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Fluctuations of the number of participants and binary collisions in AA interactions at fixed
centrality in the Glauber approach
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In the framework of the classical Glauber approach, the analytical expressions for the variance of the number
of wounded nucleons and binary collisions in AA interactions at a given centrality are presented. Along with
the optical approximation term, they contain additional contact terms arising only in the case of nucleus-nucleus
collisions. The magnitude of the additional contributions, e.g., for PbPb collisions at Super Proton Synchrotron
(SPS) energies, is larger than the contribution of the optical approximation at some values of the impact parameter.
The sum of the additional contributions is in good agreement with the results of independent Monte Carlo
simulations of this process. Due to these additional terms, the variance of the total number of participants for
peripheral PbPb collisions and the variance of the number of collisions at all values of the impact parameter
exceed several multiples of the Poisson variances. The correlator between the numbers of participants in colliding
nuclei at fixed centrality is also analytically calculated.
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I. INTRODUCTION

At present, considerable attention is devoted to experi-
mental and theoretical investigations of the multiplicity and
transverse momentum fluctuations of charged particles in
high-energy AA collisions (see [1–7] and references therein).
One expects an increase of fluctuations in the case of freeze-out
close to the QCD critical endpoint of the quark-gluon-plasma–
hadronic-matter phase boundary line [8,9].

The aim of the present paper is to draw attention to another
factor leading to the increase of fluctuations in the case of AA

interactions, namely, the increase of fluctuations of the number
of participants and binary collisions due to multiple-contact
nucleon interactions in nucleus-nucleus collisions.

Clearly these fluctuations lead to fluctuations in the number
of particle sources, and so they directly impact the multiplicity
and transverse momentum fluctuations of produced charged
particles and also the correlations between them (see, for
example, [10–17]).

In this paper the analytical expressions for the variance
of the number of wounded nucleons and binary collisions
in AA interactions at a given centrality are obtained, taking
into account multiple-contact NN interactions (so-called loop
contributions). The calculations are fulfilled in the framework
of the classical Glauber approach [18], having a simple
probabilistic interpretation [19,20]. In contrast with purely
Monte Carlo simulations, the analytical calculations enable
us to understand the origin of the increased values of the
fluctuations.

As a result, we demonstrate that multiple-contact NN

interactions in AA scattering lead to the fact that, e.g., for PbPb
collisions at SPS energies, the variance of the total number of
participants for peripheral collisions and the variance of the
number of collisions at all values of the impact parameter
exceed a few multiples of the Poisson variances.

*vechernin@pobox.spbu.ru

The paper is organized as follows. In Sec. II, in the
framework of the classical Glauber approach, we present
the analytical expression for the variance of the number of
wounded nucleons in one of the colliding nuclei at a fixed
value of the impact parameter. Along with the well-known
optical contribution (which depends only on the total inelastic
NN cross section), in the case of nucleus-nucleus collisions
there is the additional contact term depending on the profile of
the NN interaction probability in the impact parameter plane.

In Sec. III we calculate the correlator between the numbers
of participants in colliding nuclei at fixed centrality, and as
a consequence we find the variance of the total number of
participants in both nuclei.

In Sec. IV, in the framework of the same approach, we
present the analytical expression for the variance of the number
of NN binary collisions in AA interactions at a given central-
ity. Along with the optical approximation term, this expression
also contains other terms, which are the dominant ones. These
terms correspond to multinucleon contact interactions and
arise only in the case of nucleus-nucleus collisions.

The derivations of all formulas are presented in Appendixes
A, B, and C.

Throughout the paper the results of numerical calculations
are presented to illustrate the obtained analytical results.
We also compare our analytical calculations with the results
obtained purely from Monte Carlo simulations of nucleus-
nucleus scattering.

Note that we restrict our consideration to the region of
the impact parameter β < RA + RB , where the probability of
inelastic interaction σAB(β) of two nuclei with radii RA and
RB is close to unity.

II. VARIANCE OF THE NUMBER OF PARTICIPANTS IN
ONE NUCLEUS

At first we consider the variance V [NA
w (β)] of the number

of participants NA
w (β) (wounded nucleons) at a fixed value
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of the impact parameter β in one of the colliding nuclei A.
In the framework of a purely classical, probabilistic approach
to nucleus-nucleus collisions, formulated in [18], we find for
the mean value and for the variance of NA

w (β) the following
expressions (see Appendix A):〈

NA
w (β)

〉 = AP (β), (1)

V
[
NA

w (β)
] = AP (β)Q(β) + A(A − 1)[Q(12)(β) − Q2(β)],

(2)

where P (β) = 1 − Q(β). For Q(β) and Q(12)(β) we have the
following (where all integrations imply the integration over
two-dimensional vectors in the impact parameter plane):

Q(β) =
∫

da TA(a)[1 − fB(a + β)]B, (3)

Q(12)(β) =
∫

da1da2TA(a1)TA(a2)[1 − fB(a1 + β)

− fB (a2 + β) + gB(a1 + β, a2 + β)]B, (4)

with

fB(a) ≡
∫

db TB(b)σ (a − b), (5)

gB(a1, a2) ≡
∫

db TB(b)σ (a1 − b)σ (a2 − b). (6)

Here TA and TB are the profile functions of the colliding
nuclei A and B. σ (a) is the probability of inelastic interaction
between two nucleons at impact parameter a. We assume
that σ (a), TA, and TB depend only on the magnitude of their
two-dimensional vector argument. Hence fB(a) = fB(|a|) and
Q(β) = Q(|β|).

Formula (1) and the first term in formula (2) correspond
to the naive picture (the so-called optical approximation),
implying that, in the case of AA collision at impact parameter
β, one can use the binomial distribution for NA

w (β) (see, for
example, [21,22]):

℘opt
(
NA

w

) = C
NA

w

A P (β)N
A
w Q(β)A−NA

w , P (β) = 1 − Q(β),

(7)

with an averaged probability P (β) of inelastic interaction
between a nucleon of nucleus A with nucleons of nucleus B.
P (β) is considered to be the same for all nucleons of nucleus
A. In the optical approximation one has〈

NA
w (β)

〉
opt = AP (β), V

[
NA

w (β)
]

opt = AP (β)Q(β).

(8)

The whole expression (2) for the variance is the result of
a more accurate calculation (see Appendix A) in which we
first calculate the probabilities of all binary NN interactions,
taking into account the impact-parameter plane positions of
nucleons in nuclei A and B, and only then average over nucleon
positions:

V
[
NA

w (β)
] = 〈

NA
w (β)

2〉 − 〈
NA

w (β)
〉2
, (9)

where

〈X〉 ≡ 〈〈X〉B〉A ≡
∫

X

B∏
k=1

TB(bk)dbk

A∏
j=1

TA(aj )daj . (10)

Here X is the average value of some variate X at fixed positions
of all nucleons in the nuclei A and B; 〈 〉A and 〈 〉B denote
averaging over positions of these nucleons with corresponding
nuclear profile functions.

In the limit rN � RA,RB formulas (5) and (6) reduce to

fB(a) ≈ σNN TB(a),

gB(a1, a2) ≈ I (a1 − a2) · TB[(a1 + a2)/2], (11)

with

σNN ≡
∫

db σ (b), I (a) ≡
∫

db σ (b) σ (b + a). (12)

Note that in this limit Q(β) and hence the mean value (1) and
the first term of the variance (2) depend only on the integral
inelastic NN cross section σNN , but Q(12)(β) in the second
term of the variance (2) depends also on the shape of the
function σ (b) through the integral I (a) (12).

Note also that using the simple approximation with the
δ function, σ (b) = σNNδ(b), for NN interactions gives the
same result (approaching the limit rN � RA,RB) only for
the optical part of the answer, which is expressed through
Q(β). If we use the approximation σ (b) = σNNδ(b) to cal-
culate Q(12)(β) we get I (a) = σ 2

NNδ(a) and gB = σ 2
NNδ(a1 −

a2)TB(a1), which leads to infinite Q(12)(β) at B � 2. Mean-
while, for any correct approximation of σ (b) with σ (b) � 1
(in correspondence with its probabilistic interpretation in
the classical Glauber approach) we find a finite answer for
Q(12)(β).

In the quantum case in the Glauber approximation, due to
unitarity one has

σ (b) ≡ σ in(b) = σ tot(b) − σ el(b) = 2 Im γ (b) − |γ (b)|2 � 0,

(13)

where γ (b) is the amplitude of NN elastic scattering. This
leads to the restrictions 0 � σ tot(b) � 4, 0 � σ el(b) � 4, and
0 � σ in(b) � 1. So in the quantum case σ (b) also admits a
probabilistic interpretation [19,20].

In our numerical calculations we have used for σ (b) the
“black-disk” approximation

σ (b) = θ (rN − |b|) (14)

and the Gauss approximation

σ (b) = exp
( − b2/r2

N

)
. (15)

In both cases σNN = πr2
N . For the nuclear profile functions TA

and TB we have used the standard Woods-Saxon approxima-
tion:

TA(a) =
∫

dz ρ(r), r2 = a2 + z2,

ρ(r) = ρ0

(
1 + exp

r − RA

κ

)−1

, (16)

054909-2



FLUCTUATIONS OF THE NUMBER OF PARTICIPANTS . . . PHYSICAL REVIEW C 84, 054909 (2011)

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12

V
(N

wA
)

impact parameter, β (fm)

σ(b)-black disk (this appr.)
σ(b)-black disk (MC)

σ(b)-Gauss (this appr.)
σ(b)-Gauss (MC)

Optical approx.
Poisson

FIG. 1. Variance of the number of wounded nucleons in one
nucleus for PbPb collisions at SPS energies (σNN = 31 mb) as a
function of the impact parameter β (fm). The points • and � are
results of numerical calculations from the analytical formulas (2)–(4),
(11), and (12) using, respectively, the black-disk (14) and Gaussian
(15) approximations for NN interactions; ◦ and � are results of
independent Monte Carlo (MC) simulations using the black-disk (14)
or Gaussian (15) approximation for NN interactions; ∗ is the optical
approximation result (8) [the first term in formula (2)]; and + is
the Poisson variance V [NA

w (β)] = 〈NA
w (β)〉. The curves are shown to

guide the eyes.

with RA = R0A
1/3, R0 = 1.07 fm, κ = 0.545 fm, and ρ0 fixed

by the condition
∫

da TA(a) = 1.
In Fig. 1 we present the the numerical evaluation of the

contribution of the additional (contact) term in formula (2),
using the example of PbPb collisions at SPS energies (rN =
1 fm, σNN = 31 mb). For a control we have also carried out
independent calculations of the mean values and the variances
involved by using MC simulations of AA scattering, presenting
the results in the same figure.

In Fig. 1 we see that the contact term in (2) is essential
and that it gives approximately the same contribution to the
variance of NA

w (β) in PbPb collisions at intermediate and large
values of β as the first optical term. We see in Fig. 1 that the
results of independent MC simulations of the NA

w (β) variance
are in a good agreement with the results of the analytical
calculations from formula (2) only if one takes into account
the contact term.

We see also in Fig. 1 that, for peripheral AA collisions at
large β, when P (β) becomes small [P (β) � 1, Q(β) ≈ 1] the
optical approximation (7) reduces to the Poisson distribution
with V [NA

w (β)]opt ≈ 〈NA
w (β)〉 (8).

The variance of NA
w (β) is larger than the Poisson one

for peripheral PbPb collisions (at β > 7 fm) only because
of the contact term, in correspondence with indications
from experimental data on the dependence of multiplicity
fluctuations on centrality at SPS and Relativistic Heavy Ion
Collider (RHIC) energies [1,4].

The weak dependence of the results on the form of the
NN interaction at nucleon distances is also seen. In the case
of the black-disk (14) approximation for σ (b) the results
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FIG. 2. The same as in Fig. 1 except for the mean number of
wounded nucleons in one nucleus, calculated from formulas (1),
(3), and (5) and from independent MC simulations; ∗ is the optical
approximation result, calculated using formulas (1), (3), and (12).

are systematically slightly higher than the results from the
Gaussian (15) approximation with the same value of σNN .

In Fig. 2 we see that the mean value 〈NA
w (β)〉 (1), in contrast

to the variance, coincides with the optical approximation result
(8) and depends only on σNN in the limit rN � RA,RB . The
MC simulations also confirm this result.

We would like to emphasize that the nontrivial term in
expression (2) for the variance arises only in the case of
nucleus-nucleus collisions. At A = 1 or B = 1 it vanishes.
At A = 1 this is due to the explicit factor A − 1 in (2), and
at B = 1 it is because in this case Q(12)(β) = Q2(β). This
result corresponds to the well-known fact that for nucleus-
nucleus collisions the Glauber approach does not reduce to the
optical approximation even in the limit rN � RA,RB (see, for
example, [23]).

The additional term that arises in the expression for the
variance (2) in the case of nucleus-nucleus collisions depends,
as we have mentioned, not only on the integral value of the
inelastic NN cross section σNN = ∫

db σ (b) but also on the
shape of the function σ (b), i.e., on the details of the NN

interaction at nucleon distances, which are much smaller than
typical nuclear distances. In the quantum Glauber approach,
this dependence corresponds to the fact that in the case of
AA collisions, in contrast with pA collisions, loop diagrams
of the type shown in Fig. 3 appear and one encounters the
contact-term problem (see, for example, [23–25]).

FIG. 3. An example of the loop diagram in AA collisions. 1 and
2 are nucleons of the nucleus A; 1′ and 2′ are nucleons of the nucleus
B (see [23–25] for details).
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The second term in formula (2) is the manifestation of this
problem at the classical level. In the case of a tree diagram the
“lengths” of the interaction links in the transverse plane are
independent. As a consequence the result is expressed only
through P (β), the probability of the interaction of a nucleon
of nucleus A with nucleons of nucleus B averaged over its
position in nucleus A. P (β) is the same for any nucleon
of nucleus A. In the case of the loop diagram in Fig. 3 the
“lengths” of the interaction links in the transverse plane are
not independent, the result cannot be expressed only through
the averaged probability P (β), and correlation effects have to
be taken into account.

III. VARIANCE OF THE TOTAL NUMBER OF
PARTICIPANTS

Now we calculate the variance of the total number of
participants V [NA

w (β) + NB
w (β)] at a fixed value of the impact

parameter β. Clearly, for the mean value we have simply〈
NA

w (β) + NB
w (β)

〉 = 〈
NA

w (β)
〉 + 〈

NB
w (β)

〉
, (17)

and by (9) for the variance we have

V
[
NA

w (β) + NB
w (β)

] = V
[
NA

w (β)
]

+V
[
NB

w (β)
] + 2

{〈
NA

w (β)NB
w (β)

〉
− 〈

NA
w (β)

〉〈
NB

w (β)
〉}

. (18)

In the naive optical approach there is no correlation between
the numbers of participants in colliding nuclei at a fixed value
of the impact parameter:〈

NA
w (β)NB

w (β)
〉
opt = 〈

NA
w (β)

〉
opt

〈
NB

w (β)
〉
opt

= 〈
NA

w (β)
〉〈
NB

w (β)
〉
.

More accurate calculations fulfilled in accordance with (9) and
(10) (see Appendix B) lead to〈

NA
w (β)NB

w (β)
〉 − 〈

NA
w (β)

〉〈
NB

w (β)
〉

= AB[Q(11)(β) − Q(β)Q̃(β)], (19)

where

Q(11)(β) =
∫

da db TA(a)TB(b)[1 − fB(a + β)]B−1

× [1 − fA(b − β)]A−1[1 − σ (a − b + β)], (20)

Q̃(β) =
∫

db TB(b)[1 − fA(b − β)]A, (21)

and

fA(b) ≡
∫

da TA(a)σ (b − a) ≈ σNN TA(b). (22)

Q(β) and fB(a) are the same as in formulas (3), (5), and (11).
Recall that in our approximation fA(b) = fA(|b|) and Q̃(β) =
Q̃(|β|). Then Q̃(β) can be obtained from Q(β) by a simple
permutation of A and B. At A = B we have Q̃(β) = Q(β).

The results of numerical calculations of the correlator
(19) from formulas (20)–(22) for PbPb collisions at SPS
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FIG. 4. The correlator between the numbers of wounded nucleons
in colliding nuclei, calculated from analytical formulas (19)–(22) and
from independent MC simulations. The symbols are the same as in
Fig. 1.

energies together with the results obtained by independent
MC simulations of these collisions are presented in Fig. 4.

Comparing Fig. 4 with Fig. 1 we see that the contribution of
the correlator to the variance of the total number of participants
at intermediate values of β is about half the variance for
one nucleus, V [NA

w (β)], and is approximately equal to the
contribution of the first optical term in (2). At large values of
the impact parameter (β � 10 fm) the relative contribution of
the correlator (19) to the total variance (18) is even greater. The
results are again in a good agreement with the results obtained
by MC simulations. [The small difference in the region
8–10 fm arises from use of the approximate formulas (11)
and (22).]

In Figs. 5 and 6 we present the final results for the variance
of the total number of participants in PbPb collisions at
SPS energies, taking into account the contribution of the
correlator. [Figure 6 is the same as Fig. 5 except for the scaled
variance V [Nw(β)]/〈Nw(β)〉, Nw(β) ≡ NA

w (β) + NB
w (β).] We

see in particular that the calculated variance of the total
number of participants, V [Nw(β)], is a few times larger
than the Poisson variance in the impact parameter region
of 8–12 fm.

IV. VARIANCE OF THE NUMBER OF BINARY
COLLISIONS

In this section we present the results of the calculation
of the variance of the number of NN collisions at a fixed
value of the impact parameter β in the framework of the same
classical Glauber approach [18] for nucleus-nucleus collisions.
The details of the calculations are in Appendix C.

We found that the formula for the mean number of binary
collisions again coincides with the well-known expression
from the optical approximation [compare with formula (29)
below]:

〈Ncoll(β)〉 = ABχ (β), (23)
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FIG. 5. The same as in Fig. 1 except for the variance of the total
number of wounded nucleons Nw(β) ≡ NA

w (β) + NB
w (β) in colliding

nuclei. The variance V [Nw(β)] is calculated from formulas (2)–(4),
(11), and (12), taking into account the contribution of the correlator
(18)–(22); + is the Poisson variance V [Nw(β)] = 〈Nw(β)〉.

where

χ (β) ≡
∫

da db TA(a)TB(b)σ (a − b + β)

≈ σNN

∫
da TA(a)TB(a + β) (24)

represents the averaged probability of NN interaction. The
mean values of the number of collisions as a function of the
impact parameter β are shown in Fig. 7.

In contrast to the mean value, the formula obtained for the
variance of Ncoll(β),

V [Ncoll(β)] = AB[χ (β) + (B − 1)χ1(β)

+ (A − 1)χ̃1(β) − (A + B − 1)χ2(β)],

(25)
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FIG. 6. The same as in Fig. 5 except for the scaled variance
V [Nw(β)]/〈Nw(β)〉 of the total number of wounded nucleons in
colliding nuclei, Nw(β) ≡ NA

w (β) + NB
w (β).
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FIG. 7. The mean number of NN collisions in PbPb interactions
at SPS energies calculated from formulas (23) and (24) and from
independent MC simulations as a function of the impact parameter
β (fm). The symbols are the same as in Fig. 1.

differs from the optical approximation result [see Eq. (30)
below]. It depends not only on χ (β) (24) but also on

χ1(β) ≡
∫

da TA(a)

(∫
db TB(b)σ (a − b + β)

)2

≈ σ 2
NN

∫
da TA(a)T 2

B (a + β) (26)

and

χ̃1(β) ≡
∫

db TB(b)

(∫
da TA(a)σ (a − b + β)

)2

≈ σ 2
NN

∫
da TB(a)T 2

A(a + β). (27)

χ̃1 is obtained from χ1 by permutation of A and B. (Recall that
we consider TA and TB to depend only on the magnitudes of
their two-dimensional vector arguments.) At A = B we have
χ̃1 = χ1. Note also that in the limit rN � RA,RB the values
χ , χ1, and χ̃1 and hence the variance (25) depend only on σNN

and not on the form of the function σ (b). [This was not the
case for the variance of the number of wounded nucleons; see
Sec. II after formula (12).]

For comparison we list below the optical approximation
results, which assume a binomial distribution of Ncoll(β)
with averaged probability χ (β) of NN interaction (see, for
example, [21,22]):

℘opt(Ncoll) = C
Ncoll
AB χ (β)Ncoll [1 − χ (β)]AB−Ncoll . (28)

In this case one has

〈Ncoll(β)〉opt = ABχ (β) (29)

and

V [Ncoll(β)]opt = ABχ (β)[1 − χ (β)] = 〈Ncoll(β)〉[1 − χ (β)].

(30)

Note that for heavy nuclei χ (β) is small even for central
collisions [χ (β) ∼ r2

N/R2
A �1], so the distribution (28) and
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FIG. 8. The variance of the number of NN collisions in PbPb
interactions at SPS energies as a function of the impact parameter β

(fm). • is the result of calculations from analytical formulas (24)–(27);
∗ is the optical approximation result, calculated from formulas (24)
and (30); + is the Poisson variance V [Ncoll(β)] = 〈Ncoll(β)〉. The
symbols are the same as in Fig. 1.

the variance in the optical approximation (30) practically
coincide with the Poisson ones: V [Ncoll(β)]opt ≈ 〈Ncoll(β)〉.

Note also that in the case of pA interactions (A = 1
or B = 1) our result (25) for the variance of the number
of collisions coincides with formula (30) obtained from the
optical approximation.

In Figs. 8 and 9 we present the results of our numerical
calculations of the variance of the number of collisions from
analytical formulas (24)–(27) in the case of PbPb scattering
at SPS energies together with the results obtained from our
independent Monte Carlo simulations of the scattering process.
(Figure 9 is the same as Fig. 8 except for the scaled variance
V [Ncoll(β)]/〈Ncoll(β)〉.)

We see that the calculated variance of the number of
collisions at all values of the impact parameter β is a few
times larger than the Poisson one, whereas the variance given
by the optical approximation practically coincides with the
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FIG. 10. The scaled variance of the total number of wounded
nucleons. The same as in Fig. 6 except for the nucleon density
distribution in nuclei (16), with a smaller value of the Woods-Saxon
parameter κ = 0.3 fm.

Poisson one [see the remark after formula (30)]. The results
obtained from independent Monte Carlo simulations confirm
our analytical result. [The small difference again can be
explained by the use of the approximate formulas (24), (26),
and (27).]

We have also analyzed the dependence of fluctuations on
the diffuseness of the nucleon density distribution in nuclei.
To study this dependence, calculations with a smaller (0.3 fm)
than standard (0.545 fm) value of the Woods-Saxon parameter
κ (16) were performed, which corresponds to a model of the
nucleus with a sharper edge (see Figs. 10 and 11).

The calculations confirm what one would expect from
simple physical considerations: A more compact distribution
of nucleons in nuclei does not change the mean number of
wounded nucleons but reduces its fluctuation because the
number of wounded nucleons is more strictly determined by
the collision geometry. As a result, the scaled variance of
the number of wounded nucleons decrease with κ (compare
Figs. 6 and 10).

For the number of binary NN collisions, due to the more
compact distribution of nucleons in nuclei the mean number
of collisions increases along with its variance. Therefore the
scaled variance of the number of binary collisions weakly
depends on the variation of the parameter κ (compare
Figs. 9 and 11). In both cases the contribution of the contact
term plays a crucial role.

V. DISCUSSION AND CONCLUSIONS

We have shown that, although the so-called optical ap-
proximation gives correct results for the average number of
wounded nucleons and binary collisions, the corresponding
variances cannot be described within this approximation in
the case of nucleus-nucleus interactions.

In the framework of the classical Glauber approach the
analytical expression for the variance of the number of
participants (wounded nucleons) in AA collisions at a fixed
value of the impact parameter is presented. Along with
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the optical-approximation contribution, which depends only
on the total inelastic NN cross section, in the case of
nucleus-nucleus collisions there is the additional contact-term
contribution, which depends on details of the NN interaction
at nucleon distances.

In the classical Glauber approach this contact contribution
arises from the interactions between two pairs of nucleons in
colliding nuclei (a pair in one nucleus with a pair in another).
Interactions of higher order than those between two pairs of
nucleons do not contribute to the variance. The expression for
the mean number of participants was proved to be exact in the
optical approximation, based only on the averaged probability
of interaction between single nucleons in projectile and target
nuclei.

These results are obtained in the framework of a purely
classical (probabilistic) Glauber approach [18]. However, it is
possible that in the quantum case the one-loop expression for
the variance and the “tree” expression for the mean number of
participants and binary collisions will be exact.

Using the obtained analytical formulas, the numerical
calculation of the variance of the number of participants in
PbPb collisions at SPS energies was done as an example. We
demonstrated that at intermediate and large impact parameter
values the optical and contact-term contributions are of the
same order and their sum is in a good agreement with the
results of independent MC simulations of this process.

When calculating the variance of the total number of
participants (in both nuclei) the correlation between the
numbers of participants in colliding nuclei is taken into
account. The analytical expression for the correlator at a fixed
value of the impact parameter is obtained. The results of
numerical calculations of the correlator for the same process
of PbPb collisions show that, at intermediate and large values
of the impact parameter, the correlator contribution to the
variance of the total number of participants is about half of
the variance in one nucleus, again in good agreement with
independent MC simulations.
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FIG. 11. The scaled variance of the number of binary NN

collisions. The same as in Fig. 9 except for the nucleon density
distribution in nuclei (16), with a smaller value of the Woods-Saxon
parameter κ = 0.3 fm.

As a result, for peripheral PbPb collisions the variance of the
total number of participants, calculated by taking into account
the contributions of the correlator and the contact terms, is a
few times larger than the Poisson variance.

In the framework of the same classical Glauber approach,
the analytical expression for the variance of the number of
NN binary collisions in AA interactions at a given centrality
is also found. Along with the optical approximation term it
also contains other terms, which are the dominant ones.

Due to these additional terms the variance of the number
of collisions at all values of the impact parameter is several
times higher than the Poisson one, whereas the variance given
by the optical approximation practically coincides with the
Poisson one. Again the results obtained by independent MC
simulations confirm our analytical result.

Significantly, these additional contact terms in the expres-
sions for the variances arise only in the case of nucleus-nucleus
collisions. In the case of proton-nucleus collisions they are
missing and the variances are well described by the optical
approximation.

Note that we have used the simplest factorized approx-
imation (A1) for the nucleon density distribution in nuclei
and we do not take into account nucleon-nucleon correlations
within one nucleus. Such correlations play a fundamental
role in, for example, the description of particle production in
nuclear collisions outside the domain kinematically available
for production from NN scattering (the so-called cumulative
phenomena) [26].

The additional contact contribution to the variance of the
number of wounded nucleons, as we have found, arises from
interactions between two pairs of nucleons in colliding nuclei,
which must occur at the same position in the impact parame-
ter plane. Taking into account nucleon-nucleon correlations
within one nucleus must increase the probability of such
configurations and hence the contribution of the contact term.
However, numerical accounting of these effects is beyond the
scope of the present paper.

Interestingly, the nontrivial contact terms in the variances
(missing in the optical approximation) arise in our approach in
the framework of the exploited factorized approximation for
the nucleon density in nuclei, i.e., without taking into account
nucleon-nucleon correlations within one nucleus.
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APPENDIX A: CALCULATION OF THE VARIANCE OF
PARTICIPANTS IN ONE NUCLEUS

The geometry of an AB collision is depicted in Fig. 12.
aj and bk are the two-dimensional vectors in the impact pa-
rameter plane. In the framework of the classical (probabilistic)
approach [18] the dimensionless σ (b) is the probability of
inelastic interaction of two nucleons at the impact parameter
value b [see also (13)]. TA and TB are the profile functions of
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FIG. 12. Geometry of an AB collision.

the colliding nuclei A and B. For heavy nuclei the following
factorization takes place:

TA(a1, . . . , aA) =
A∏

j=1

TA(aj ). (A1)

For convenience we introduce the abbreviated notation∫
d̂a =

∫
TA(a) da = 1. (A2)

All integrations imply integration over two-dimensional vec-
tors in the impact parameter plane. In the new notation Eq. (10)
takes the form

〈X〉 ≡ 〈〈X〉B〉A =
∫

X

B∏
k=1

d̂bk

A∏
j=1

d̂aj . (A3)

Recall that here X represents the average of some variate X at
fixed positions of all nucleons in A and B, and 〈 〉A and 〈 〉B
denote averaging over the positions of these nucleons.

We introduce the set of variates X1, . . . , XA (each can be
equal only to 0 or 1) as follows: Xj = 1 if the j th nucleon
of nucleus A interacts with some nucleons of nucleus B, and
Xj = 0 if the j th nucleon does not interact with any nucleons
of nucleus B. The number of participants (wounded nucleons)
in nucleus A in a given collision at the impact parameter β is
equal to the sum of these variates:

NA
w (β) =

A∑
j=1

Xj . (A4)

Then we have for the mean value〈
NA

w (β)
〉 =

A∑
j=1

〈Xj 〉 =
A∑

j=1

〈〈Xj 〉B〉A (A5)

and for the variance of NA
w (β), we have

V
[
NA

w (β)
] ≡ 〈

NA
w (β)

2〉 − 〈
NA

w (β)
〉2
,

〈
NA

w (β)
2〉 =

〈⎛⎝ A∑
j=1

Xj

⎞⎠2〉
. (A6)

First we calculate the mean value (A5). We denote by qj

and pj the probabilities that the variate Xj will be equal to 0 or
1, respectively. Clearly, for given configurations of nucleons
{aj } and {bk} in nuclei A and B,

qj =
B∏

k=1

(1 − σjk), pj = 1 − qj , (A7)

where

σjk ≡ σ (aj − bk + β) (A8)

and

Xj = 0 · qj + 1 · pj = pj . (A9)

Note that pj and qj are functions of aj , b1, . . . , bB, and β:

qj = qj (aj , {bk}, β), pj = pj (aj , {bk}, β). (A10)

Recall that we restrict our consideration to the region of
the impact parameter β < RA + RB , where the probability of
inelastic nucleus-nucleus interaction σAB(β) is close to unity.
Otherwise one has to introduce in formula (A7) for qj the
factor 1/σAB(β), where

σAB(β) = 1 −
〈〈 A∏

j=1

B∏
k=1

(1 − σjk)

〉
A

〉
B

(A11)

and σAB = ∫
dβ σAB(β) is the so-called production cross

section, which cannot be calculated in a closed form.
Substituting (A7)–(A9) into (A5) we have

〈
NA

w (β)
〉 = A −

A∑
j=1

〈〈qj 〉B〉A. (A12)

Averaging first over the positions of the nucleons in nucleus
B we find

〈qj 〉B = (1 − σj )B,

where we have introduced the short notation

σj ≡
∫

d̂b1σj1 =
∫

db1TB(b1)σ (aj − b1 + β). (A13)

Then averaging over the positions of the nucleons in nucleus
A we have

〈〈qj 〉B〉A =
∫

d̂aj (1 − σj )B, (A14)

which is the same for any j , since aj is the integration variable:

〈〈qj 〉B〉A =
∫

da1TA(a1)(1 − σ1)B ≡ Q(β). (A15)

Then by (A12) we find〈
NA

w (β)
〉 = A[1 − Q(β)] = AP (β), (A16)

which coincides with formula (1) if one takes into account the
connection

σj = fB(aj + β) (A17)

[see (5) and (A13)]. We see that the result for the mean
number of participants (A16) is the same as in the optical
approximation (8).
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We calculate now by the same method the variance of
NA

w (β). From (A6) we have〈
NA

w (β)
2〉 =

A∑
j1 �=j2=1

〈Xj1Xj2〉 +
A∑

j=1

〈
X2

j

〉
. (A18)

Note that 〈Xj1Xj2〉 cannot be reduced to the product
〈Xj1〉〈Xj2〉. In this case the optical approximation breaks for
AB collisions.

Since by (A9)

X2
j = Xj = pj ,

for the first sum in (A18) we find
A∑

j=1

〈
X2

j

〉 =
A∑

j=1

〈Xj 〉 = 〈
NA

w (β)
〉 = AP (β). (A19)

Because

Xj1Xj2 = Xj1 · Xj2 = pj1pj2 = 1 − qj1 − qj2 + qj1qj2 ,

for the second sum in (A18) using (A15) we have
A∑

j1 �=j2=1

〈Xj1Xj2〉 = A(A − 1)[1 − 2Q(β) + Q(12)(β)],

(A20)

where we have introduced

Q(12)(β) ≡ 1

A(A − 1)

A∑
j1 �=j2=1

〈〈qj1qj2〉B〉A. (A21)

We now calculate Q(12)(β). Averaging again over the
positions of the nucleons in nucleus B, we have

〈qj1qj2〉B = (1 − σj1 − σj2 + σ (j1j2))B,

where σj1 and σj2 are given by (A13) and

σ (j1j2) ≡
∫

d̂b1σj11σj21

=
∫

db1TB(b1)σ (aj1 − b1 + β)σ (aj2 − b1 + β).

(A22)

Then averaging over the positions of the nucleons in nucleus
A we rewrite (A21) as

Q(12)(β) =
∫

da1da2TA(a1)TA(a2)(1 − σ1 − σ2 + σ (12))B,

(A23)

where from (A22)

σ (12) =
∫

d̂b1σ11σ21 =
∫

db1TB(b1)

× σ (a1 − b1+β)σ (a2 − b1+β) ≡ gB(a1+β, a2 + β)

(A24)

[see Eq. (6)]. Substituting (A18), (A19), and (A20) into (A6)
we find for the variance of NA

w (β)

V
[
NA

w (β)
] = AQ(β)[1 − Q(β)]

+A(A − 1)[Q(12)(β) − Q2(β)],

which coincides with formula (2) if we take into account (A17),
(A23), and (A24).

APPENDIX B: CORRELATION BETWEEN THE NUMBERS
OF PARTICIPANTS IN COLLIDING NUCLEI AT FIXED

CENTRALITY

The calculations are similar to the ones in Appendix A
(we use the same notation). Along with the set of variates
X1, . . . , XA we introduce in a symmetric way the set of variates
X̃1, . . . , X̃B (again each can be equal only to 0 or 1). X̃k = 0 (1)
if the kth nucleon of the nucleus B does not interact (does
interact) with nucleons of nucleus A. Then, similarly to (A4)
for the number of participants (wounded nucleons) in a given
event in the nucleus B we have

NB
w (β) =

B∑
k=1

X̃k. (B1)

Then 〈
NA

w (β)NB
w (β)

〉 =
A∑

j=1

B∑
k=1

〈〈XjX̃k〉B〉A (B2)

and similarly to (A9)

XjX̃k = Pjk(1, 1), (B3)

where Pjk(1, 1) is the probability that both variates Xj and X̃k

will be equal to 1. For the probability Pjk(1, 1) one finds

Pjk(1, 1) = σjk + (1 − σjk)ρjkρ̃jk, (B4)

where σjk is the probability of the interaction of the j th nucleon
of nucleus A with the kth nucleon of nucleus B [see formula
(A8)], and ρjk is the probability of the interaction of the j th
nucleon of nucleus A with at least one nucleon of nucleus
B except for the kth nucleon (correspondingly, ρ̃jk is the
probability of the interaction of the kth nucleon of nucleus
B with at least one nucleon of the nucleus A except for the j th
nucleon):

ρjk = 1 −
B∏

k′=1(k′ �=k)

(1 − σjk′ ),

ρ̃jk = 1 −
A∏

j ′=1(j ′ �=j )

(1 − σj ′k). (B5)

Combining (B2)–(B5) and proceeding as in Appendix A, we
obtain formulas (19)–(22).

APPENDIX C: FLUCTUATIONS OF THE NUMBER OF
COLLISIONS

In this Appendix we calculate the variance of the number of
NN collisions in AB interactions at a fixed value of centrality
in the framework of the approach under consideration.

To calculate the number of collisions we define the set of
the variates Y1, . . . , YA, which can take a value from 0 to B.
If in a given event the j th nucleon of nucleus A interacts with
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n nucleons of nucleus B, then Yj = n. The number of NN

collisions in the given event at impact parameter β can be
expressed through these variates as

Ncoll(β) =
A∑

j=1

Yj . (C1)

Clearly again (see Appendix A)

P (Yj = 0) = qj =
B∏

k=1

(1 − σjk). (C2)

To calculate P (Yj = n) for n = 1, . . . , B we introduce
{k1, . . . , kn}, the sampling from the set {1, . . . , B}, and
{kn+1, . . . , kB}, the remainder after sampling. Then

P (Yj = n) =
∑

{k1,...,kn}
σjk1 · · · σjkn

(1 − σjkn+1 ) · · · (1 − σjkB
).

(C3)

Again we calculate the mean value of the number of
collisions,

〈Ncoll(β)〉 =
A∑

j=1

〈〈Yj 〉B〉A. (C4)

For a given configuration {aj } and {bk} we have

Yj =
B∑

n=0

nP (Yj = n). (C5)

Using (C3) and averaging over the positions of the nucleons
in nucleus B, we find

〈Yj 〉B =
B∑

n=0

nCn
Bσn

j (1 − σj )B−n = B σj . (C6)

We use the same notation as in Appendix A [see (A13)]. Then
averaging over the positions of the nucleons in nucleus A we
finally find

〈Ncoll(β)〉 = ABχ (β), (C7)

where

χ (β) ≡
∫

d̂a1σ1 =
∫

d̂a1d̂b1σ11

=
∫

da1db1TA(a1)TB(b1)σ (a1 − b1 + β), (C8)

and at rN � RA,RB

χ (β) ≈ σNN

∫
da1TA(a1)TB(a1 + β), (C9)

which coincides with formulas (23) and (24). Comparing (C7)
and (29) we see that the result for the mean number of collisions
is the same as in the optical approximation.

In the remainder of this Appendix we calculate the variance
of the number of collisions. To calculate the variance

V [Ncoll(β)] ≡ 〈
N2

coll(β)
〉 − 〈

Ncoll(β)
〉2

(C10)

one must calculate

〈
N2

coll(β)
〉 =

〈(
A∑

j=1

Yj

)2〉
=

A∑
j1 �=j2=1

〈Yj1Yj2〉 +
A∑

j=1

〈
Y 2

j

〉
.

(C11)

Therefore we have to calculate the two sums

A∑
j1 �=j2=1

〈Yj1Yj2〉 =
A∑

j1 �=j2=1

〈〈Yj1Yj2〉B〉A (C12)

and

A∑
j=1

〈
Y 2

j

〉 =
A∑

j=1

〈〈
Y 2

j

〉
B

〉
A
. (C13)

To calculate the first sum we denote by k′
1, . . . , k

′
n the

indices of the nucleons of nucleus B that interact only with
nucleon j1 of nucleus A. By k′′

1 , . . . , k′′
m we denote the indices

of the nucleons that interact only with nucleon j2 of nucleus A,
and by k1, . . . , kr we denote the indices of the nucleons that
interact with both nucleons j1 and j2. By k1, . . . , kB−n−m−r

we denote the indices of the nucleons of nucleus B that do not
interact with nucleons j1 and j2 of nucleus A. In this notation
the probability pj1j2 of such an event is

pj1j2 = pj1pj2 , (C14)

where

pj1 =
r∏

i=1

σj1ki

n∏
i=1

σj1k
′
i

m∏
i=1

(1 − σj1k
′′
i
)

B−r−m−n∏
i=1

(1 − σj1ki
),

(C15)

pj2 =
r∏

i=1

σj2ki

n∏
i=1

(1 − σj2k
′
i
)

m∏
i=1

σj2k
′′
i

B−r−m−n∏
i=1

(1 − σj2ki
).

(C16)

Using (C15) and (C16) we can rewrite pj1j2 in the form

pj1j2 =
r∏

i=1

σj1ki
σj2ki

n∏
i=1

σj1k
′
i
(1 − σj2k

′
i
)

m∏
i=1

(1 − σj1k
′′
i
)σj2k

′′
i

×
B−r−m−n∏

i=1

(1 − σj1ki
− σj2ki

+ σj1ki
σj2ki

). (C17)

The probability Pj1j2 (n,m, r) that nucleons j1 and j2 of
nucleus A interact separately with n and m nucleons of nucleus
B and interact simultaneously with r nucleons of nucleus B is
equal to

Pj1j2 (n,m, r) =
∑

pj1j2 , (C18)

where the sum is over all possible samplings {k′
1, . . . , k

′
n},

{k′′
1 , . . . , k′′

m}, and {k1, . . . , kr} from the set {1, . . . , B}. After
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averaging (C18) over the positions of the nucleons in nucleus B we find

〈Pj1j2 (n,m, r)〉B = B!

n!m!r!(B − r − m − n)!
zr (y − z)m(x − z)n(1 − x − y + z)B−r−m−n, (C19)

where we have used the short notation

x = σj1 , y = σj2 , z = σ (j1j2). (C20)

σj1 and σj2 are defined by (A13) and σ (j1j2) is defined by (A22) in Appendix A. Then for the components of the first sum (C12)
we have

〈Yj1Yj2〉B =
B∑

r=0

B−r∑
m=0

B−r−m∑
n=0

(m + r)(n + r)〈Pj1j2 (n,m, r)〉B. (C21)

After substitution of (C19) in (C21), the lengthy but straightforward calculation leads to the simple answer

〈Yj1Yj2〉B = Bz + B(B − 1)xy = Bσ (j1j2) + B(B − 1)σj1σj2 . (C22)

For the components of the second sum (C13) a similar but much simpler calculation yields〈
Y 2

j

〉
B

= Bσj + B(B − 1)σ 2
j . (C23)

Averaging now over the positions of the nucleons in nucleus A, we can rewrite (C11) as

〈
N2

coll(β)
〉 = B

⎛⎝ A∑
j1 �=j2=1

(〈σ (j1j2)〉A + (B − 1)〈σj1σj2〉A) +
A∑

j=1

(〈σj 〉A + (B − 1)
〈
σ 2

j

〉
A

)⎞⎠
= B

(
A(A − 1)

∫
d̂a1d̂a2(〈σ (12)〉A + (B − 1)〈σ1σ2〉A) + A

∫
d̂a1

(〈σ1〉A + (B − 1)
〈
σ 2

1

〉
A

))
.

Recalling now that σ1, σ2, and σ (12) are given by formulas (A13) and (A24) of Appendix A, we obtain〈
N2

coll(β)
〉 = AB[χ (β) + (B − 1)χ1(β) + (A − 1)χ̃1(β) + (A − 1)(B − 1)χ2(β)], (C24)

with χ (β), χ1(β), and χ̃1(β) defined by formulas (24), (26), and (27). Then using the definition (C10) and taking into account
formula (C7) for 〈Ncoll(β)〉, we come to expression (25) for the variance of the number of collisions.
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