will lead to a global quark polarization opposite
to the reaction plane of nucleus-nucleus collisions. This
conclusion should not depend on our perturbative treatment of
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parton scattering as far as the effective interaction is mediated
by the vector coupling in QCD. Therefore, we average over
the upper half-xy-plane with x > 0, that is, average over
the relative angle between parton xT and the nuclear impact
parameter b from −π/2 to π/2 and over xT . To do this, we
use the identity∫

x>0
d2xT ei(kT −qT )·xT = 2πiδ(ky − qy)

kx − qx + i0+ . (2.4)

Then the total unpolarized cross section reads

σ ≡
∫

x>0
d2xT

dσ

d2xT

≡
∫

x>0
d2xT

(
dσ+
d2xT

+ dσ−
d2xT

)

=
∫ ∞

0
dqT qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣1 − Pi

p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦

= CT g4

8πμ2

[
1 − Pi

πμp

2E(E + m)

]
, (2.5)

and the polarized cross section reads

�σ ≡
∫

x>0
d2xT

d�σ

d2xT

≡
∫

x>0
d2xT

(
dσ+
d2xT

− dσ−
d2xT

)

=
∫ ∞

0
dqT qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣Pi −

p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦

= CT g4

8πμ2

[
Pi − πμp

2E(E + m)

]
, (2.6)

where K(x) is the complete elliptic integral of the first kind.
The final global quark polarization is then

Pf = Pi −
(
1 − P 2

i

)
πμp

2E(E + m) − Piπμp
. (2.7)

It is also useful to get the transverse momentum dependence
of the quark polarization. From Eqs. (2.5) and (2.6), we read
out the differential cross sections,

d�σ

dqT

= qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣Pi −

p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦ , (2.8)

dσ

dqT

= qT

CT g4

4π
(
q2

T + μ2
)2

×
⎡
⎣1 −

Pip

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m)

⎤
⎦ .

(2.9)

FIG. 2. The TMDP as a function of transverse momentum in unit
of μ. The initial relative longitudinal momentum is chosen to be
p = 10μ.

The transverse-momentum-dependent polarization (TMDP)
defined as Pf (qT ) ≡ (d�σ/dqT )/(dσ/dqT ) now reads

Pf (qT ) =
πE(E + m)Pi − p

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
)

πE(E + m) − Pip

√
q2

T + μ2K
(
qT /

√
q2

T + μ2
) .

(2.10)

Some discussions are in order. (i) If the initial quark
is unpolarized, Pi = 0, we recover the result of Ref. [12].
(ii) Because the denominator is always positive in the right-
hand side (RHS) of Eq. (2.7) for high relative longitudinal mo-
mentum (i.e., when small angle approximation is applicable),
we always have Pf � Pi . Therefore, scattered quarks always
prefer to be polarized along −ŷ direction. (iii) The scattering
matrix elements Iλf λi

with spin flipping (λf = −λi) are zero
according to Eq. (2.3), so there is no flipping of quark’s spin
via the scattering under this small angle approximation. The
polarization in the final state is caused by the larger cross
section of quarks with spin up relative to quarks with spin
down. This will lead to the conclusion that if the initial quark
is completely polarized, Pi = ±1, we must have Pf = Pi .
This is indeed the case expressed in Eq. (2.7) when Pi = ±1.
(iv) The quark polarization has a remarkable transverse mo-
mentum dependence, as shown in Eq. (2.10). Figure 2 shows
the typical behavior of TMDP as a function of the transverse
momentum with given p = 10μ. The polarization grows with
the transverse momentum due to quark-quark scattering. In
principle, the �-hyperon polarization should have similar
transverse momentum dependence, although as we mentioned
in Sec. I it is not trivial to construct a correspondence between
quark polarization and hadron polarization.
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FIG. 3. (Color online) Illustration of the velocity profiles of the
relativistic laminar flow.

III. RELATIVISTIC LAMINAR FLOW

Before discussing how the quark polarization evolves in
a viscous QGP due to multiple scattering, we have to know
how the QGP itself evolves through either transport model or
viscous hydrodynamical model [9,10,28–32], Moreover, we
also have to know the initial profile of the longitudinal flow
field. In the discussion in Sec. II, we simply followed Ref. [12]
and assumed that nothing depends on the longitudinal position
in the system. In such a case, the finite angular momentum
must lead to a velocity profile depicted in Fig. 3 (see Ref. [33]
for a discussion of possible consequences of such a profile). On
the other hand, another extreme is to assume that dvz/dx ≡
0 everywhere, but the angular momentum is carried by the
matter distribution in the reaction plane; see Ref. [34] for
illustration.

To study the effect of viscosity on the decay of the
local angular momentum, we consider a simple laminar flow
without driving force between two frictionless (free-slip flow)
impenetrable walls. We assume the walls are infinitely large
and separated by a distance 2h. To make dimensions relevant
for a heavy-ion collision, we set h = 5 fm. Such a scenario
might be far from the real longitudinal flow profile in high-
energy heavy-ion collisions, but it will be very illustrative
for our study here. We further assume that the flow profile
has no longitudinal variation and the system has a reflection
symmetry respect to the yz plane. We study two cases: One
with no expansion, and another with boost-invariant expansion
in y direction, that is, with flow profile vy = y/t . In both cases,
the flow four-velocity in the reaction plane has the general
form uμ = (γ, γ vx, 0, γ vz) with γ ≡ 1/

√
1 − v2

x − v2
z and

vx,z(t, x) being the x and z components of the three-velocity.
As is well known, the relativistic Navier-Stokes hydrody-

namics is unstable and provides a possibility for acausal signal
velocities [35]. Therefore, we use the second-order theory by
Israel and Stewart [36] instead. Although hydrodynamics has
been widely used to model the heavy-ion collisions, as far
as we know, there is no literature discussing the relativistic
laminar flow.

If there are no conserved charges, the hydrodynamical
equations of motion are given by the conservation of energy
and momentum

∂μT μν = 0, (3.1)

where T μν ≡ (ε + )uμuν − gμν + πμν is the energy-
momentum tensor, ε is the energy density,  is the pressure,1

and πμν is the shear stress tensor. To close the set of differential
equations, one also needs to specify an equation of state (EOS)
ε = ε(). For simplicity, we use the ideal gas EOS ε = 3.

In its simplest form, Israel-Stewart hydrodynamics means
that instead of being directly proportional to the velocity
gradients, the shear stress tensor is a dynamical variable, which
relaxes toward the Navier-Stokes value on its relaxation time
τπ :

Dπμν = − 1

τπ

(πμν − 2η∇〈μuν〉) − 2πκ(μuν)Duκ, (3.2)

where D ≡ uλ∂λ, A(μν) ≡ (Aμν + Aνμ)/2, A〈μν〉 ≡
[�(μ

α �
ν)
β − 1

3�μν�αβ]Aαβ , ∇μ ≡ ∂μ − uμuν∂ν , �μν ≡
gμν − uμuν , and η is the shear viscosity coefficient. The last
term is required to keep the shear stress tensor orthogonal to
the flow velocity in all circumstances. This is the so-called
truncated Israel-Stewart equation. Although there are more
terms in a complete Israel-Stewart equation, for our purpose
here, the truncated one is sufficient.

The relaxation time is given by [36]

τπ = 2ηβ2, (3.3)

which is dependent on the shear viscosity and another
coefficient β2. For massless Boltzmann particles, the kinetic
theory gives [36]

β2 = 3

4
. (3.4)

If there is no phase transition, it is expected that β2 for
Fermion and Boson gases have only minor modification from
β2 for Boltzmann gas at high temperature [37–42]. Taking
temperature T ∼ 350 MeV, the relaxation time is around
τπ ∼ 0.27–1.35 fm if using η/s = 1/(4π ) − 5/(4π ), where
s is the entropy density, and for free gluon gas it is

s = νg

2π2T 3

45
, (3.5)

with the degeneracy factor νg = 2(N2
c − 1).

Since the system has reflection symmetry with respect to
the yz plane, and there are no particle, momentum, or heat
flow through the hard walls, the system obeys the following
boundary conditions:

vz(t, 0) = vx(t, 0) = vx(t,±h) = 0,
(3.6)

∂vz(t,±h)/∂x = 0.

As the initial state we choose uniform initial temperature of
355 MeV (corresponding to RHIC initial temperature), no flow
in x direction, and a simple sine-type longitudinal flow velocity
profile

vx(t0, x) = 0,
(3.7)

vz(t0, x) = v0 sin (πx/2h),

1Note that since we used P to denote polarization, to avoid
confusion we do not use it to denote pressure.
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where v0 is the magnitude of the initial velocity at the
two boundaries. In the following numerical calculation, we
consider two cases: v0 = 0.7 and 0.9. In the expanding case,
we use the initial time τ0 = 1 fm. Since the shear stress tensor
is a dynamical variable in Israel-Stewart hydrodynamics, we
need its initial value too. A natural choice is the Navier-Stokes
value, but its exact evaluation is difficult. It contains the time
derivative of the flow velocity, which is unknown before the
hydrodynamic equation is solved. To avoid this problem, we
initialize the shear stress, not to its exact Navier-Stokes, but to
a “static Navier-Stokes” value; that is, we ignore all the time
derivatives in the Navier-Stokes definition of the shear stress
tensor and calculate the value based on spatial derivatives only.
In practice this means that some components of the tensor
are slightly larger and some slightly smaller than their exact
Navier-Stokes values.

In Fig. 4, we depict the time evolution of the gradient of the
longitudinal momentum per particle averaged over x ∈ [0, h],

〈
dpz

dx

〉
≡

∫ h

0
dxJ 0(x)

d

dx

T 0z(x)

J 0(x)

/ ∫ h

0
dxJ 0(x), (3.8)

where J 0 = γρ is the proper particle number density. As
expected, the shear viscosity dissipates the average gradient
of the longitudinal momentum, especially for larger values
of shear viscosity. The transverse expansion accelerate this
degradation, since strong transverse expansion means larger
shear (shear tensor).

In the case of transverse expansion and large viscosity,
there appear to be a “shoulder” in the time evolution of the
longitudinal momentum gradient 〈dpz/dx〉 as shown in the
lower panel of Fig. 4, where the gradient drops very fast
initially and then slows down for a while before it decreases
again. The temporary slowdown is caused by the oscillatory
behaviors of the induced transverse flow in the x direction, and
the particle number density J 0, which is used as a weight in
the calculation of the average longitudinal momentum gradient
in Eq. (3.8). The oscillations are an artifact of the fixed-wall
boundary conditions in our simple scenario. When there is no
transverse expansion, the degradation is slower and there is no
shoulder because of the smaller shear (in shear tensor).

In Fig. 5, we show the profiles of velocity vz at different
times with viscosity η/s = 5/4π with (lower panel) and with-
out (upper panel) transverse expansion. One of the functions of
the shear viscosity is to transform the kinetic energy of the fluid
to internal energy, hence damping the fluid shear (as shown in
Fig. 5) and heating up the fluid. This can be explicitly seen in
the upper panel of Fig. 6, where the temperature evolution is
shown for the nonexpanding system. The transverse Bjorken
expansion in our problem, however, will dilute the system and
cool the system down, overcoming the slight heating up by
the shear viscosity, as shown in the lower panel of Fig. 6. The
transverse expansion will also accelerate the degradation of
the longitudinal velocity as shown in the lower panel of Fig. 5
as compared to the upper panel for the case of no transverse
expansion.

FIG. 4. (Color online) Evolution of the average gradient of the
longitudinal momentum per particle, dpz/dx, at different shear
viscosities. Upper panel: the system has no transverse expansion.
Lower panel: the system has Bjorken expansion in the ŷ direction.

IV. EVOLUTION OF THE GLOBAL QUARK
POLARIZATION

With the model of time evolution of the longitudinal
momentum gradient of the medium partons, we can now
study the time evolution of the quark polarization when it
is progressively polarized due to multiple scattering.

According to Eq. (2.7), the change of polarization caused
by one scattering is

�P ≡ Pf − Pi = −
(
1 − P 2

i

)
πμp

2E(E + m) − Piπμp
. (4.1)

For convenience, we denote P = Pi . Then we get the following
evolution equation for the polarization:

dP

dt
≡ �P

τq

= − 1

τq

(1 − P 2)πμp

2E(E + m) − Pπμp
, (4.2)
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FIG. 5. (Color online) The profile of longitudinal velocity vz at
different times with η/s = 5/4π .

where τq is the mean free path of quark, which is related
to the transport cross section σtr of the interacting partons
though τq � 1/(ρσtr), where ρ = νgζ (3)T 3/π2 is the density
of medium gluons, assuming gluons are the dominant degrees
of freedom in the medium. The shear viscosity for a thermal
ensemble of gluons is roughly [43]

η � 1
3ρ〈ptr〉 4

9τq ≈ T 4
9ρτq. (4.3)

We have then the final rate equation for the time evolution of
the quark polarization,

dP

dt
= −4Tρ

9s

s

η

(1 − P 2)πμp

2E(E + m) − Pπμp
. (4.4)

From Eq. (4.4), the rate dP/dt is inversely proportional to
the viscosity. This is evidently shown in the upper panel of
Fig. 7, in which the evolutions of the quark polarizations are
shown for the initial polarizations P (0) = 0 and for a system
without transverse expansion. With transverse expansion, the
mean free path increases more rapidly with time and therefore
slows down the polarization rate. The transverse expansion

FIG. 6. (Color online) Evolution of the average temperature 〈T 〉
with different shear viscosities and different initial velocities. Upper
panel: the system has no transverse expansion. Lower panel: the
system is Bjorken expanding in the ŷ direction.

also accelerates the degradation of the longitudinal momentum
gradient, reducing the polarization in each scattering. Both
effects slow down the time evolution of the polarization in an
expanding system as shown by comparison between the upper
and lower panels of Fig. 7.

Because of the reheating by viscous interaction, the
initial cooling of the system due to transverse expansion is
significantly slower for a larger value of shear viscosity, as
shown in Fig. 6. This speeds up the polarization according
to Eq. (4.4). However, a larger shear viscosity also slows
down the polarization because the polarization rate is inversely
proportional to the shear viscosity. During the early stage of
evolution, the second effect dominates, leading to a slower
polarization process with a larger value of shear viscosity. At
a later time, effect of reheating becomes more dominant and a
larger shear viscosity leads to a faster polarization process.

The polarization is also sensitive to the initial condition of
the longitudinal flow shear. In our simple laminar flow model,
the initial longitudinal flow shear is proportional to the value
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FIG. 7. (Color online) Evolution of the average polarization P =
�σ/σ with initial polarization P (t0) = 0 with different values of
viscosities without (upper panel) and with (lower panel) transverse
expansion.

of v0. The nonlinear dependence of the polarization rate on the
relative momentum p in Eq. (4.4) determines the nontrivial
dependence of the polarization on the values of v0 as shown
in Fig. 7.

Note that the polarization rate we used are derived with
the approximation of small angle scattering, which is only
valid when the longitudinal momentum gradient is large. For
large shear viscosity η/s and at late time, the longitudinal
momentum gradient can become too small. One can no longer
use the rate equation derived here. However, one can assume
that the polarization process will stop at this point when there
is not significant local orbital angular momentum.

V. SUMMARY

In conclusion, we have calculated the polarization cross
section for quarks with initial polarization within the frame of
perturbative QCD, which we use to study the time evolution of
the quark polarization via multiple scattering in a medium with
nonvanishing local orbital angular momentum. We considered
the simple case of laminar flow as governed by viscous
hydrodynamics with given shear viscosity η/s and a simple
illustrative initial condition. Such a simple hydrodynamic
model provides the dynamic evolution of the longitudinal
flow shear as the polarization mechanism for quarks via
parton scattering. Because the values of the shear viscosity
influence the degradation of the longitudinal flow shear with
time and the cooling of the system, it also determines the time
evolution of the quark polarization. Since the polarization rate
is inversely proportional to the shear viscosity and depends
nonlinearly on the average longitudinal momentum shear, the
final quark polarization is found to be sensitive to the shear
viscosity but has a nontrivial dependence. In this sense, one
can use the final-state polarization as a possible viscometer of
the QGP.

For more realistic studies, one should employ a full scale
3 + 1D viscous hydrodynamics [32] with initial conditions
from Monte Carlo models such as HIJING [44]. The initial
parton production from this kind of model has approximate
Bjorken scaling, which will give rise to very small initial
local longitudinal flow shear [17] except at very large rapidity
regions. Such small initial local longitudinal flow shear comes
from the violation of the Bjorken scaling, which one can use
as the initial condition. Furthermore, one should also extend
the current calculation of the quark polarization beyond the
small angle approximation.
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