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Fusion hindrance of heavy ions: Role of the neck
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GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, F-14076 Caen cedex 5, France and Université de Caen Basse-Normandie, BP 5186, F-14032
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Fusion of heavy ions is largely hindered because of the appearance of an inner barrier between the contact
point of the two colliding nuclei and the compound nucleus. But there are still quantitative ambiguities on the
size of the barrier and on the role of the dissipation. In this paper we stress the importance of the neck of the
composite system on the hindrance of the fusion of heavy nuclei. We show that the “denecking” process is very
quick compared to the other collective degrees of freedom as the relative distance. This behavior of the neck will
change the potential seen by the relative distance on the way to fusion and its effective initial value through a
dynamical coupling. Both effects contribute to the hindrance of fusion.
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I. INTRODUCTION

Fusion of heavy ions is largely hindered by comparison
to what is observed for lighter systems. This has been
observed experimentally for many years [1,2] and is nowadays
qualitatively understood: After crossing the Coulomb barrier,
the fusing system at contact must overcome a second barrier
under strong dissipation. This inner barrier does not exist
for lighter systems that directly reach the compound state
after crossing the Coulomb barrier. Such an interpretation
is commonly accepted [3–16], but there are still quantitative
ambiguities on the dynamics of the fusion mechanism and
predictions might not be reliable.

Experimentally, it is very difficult to distinguish between
the fusion-fission events that have reached the compound state
and the quasifission ones that reseparate after crossing the
Coulomb barrier. This leads to a lack of reliable data on fusion
cross sections that could assess the models. The assessment
of the various models used to describe the complete fusion
process is then one of the main challenges of the field. For a
recent review, see, e.g., Ref. [17].

Theoretically, the fusion process is divided into two
steps corresponding to the crossing of the two consecutive
barriers [8]. For the Coulomb barrier, an extrapolation of the
simple models used for lighter systems without hindrance is
sometime used [15,18,19] and we can rely on the experimental
capture cross sections. Actually, the dissipation process cannot
be neglected during this step for heavy ions because of the
large Coulomb field. It leads to a partial explanation of the
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fusion hindrance [20,21]. Coupled-channels codes can nicely
reproduce experimental data for light systems, even far below
the barrier. But the inclusion of some dissipation mechanisms
that would be necessary for energies over the barrier is still
under development [22–24].

The main contribution to the fusion hindrance observed
in heavy ions is due to the second step, consisting of a
diffusion process over an inner potential barrier. The main
features of the dynamics of this so-called formation phase are
well understood: Most of the models are based on stochastic
equations [6–16]. This is justified by the fact that the intrinsic
degrees of freedom had enough time to thermalize during the
crossing of the Coulomb barrier. But ambiguities remain on
the size of the barrier and the strength of the dissipation.

Another difficulty arises from the fact that the two steps of
the fusion process cannot be treated with a single formalism.
We have to deal with a parametrization for the two-body system
crossing the Coulomb barrier and with another one for the
composite from the contact point to the compound shape. The
treatment of the connection between the two decriptions is a
delicate problem that can change the final results.

As we will show in this article, the fusion process is
very sensitive to the treatment of the evolution of the neck
between the two colliding nuclei at contact, because the size
of the barrier that has to be overcome strongly depends on it
(see Fig. 1). The formation probability depends exponentially
on this barrier and, depending on the treatment, the final
fusion cross section can differ by orders of magnitude. It is
important to note that some of the previous studies on the
effect of the neck on the fusion process are related to the
Coulomb barrier [25,26]. Here, we focus our work on the inner
barrier.
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FIG. 1. (Color online) (Top) Liquid drop model potential energy
of the system 110Pd+110Pd as a function of the elongation coordinate
for various neck parameters. ε is the neck parameter and R0 the radius
of the compound nucleus. The vertical dashed line on the top panel
represents the contact position. (Bottom) Liquid drop model potential
energy as a function of the neck parameter along the contact line.

In some studies, the neck was supposed to be frozen
at a given value that was arbitrarily fixed [13,14] or ad-
justed to fit some experimental fusion cross sections [8].
References [27,28] claim that the previous hypothesis is
correct: A dynamical study suggests that the neck does
not evolves much during the fusion process. In some other
works [10–12], the inner potential barriers are evaluated
by minimization with respect to the neck. The “denecking”
process, i.e., the disappearance of the cleft between the two
nuclei at contact, is also very fast in the fusion trajectory
chosen in Refs. [29,30] to calculate the potential barriers. In
preliminary versions of this work reported in Refs. [31–34] and
in Refs. [35,36], it is shown on dynamical arguments that it is
correct. Finally, in Refs. [15,16] the neck degree of freedom is
not mentioned.

The previous models are based on macroscopic approaches.
There are also theories to describe the fusion process with
microscopic models based on mean-field theory or molecular
dynamics. But there are very few connections between micro-
scopic and macroscopic approaches. In Ref. [21], macroscopic
parameters were extracted from a mean-field approach, but this
study is limited to the Coulomb barrier. To our knowledge,
Ref. [35] is a rare study of the dynamics of the neck studied
from a microscopic approach based on molecular dynamics.

How is the neck evolving during the fusion process? What
is the most suitable value of this variable? What does it mean
for the other collective variables? We have to answer to these
questions in order to understand the fusion mechanism.

II. SIMPLIFIED NECK DYNAMICS

The neck parameter ε is related to the cleft between the
two touching nuclei. ε = 1 corresponds to two hard touching
spheres and ε = 0 to the absence of cleft. More precisely, in our
calculations, the neck parameter is taken from the two-center
parametrization [37] and is defined by the potential shape of
the interacting nuclei. The dissipation is calculated with the
wall-and-window formalism [38,39].

The dynamics of the formation phase is frequently based on
coupled stochastic equations [6–16]. The other two variables
are the relative distance between the centers of mass of the
two nuclei and the mass asymmetry of the colliding system.
These collective degrees of freedom are connected through the
liquid drop model (LDM) potential, the collective inertia and
friction. But as a first step, we will study the dynamics of the
neck separately.

As for the LDM potential, it turns out that it is almost
linear in the neck parameter at contact (see Fig. 1). Then, for
a simple analysis of the neck dynamics, we solve analytically
the Smoluchowski equation with a linear potential,

∂N (ε, t)

∂t
= C

∂N (ε, t)

∂ε
+ D

∂2N (ε, t)

∂ε2
, (1)

where C = f/γ and the diffusion coefficient D = kT /γ . Here
f is a constant parameter such as V (ε) = f ε and γ is the
friction coefficient. Since the neck parameter is limited to the
[0, 1] interval, we will add two reflective boundaries in ε = 0
and ε = 1.

With a single reflective boundary in ε = 0 and an initial
distribution taken as N1(ε, 0) = δ(ε − ε0), the Smoluchowski
equation (1) was solved in Refs. [40–42],

N1(ε, t) = 1√
4πDt

exp

[
− C

2D
(ε − ε0) − C2t

4D

]

×
{

exp

[
− (ε − ε0)2

4Dt

]
+ exp

[
− (ε + ε0)2

4Dt

]}

+ C

2D
exp

(
−Cε

D

)
erfc

(
ε + ε0 − Ct

2
√

Dt

)
. (2)

For large times, this expression becomes a Boltzmann dis-
tribution. The average value of the neck was calculated
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in Ref. [43],

〈ε(t)〉 = ε0 − Ct + 1

2

(
D

C
− ε0 + Ct

)
erfc

(
ε0 − Ct√

4Dt

)

− D
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exp

(
Cε0

D

)
erfc

(
ε0 + Ct√

4Dt

)

+
√

Dt

π
exp

[
− (ε0 − Ct)2

4Dt

]
. (3)

We also solved the problem with the two reflective
boundaries, following the method of Refs. [41,44] and get,

N2(ε, t) = C

D

exp
( − Cε

D

)
1 − exp

( − Ca
D

)
+ exp

[
− C

2D
(ε − ε0) − C2t

4D

]

×
∞∑

k=1
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(
−k2π2D

a2
t

)
2

a
(
1 + C2a2

4D2k2π2
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×

[
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(
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(
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a

)]

×
[

cos

(
kπε0

a

)
− C

2D

a

kπ
sin

(
kπε0

a

)]}
. (4)

For the sake of generality, we denote the position of the second
reflective boundary by a. The average value of the neck as a
function of time can be obtained in a similar way,

〈ε(t)〉 = D

C
+ a

1 − exp
(

Ca
D

)
+ 32aπ2D4 exp

(
C

2D
ε0 − C2t

4D

)

×
∞∑

k=1

{
exp

(
−k2π2D
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t

)
k2

(a2C2 + 4D2k2π2)2

×
[

cos

(
kπε0
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)
− C

2D

a

kπ
sin

(
kπε0

a

)]

×
[

(−1)k exp

(
−Ca

2D

)
− 1

]}
. (5)

In Fig. 2, we plot the neck distribution and its average value
as a function of time for the two cases. With such a strong slope
of the potential, the reflecting wall in a does not play any role.
If we arbitrarily decrease this slope, the curves corresponding
to the two situations differ in a clear manner.

It appears that the neck evolves very quickly to its
asymptotic distribution for both cases. For small times, the
average value of the neck is approximately

〈ε(t)〉 � ε0 − Ct. (6)

There is an ambiguity on the initial value of the neck parameter
since the denecking process might already start before crossing
the Coulomb barrier [25,26]. With the extreme hypothesis
that the initial neck parameter is close to 1, the time scale
to reach small values for the neck parameter is then of the
order of 1/C = γ /f . Typical values of C are ranging from 1.1
to 2.7 MeV/h̄.

FIG. 2. (Color online) Neck distribution and its average value
as a function of time. The solid line corresponds to the case with
one reflecting wall in ε = 0 and the dashed one to the case with
two reflective walls, in ε = 0 and 1. Here C = 2.5 MeV/h̄ and D =
0.125 MeV/h̄, which are typical values. Time is indicated in h̄/MeV.
Here, the initial value of the neck is arbitrarily chosen as ε0 = 0.95.

The time scale of the fusion process along the relative
distance was evaluated with a similar approach in Ref. [45].
For a diffusive process corresponding to the actual situation,
the typical time to overcome the potential barrier is about one
order of magnitude longer. Then, the time scale of the evolution
of the neck is far shorter than the radial one and we can, as
a first approximation, consider that the neck is completely
thermalized during the second stage of the fusion process.

Actually, the potential shown in Fig. 1 is not linear for
small values of ε. Unfortunately, analytical solutions are not
available for higher order potentials with reflective boundaries.
But, the linear approximation is valid for the initial values of
the neck. A dynamical study with a more realistic potential
will not change the characteristic time for the neck to reach
small values. It will only affect the final thermal distribution.

Reference [35] shows the time evolution of the neck
calculated with a microscopic model and it appears that it
is also shorter than the time characterizing the evolution of
the relative distance. The velocity is peaked as function of
time and vanishes on a time scale of the order of 100 fm/c

or 0.5 h̄/MeV, which is similar to our result. Our conclusion
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differs from the one of Refs. [27,28] that claim that the neck
is frozen around a value of about 0.7, but is in agreement with
the hypothesis done in Refs. [10–12,29,30].

Our analysis gives a quantitative confirmation of the
discussion of Ref. [12]: the neck degree of freedom is quickly
drifted by a strong potential slope, which is due to the large
surface energy gain of the denecking process. With typical
values of the potential for heavy nuclei, the thermalized neck
parameter is very small, around or lower than 0.1.

III. APPEARANCE OF THE HINDRANCE

The size and the location of the inner barrier along the
relative distance that is calculated with the LDM are very
sensitive to the neck (see Fig. 1). Depending on the relative
position of this barrier to the contact point of the two
colliding nuclei, the fusion will be hindered or not. Then, the
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FIG. 3. (Color online) LDM potential map for 100Mo+100Mo
(top) and 110Pd+110Pd (bottom) as a function of the relative distance
and neck parameter.

experimental appearance of the hindrance should give some
constraints on the location of the inner barrier and then the
size of the neck [9,33].

For symmetric reactions, the large hindrance phenomenon
appears somewhere between the 100Mo+100Mo and the
110Pd+110Pd systems [2]. Then the overlap of the inner barrier
and the contact point should occur between these two systems
if one considers the contact point as the injection point of
the formation process. For the 100Mo+100Mo system, the
LDM potential landscape calculated within the two-center
parametrization [37] is plotted in Fig. 3. It can be seen that
the contact point is beyond this barrier, whatever the neck
parameter. Then, after contact, the composite system is driven
to the compound shape without hindrance. The situation differs
for the 110Pd+110Pd system, see Figs. 1 and 3. For small values
of the neck ε, there is a large barrier between the contact point
and the compound shape. For larger values of ε, the contact
position is closer to the edge of the potential map. Then the
neck parameter has to be smaller than 0.6 to explain the large
hindrance of the fusion that is experimentally observed.

Although data are missing on symmetric systems between
100Mo+100Mo and 110Pd+110Pd to have a more precise
analysis, this simple argument is in favor of our claim that
the neck parameter should be small when the system crosses
the inner barrier. The analysis presented here is limited to
symmetric reactions. We did a systematic analysis of the border
between hindered and nonhindered reactions that confirm the
fact that the neck should disappear quickly [9,46].

IV. COUPLING OF THE NECK TO THE OTHER DEGREES
OF FREEDOM

We are now convinced that the denecking process occurs
very quickly compared to the typical time scale of the other
degrees of freedom determining the fusion. The main argument
is based on the potential landscape: the dynamics of the
relative distance between the centers of mass of the two
nuclei is governed by the diffusion over a potential barrier,
which is a slow process [45], whereas the neck is driven by a
strong potential slope toward its asymptotic value. But these
collective variables are also coupled dynamically through the
inertia and friction tensors.

Here, for the sake of simplicity, we only consider two
degrees of freedom: the relative distance between the two
centers R and the neck ε. This will limit our analysis
to symmetric reactions. The formation dynamics can be
described by the two-dimension Langevin equation

γ

[
ε̇

ṙ

]
= −

[
∂V/∂ε

∂V/∂r

]
+

[
ρ1(t)
ρ2(t)

]
, (7)

for which we have neglected the inertia term, in order to be
consistent with the Smoluchowski approximation. The random
force satisfies the fluctuation-dissipation theorem,

〈ρi(t)ρj (t ′)〉 = 2T γij δ(t − t ′). (8)

In this equation, r is a dimensionless variable defined as r =
R/R0, R0 being the radius of the compound nucleus.
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We will assume here that around the saddle, the friction
tensor γ is independent of r and ε. The potential map is such
as it has a U shape for the neck variable and a barrier shape
for the radial one. Then, the fast neck dynamics could be
approximately studied as follow,

ε̇ = −[γ −1]εε
∂V

∂ε
− [γ −1]rε

∂V

∂r
+ rε(t) (9)

� −[γ −1]εε
∂V

∂ε
− [γ −1]rε

∂V

∂r

∣∣∣∣
r=r0

+ rε(t). (10)

We will assume further that r0 is close to the saddle point and
| ∂V

∂ε
|ε=ε0 � | ∂V

∂r
|r=r0 . Then, we can neglect the second term of

the right-hand side of Eq. (10),

ε̇ � −[γ −1]εε
∂V

∂ε
+ rε(t). (11)

Once the neck has reached its asymptotic value, the large
confinement potential confines the neck variable.

The differential equation governing the evolution of r ,

γrεε̇ + γrr ṙ = −∂V

∂r
+ ρ2(t), (12)

should be studied on two time scales: first, during the quick
evolution of the neck variable, the average value can be
approximated by

γrε〈ε̇〉 + γrr〈ṙ〉 � 0, (13)

which means that

�〈r〉 � −γrε

γrr

�〈ε〉. (14)

Here, we have also neglected the term ∂V
∂r

because during this
transient regime ∂V

∂ε
is dominating. The initial variance of the

relative distance is also related to the final variance of the neck
variable corresponding to the Boltzmann distribution:

〈δr2(0)〉 = γ 2
rε

γ 2
rr

〈δε2(∞)〉. (15)

Once the neck is confined, i.e., ε̇ � 0, one then has

γrr ṙ � −∂V

∂r
+ ρ2(t), (16)

which is a simple one-dimensional Langevin equation for the
relative distance only, with an initial condition that is shifted
according to Eqs. (14) and (15).

This approximate dynamical evolution can be checked on
a simple test case based on a harmonic potential that is not
meant to be realistic,

V (ε, r) = Vs + 1
2gε2 − 1

2h(r − rs)2, (17)

for which the coupled differential Eqs. (7) can be exactly
solved [47]. With such a potential, the approximate evolution
of r is characterized by

〈r(t) − rs〉 =
[

(r0 − rs) + γrε

γrr

(ε0 − ε∞)

]
exp

(
ht

γrr

)
(18)

and

〈δr2(t)〉 = T

h

[
exp

(
2ht

γrr

)
− 1

]
+ 〈δr2(0)〉 exp

(
2ht

γrr

)
.

(19)

0.0 0.5 1.0 1.5 2.0
0

2

4

6

8

10

<
 r

(τ
) 

- 
r s>

τ

0.0 0.5 1.0 1.5 2.0
0.00

0.03

0.06

0.09

0.12

0.15

P
(τ

)

τ

FIG. 4. (Color online) Average trajectory (top) and fusion prob-
ability (down) as a function of time for a parabolic potential. The
solid blue line represents the exact solution. The green dotted-dashed
one represents the uncoupled one (γrε = 0). The dashed red curve
represents the approximate solution (see text). Here γεε/γrr = 0.6,
γrε/γrr = 0.5, g/h = 3, and T/h = 0.2. The time unit is γrr/h.

Figure 4 shows the comparison of this result with the exact
solution given in the appendix and the uncoupled case (γrε =
0) for the average trajectory and the fusion probability,

P (t) =
∫ rs

−∞
exp

[
− (r − 〈r(t)〉)2

2δr2(t)

]
dr√

2πδr2(t)
(20)

= 1

2
erfc

[
〈r(t) − rs〉√

2δr2(t)

]
. (21)

Here we took ε∞ = 0 as given by the Boltzmann distribution.
The approximate solution of Eqs. (18), (19), and (21) agrees
quite nicely with the exact solution, although g/h = 3 is quite
weak. For larger values of g/h, the accuracy is even better.
Note that this simple model and its approximation are valid
only near the saddle.

It appears clearly that the fast evolution of the neck variable
allows us to study the evolution of the other degrees of freedom
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separately. In the previous sections, we showed that the
potential map is very sensitive to the value of the neck. Here,
we find that the dynamical coupling through the dissipation
tensor shifts the effective initial value of the relative distance
[see Eq. (14)].

Initially, the neck is far from its equilibrium value. Its large
and fast variation shifts the effective initial value of the relative
distance. After this transient regime, the fusion will then follow
the path that minimizes the potential with respect to the neck
and we can do an adiabatic approximation.

With this simple model, the shift is of the order of few
femtometers, which is large enough to have an influence on
the hindrance of the fusion. It explains the large difference
between the fusion probabilities of the uncoupled case and the
approximate or exact coupled case that can be observed on
Fig. 4. The shift of the initial value of the relative distance
is always positive in this model and enlarges the size of the
barrier that has to be crossed to reach the compound shape.
The fusion is then more hindered.

The effect of the shift of the effective injection point on
the long time limit of the fusion probability,

P (t → ∞) = 1

2
erfc

[√
V (ε∞, rs) − V (ε∞, r0 − rs + �r)

T

]
,

(22)

is the larger the heavier the system. For systems close to
the hindrance border, such as 110Pd+110Pd, r0 is close to the
saddle and the potential is quite flat. For heavier systems, the
potential has a steeper slope near the contact point. Therefore,
the shift �r will cause a larger change of the potential barrier
for heavier systems.

Of course, the model here is crude: the potential landscape
is simple, we neglected the inertia, and we assumed that
the friction tensor is constant. It confirms the adiabatic
approximation that is usually done in the various models, but
it shows that the dynamical coupling between the neck and
radial degrees of freedom induces a shift of the effective initial
value of the relative distance. We will publish another article
with a more comprehensive study on its magnitude.

Actually, in their so-called fusion by diffusion model,
Świa̧tecki et al. [12] introduced an initial shift of the injection
point considered to be an adjustable parameter ranging from 0
to 3 fm. Here, we propose a justification to it. More recently,
Liu et al. [48] explore numerically the effect of the nondiagonal
term of the friction tensor on the injection point. They conclude
that the average injection point is not shifted. This contradicts
our results.

V. CONCLUSION

Since superheavy elements are produced in extremely small
numbers, their main characteristics are not yet accessible. But,
using a fission-evaporation code, it is possible to constrain
strongly the shell-correction energy of their ground state
[33,49] if we know the fusion probability. Unfortunately,
experimental fusion cross sections are not reliable because it is
very difficult to distinguish between fission and quasifission.
Fusion models should then be assessed by other means.

In this article, we have stressed the importance of the neck
parameter that can change the fusion cross sections by orders
of magnitude. We have shown that the neck degree of freedom
evolves faster than the relative distance between the two fusing
nuclei. Then the approximation of using an asymptotic value
of the neck is justified.

The rapid evolution of the neck parameter changes the
potential landscape seen by the other collective variables.
The experimental appearance of the hindrance of the fusion
for symmetric reactions confirms this conclusion. This rapid
evolution of the neck also changes the initial value of the
other collective variables through a dynamical coupling. For
the relative distance, the shift is not negligible and should
be included in the models. Our analysis gives a theoretical
justification to the adjustable shift introduced by Świa̧tecki
et al. [12] in order to reproduce the data. Finally, it is important
to note that both effects enlarge the hindrance of the fusion.

This analysis of the influence of the neck dynamics on the
fusion of heavy nuclei is mainly based on simplified analytical
models and is, therefore, limited to symmetric reactions.
The asymmetry degree of freedom complicates the analysis
which cannot be simply handled with analytical toy models.
Therefore, a more complete study will be published in another
article.
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APPENDIX : EXACT SOLUTION OF THE DIFFUSION
OVER THE PARABOLIC POTENTIAL

Following the method of Ref. [47], it is possible to solve
exactly the diffusion problem in the overdamped limit on the
potential landscape of Eq. (17). The distributions are Gaussian
characterized by

〈ε(t)〉 = ε0
ea+t + ea+t

2
+ ea−t − ea+t

2
√

�

× [2(r0 − rs)γrεh + ε0(γεεh + γrrg)] (A1)

〈δε2(t)〉 = T γrr

γrrγεε − γ 2
rε

{
e2a+t − 1

2a+
√

�

(√
� + 2

hγ 2
rε

γrr

− γεεh − γrrg

)
+ e2a−t − 1

2a−
√

�

×
(√

� − 2
hγ 2

rε

γrr

+ γεεh + γrrg

)}
, (A2)
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with

a± = γεεh − γrrg ± √
�

2
(
γrrγεε − γ 2

rε

) (A3)

� = (γεεh − γrrg)2 + 4gh
(
γrrγεε − γ 2

rε

)
. (A4)

Here the friction tensor is symmetric: γrε = γεr . Without off-
diagonal term (γrε = 0), these expressions simply become

〈ε(t)〉 = ε0e
− gt

γεε (A5)

〈δε2(t)〉 = T

g
(1 − e

−2 gt

γεε ). (A6)

With the approximation of Eq. (10), we have

〈ε(t)〉 � −γrε

γrr

h

g
(r0 − rs)(1 − e−g[γ −1]εε t )

+ ε0e
−g[γ −1]εε t (A7)

〈δε2(t)〉 � T

g
(1 − e−2g[γ −1]εε t ). (A8)

For long times, we then take the average value given by the
Botzmann distribution as an asymptotic value of the neck
variable, 〈ε(t → ∞)〉 = ε∞.

Similarly, for r , the exact solution is characterized by

〈r(t)〉 = rs + (r0 − rs)
ea+t + ea+t

2
+ [2ε0γrεg

+ (r0 − rs)(γεεh + γrrg)]
ea+t − ea−t

2
√

�
(A9)

〈δr2(t)〉 = T γεε

γrrγεε − γ 2
rε

{
e2a+t − 1

2a+
√

�

(√
� − 2

gγ 2
rε

γεε

+ γεεh + γrrg

)
+ e2a−t − 1

2a−
√

�

×
(√

� + 2
gγ 2

rε

γεε

− γεεh − γrrg

)}
. (A10)

When the two variables are uncoupled (γrε = 0), these
expressions simply become

〈r(t)〉 = rs + (r0 − rs)e
ht
γrr (A11)

〈δr2(t)〉 = T

h
(e2 ht

γrr − 1). (A12)

The approximate solution is characterized by Eqs. (18)
and (19).
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↪
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