
PHYSICAL REVIEW C 84, 054603 (2011)

Influence of transport variables on isospin transport ratios
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The symmetry energy in the nuclear equation of state affects many aspects of nuclear astrophysics, nuclear
structure, and nuclear reactions. Recent constraints from heavy-ion collisions, including isospin diffusion
observables, have started to put constraints on the symmetry energy below nuclear saturation density, but
these constraints depend on the employed transport model and input physics other than the symmetry energy.
To understand these dependencies, we study the influence of the symmetry energy, isoscalar mean-field
compressibility and momentum dependence, in-medium nucleon-nucleon cross sections, and light cluster
production on isospin diffusion within the pBUU transport code. In addition to the symmetry energy, several
uncertain issues strongly affect isospin diffusion, most notably the cross sections and cluster production. In
addition, there is a difference in the calculated isospin transport ratios, depending on whether they are computed
using the isospin asymmetry either of the residue or of all forward-moving fragments. Measurements that compare
the isospin transport ratios of these two quantities would help place constraints on the input physics, such as the
density dependence of the symmetry energy.
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I. INTRODUCTION

The symmetry energy in the nuclear equation of state (EoS),
which describes the energy cost associated with differing
proton and neutron densities, is currently an active field of
research. The density dependence of the symmetry energy
plays a role in many different nuclear physics systems at
vastly differing size scales. In nuclear structure, it is intimately
related to the neutron skin of neutron-rich nuclei [1–4], and
it influences the centroid of the giant dipole resonance [5] as
well as the relative strength of the pygmy dipole resonance
[6,7]. In astrophysics, nearly every observable property of
neutron stars is affected by the density dependence of the
symmetry energy [3,8] and, through this, nucleosynthesis
and explosion mechanisms of core-collapse supernovae. It
also influences the evolution of nuclear reactions, including
the neutron-to-proton spectral ratio from central heavy-ion
collisions (HICs) [9], isospin diffusion/charge equilibration
[10,11], isospin fractionation [12], and the ratio of charged
pion yields [13]. Despite this, the density dependence, and
even the value at saturation density of the symmetry energy,
is not well determined. Significant constraints at and below
saturation density have emerged only within the past few
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years [14], and there is still much debate about any constraints
extracted above saturation density [15–21].

HICs provide a unique opportunity to study the density and
isospin dependence of the nuclear EoS, as they are the only
opportunity we have in the laboratory to create nuclear matter
significantly above and below saturation density. Indeed, this is
how the EoS of symmetric nuclear matter was mapped out [22].
Many HIC observables sensitive to the symmetry energy have
been identified and are reviewed in Ref. [23]. The effects of
the symmetry energy on these observables, however, must be
separated from the effects of the symmetric EoS, in medium
nucleon-nucleon (NN) cross sections, and cluster formation.

To extract quantitative information about the symmetry
energy from nuclear reactions, experimental data needs to
be compared with the predictions of dynamical transport
models. Transport models track the time evolution of a
nuclear reaction, and may separately treat the nuclear EoS,
both symmetric and asymmetric parts, NN collision cross
sections, and inelastic nucleon collisions that lead to cluster
or pion production [24]. Most of the current nuclear reaction
transport models either rely on the Uehling-Uhlenbeck version
of the Boltzmann equation (BUU), or on quantum molecular
dynamics (QMD) [14,23–25]. Both models are semiclassical.
The BUU approach uses many pointlike test particles per
nucleon to approximate the continuous phase-space density
matrix, while the QMD approach follows individual nucleons
expressed as wave packets with a finite, usually fixed, width.
These different treatments affect the calculated dynamics. NN
collisions rearrange whole nucleons in the QMD approach

054603-10556-2813/2011/84(5)/054603(12) ©2011 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.054603


COUPLAND, LYNCH, TSANG, DANIELEWICZ, AND ZHANG PHYSICAL REVIEW C 84, 054603 (2011)

while only rearranging individual test particles in the BUU
approach, leading to larger fluctuations and more restrictive
Pauli blocking in QMD. Additionally, fragments form in the
QMD treatment owing to N-body correlations caused by the
overlapping wave packets, but in BUU instead form mostly
from mean-field instabilities and are, thus, suppressed for
many test particles per nucleon [25].

Even within either of the two models, however, partic-
ular numerical implementations can be different. Different
parametrizations or assumptions can be made about most
of the transport properties. The purpose of this paper is to
assess within one such code the effects of these different
assumptions on isospin diffusion, an observable of the sym-
metry energy that has received a lot of attention. Comparisons
are also made to previous results in the literature, where
available.

A. Isospin diffusion

Isospin diffusion occurs in nuclear collisions where the
projectile and target nuclei differ in their relative isospin
asymmetry. Over the course of the reaction, the symmetry
energy pushes the system toward isospin equilibrium. Because
the reaction takes place over a limited time span, determined
by the beam energy, full isospin equilibrium is not reached
for sufficiently energetic beams. The degree of isospin equili-
bration is an observable that is sensitive to the strength of the
symmetry energy. Usually isospin diffusion is discussed for
semiperipheral collisions, where large portions of the initial
nuclei are spectators. As these projectile-like and target-like
residues separate in the expansion phase of the reaction, a
low-density neck connects them, and it is through this neck that
isospin diffusion occurs. Thus isospin diffusion in peripheral
and semiperipheral collisions is sensitive to the behavior of
the symmetry energy at subsaturation density. To maximize
the sensitivity to the symmetry energy, the beam energy is
chosen to be in the tens of mega–electron volts per nucleon.

Let us briefly discuss simple qualitative expectations re-
garding the effects of different ingredients on isospin diffusion.
All other effects being equal, a higher symmetry energy in
the low-density region of the neck will lead to more isospin
diffusion, while nuclear collisions will tend to slow down the
diffusion by locally trapping the asymmetry. In fact, Shi and
Danielewicz derived an expression for the diffusion constant
from an analytic solution to the BUU equations and found it
to be proportional to the strength of the symmetry energy and
inversely proportional to the neutron-proton cross section [26].
Collisions are not expected to be the driving force in the energy
regime studied here because of Pauli blocking. Diffusion is
expected to increase with decreasing impact parameter, owing
to the larger overlap region and longer reaction time. For
central impact parameters, however, a heavy residue generally
does not survive, and some diffusion observables may not be
well defined at the beam energy we studied.

In the case of two colliding nuclei, however, other aspects of
the system dynamics may complicate the above simple picture.
The symmetric matter mean field is not expected to affect
isospin diffusion directly, but changes that affect the stability

of nuclei or favor the creation of intermediate mass fragments
(IMFs) may affect the dynamics of the system enough to
enhance or suppress diffusion processes. Baran et al. point
out that density gradients will also lead to isospin transport,
causing the low-density neck to become preferentially neutron
rich [27]. Some of this matter is not transferred between
nuclei but is expelled as free nucleons or light fragments,
decreasing the total asymmetry of the remaining residues.
Other effects may change the role of NN collisions. Some
collisions may be needed to kick nucleons into the momentum
space corresponding to stable and unstable orbits about the
other nucleus. In-medium clustering effects may increase the
NN cross section by increasing the available phase space.

Isospin diffusion was measured for the systems of 124Sn +
112Sn and 112Sn + 124Sn at beam energies of 50 MeV/nucleon
at the National Superconducting Cyclotron Laboratory
(NSCL)/Michigan State University [10,11]. The symmetric
reaction systems, 124Sn + 124Sn and 112Sn + 112Sn were also
studied to remove the contribution from nonisospin diffusion
effects. This was done by utilizing the isospin transport ratio
(also called the imbalance ratio),

Ri = 2
X − (X124+124 + X112+112)/2

X124+124 − X112+112
, (1)

first introduced in Ref. [28]. Ratio (1) normalizes the amount
of diffusion observed through an isospin-sensitive observable
X to the value in the symmetric systems, such that in the
absence of diffusion, Ri = 1 for a neutron-rich projectile and
Ri = −1 for a neutron-poor projectile. Complete equilibration
occurs near Ri = 0. The ratio also reduces the sensitivity
to pre-equilibrium emission, although it does not remove it
entirely [27]. In the MSU data, the isoscaling parameter α and
the ratio of light mirror nuclei were both used to construct
isospin transport ratios. Another advantage of this ratio is that
observables that depend linearly on each other produce the
same ratio, allowing for easier comparison between data and
transport models. Transport models are generally not able to
realistically handle sequential decays of the residues. However,
these models can calculate the isospin asymmetry δ of the
excited residues. Statistical and dynamical calculations as well
as experimental tests have shown that the isoscaling parameter
α relates linearly to the δ of the excited residues, so the
experimental and theoretical results may be directly compared
through the isospin transport ratio [11]. It should be noted,
however, that it is uncertain if the yields used to construct α

always came from the decay of the residue, as opposed to the
breakup of the neck.

The MSU data from Ref. [10] have been analyzed by
several groups using different models to extract constraints
on the low-density behavior of the symmetry energy. Two of
the most prominent results come from Ref. [29], which used
the BUU code IBUU04, and Ref. [14], which used the QMD
code ImQMD05. Even through the constraints established by
these two groups overlap, as shown in Fig. 3 of Ref. [14], there
are real differences in the simulation results. Aside from the
differences between the Boltzmann and molecular dynamics
models, physics quantities are parameterized differently in
the codes. The form of the in-medium NN cross-section
reduction, in particular, was quite different [30]. IBUU04
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includes isovector and isoscalar momentum dependencies of
the mean field, while ImQMD05 includes only isoscalar. More
importantly, ImQMD05 can produce complex nuclei from the
neck region, while IBUU04 cannot. The relative importance
of these transport properties on isospin diffusion appears to
vary between the two models, but direct comparisons are
difficult because of the differing nature of the models and
the implementation of the codes.

The goal of this paper is to explore the effect of
transport quantities and assumptions on isospin diffusion
within a BUU transport model, henceforth referred to as
pBUU [31–33]. We explore many of the basic properties
of the system, including the density dependence of the
symmetry energy, the value of the symmetry energy at
saturation density, the curvature of the symmetric part of
the EoS, the momentum dependence of the symmetric EoS,
and in-medium nucleon cross sections. The pBUU model can
optionally produce light clusters in the medium, which is a
process not native to the BUU framework and may make
the system behave more similarly to the ImQMD05 work.
Because of its complexity, the momentum dependence of the
isovector mean field is not studied here. A similar, though
not as extensive, study has also been carried out using the
ImQMD05 code [30].

II. DESCRIPTION OF THE MODEL

The pBUU code is of the class of Boltzmann-Uehling-
Uhlenbeck models, which are one of the main types of dynamic
transport models used to study nuclear reactions, particularly
of heavy nuclei. The model includes as degrees of freedom both
stable and excited baryons, pions, and light nuclear clusters.
It calculates the time evolution of the Wigner transform of the
semiclassical one-body density matrix, i.e., the semiclassical
one-body phase space distribution of those particles, following
a set of Boltzmann equations, modified to include Pauli
blocking [24]. Many test particles per nucleon are used to
approximate the continuous phase space distribution. The
mean field is calculated self-consistently from the phase space
distribution. The symmetric matter EoS has been extended
to include momentum dependence, which can account for
nonlocal interactions such as the Fock term. This code has
been extensively tested against experimental data, including
single-particle distributions [31,32], elliptic flow [33], and
stopping observables [34]. It has been used to constrain the
high-density behavior of the symmetric matter EoS [22] and
was used in early isospin diffusion calculations to demonstrate
the sensitivity of the isospin transport ratio to the density
dependence of the symmetry energy [10].

A. Mean field

The symmetry energy used in this code takes the form

Esym

(
ρ

ρ0

)
= Skin

(
ρ

ρ0

)2/3

+ Sint

(
ρ

ρ0

)γi

, (2)

where the kinetic term arises from the Fermi motion of the
nucleons, resulting in Skin = 12.5 MeV. We examine the

variation of isospin diffusion with the potential interaction
term, varying both the value at saturation density (Sint) and the
density dependence (γi). The form of the symmetric matter
EoS is described in Ref. [33] for both momentum-independent
(MI) and momentum-dependent (MD) forms. As done there,
we choose parameter values that provide a curvature K =
210 MeV, near the currently accepted value of 231 ± 5 MeV
[23], and K = 380 MeV for comparison. We show that the
stiffness (curvature) of the symmetric matter EoS does not
affect isospin diffusion. We also study the MD case that best
fits the elliptic flow data in Ref. [33], which is characterized
by the effective mass m∗ = 0.7mN . Our study shows that the
momentum dependence changes the dynamics of the reaction
such that IMFs are produced from the breakup of the neck
and the interaction time is lengthened, both of which affect the
isospin diffusion signal.

B. In-medium cross sections

The residual interactions between nucleons are represented
by NN collisions, which are parameterized separately from the
mean field. The cross sections of these collisions are known to
be reduced in the nuclear medium compared to their free-space
values [35], but the form of this reduction is not yet established.
Starting from the free-space cross-section parametrization of
Ref. [36], we examine two forms of the in-medium cross-
section reduction. The screened cross section is derived from
the geometric reasoning that the geometric cross-section radius
should not exceed the interparticle distance and is implemented
in the form

σ = σ0 tanh(σfree/σ0), (3)

σ0 = yρ−2/3, y = 0.85. (4)

This screened reduction is strongly dependent on the
density and is very much reduced compared to the free-space
cross sections. Because this form has a maximum cross section
σ0, large cross sections have a larger fractional reduction than
small cross sections. The free neutron-proton (np) cross section
is larger than the free neutron-neutron (nn) or proton-proton
(pp) cross sections in the relevant energy range, so the
in-medium np cross section is suppressed more than the nn
or pp cross sections.

In contrast, the Rostock cross section is parameterized from
the results of Brueckner-Hartree-Fock calculations [37,38] and
is implemented in the form

σ = σfree exp

(
− 0.6

ρ

ρ0

1

1 + (Tc.m./150 MeV)2

)
, (5)

where Tc.m. is the center-of-mass kinetic energy of the nucleon
pair. It is less dependent on density than the screened cross
section and results in less reduction at the energy of interest.
Both cross sections were tested versus stopping data within the
pBUU model in Ref. [34]. The screened cross section showed
somewhat better agreement with the data, but both were
an improvement compared to the free-space cross sections.
Neither cross section reduction corresponds exactly with the
reductions used in the IBUU04 or ImQMD05 codes, but
the amount of reduction in those codes is more similar to
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the Rostock cross section than to the screened. We show that
the choice of cross-section reduction can greatly affect the
diffusion signal.

C. Cluster formation

Production of light clusters in the pBUU code is im-
plemented as an option up through cluster mass 3, with
the production rate derived through the inverse process of
cluster breakup. In pBUU these clusters are produced by the
interaction of test particles in the nuclear medium. Because
the clusters are test particles themselves, they may exist as part
of the density distribution that represents a nucleus, residue,
or fragment. In this analysis, this makes them distinct from
IMFs, which are defined as density distributions that are
spatially separated from the residues and each other, and are
the result of the interplay between density fluctuations and
the mean field. While this is far from a complete clustering
model, missing, in particular, the formation of α particles,
it can give an indication of the importance of clustering in
the nuclear medium. Even though the QMD model includes
a method of forming clusters, it is difficult to remove the
cluster formation mechanism entirely from the QMD model
in order to quantify the effects of clusters on the reaction
dynamics. With the cluster option in pBUU, we are able to
compare isospin diffusion results with and without cluster
formation.

III. IDENTIFICATION OF RESIDUE

Several methods of extracting the projectile-like residue
from the results of a transport simulation have been put
forward in the literature. These methods generally fall into two
categories. Within the first method, employed exclusively in
BUU approaches providing single-particle density, the residue
is defined as consisting of cells in the computational grid
that match a particular average velocity cut and average
density cut, regardless of the cells’ relative locations [10,29].
Within the second method, spatially contiguous fragments
are identified, either by examining the single-particle density
directly or through a tree-spanning method. Thereafter, cuts on
the average velocity and size of those fragments are applied
either to include only the largest fragment (the residue) or to
include all fragments that match particular mass and velocity
criteria, sometimes including free nucleons [14,30,39]. In both
cases, the velocity cut tends to be half of the initial projectile
velocity in the center of mass, and if a density cut is employed,
it can range from 0.2 to 0.05 the saturation density. Obviously,
these two methods will produce the same result for a simple
reaction that does not produce any IMFs. Nonetheless, the
first method has the advantage that it allows fragments to be
traced through the time scale of the reaction, while the second
can only define fragments once the system has sufficiently
spread out. On the other hand, the second method allows for a
more precise description of the final state of the system when
IMFs form, and it does not break up a spatially contiguous
fragment if some rotation or other collective motion exists
within that fragment. Whatever method is chosen to define

the projectile-like residue, the isospin asymmetry can be
determined and used as the isospin-sensitive observable within
the isospin transport ratio.

In our analysis, we chose to use the second method, as
there are systems produced in this study that emerge with
either IMFs or collective motion in the residue regions. We
identified contiguous areas above a given density threshold
as fragments, and we tested the effect of the density cut,
of the time chosen to stop the reactions, and of velocity
cuts on the extracted isospin asymmetry and isospin transport
ratio, using several combinations of physics inputs examined
here. The density cut was varied from ρ0/20 to ρ0/5. Lower
density cuts led to a more asymmetric residue, indicating
a low-density neutron skin on the fragment, but this effect
was almost entirely removed by the isospin transport ratio.
Likewise, after the main reaction is completed (when all
fragments have spatial separation), the residues continue
to evaporate neutrons, becoming more symmetric, but this
effect exists in the symmetric systems as well and ultimately
does not affect the isospin transport ratio significantly. The
time for the fragments to separate spatially depended on the
density cut and on the physics inputs but was complete by
220 fm/c after the start of the simulation in every case.
For the remainder of this paper, the analysis was conducted
at 270 fm/c with a density cut of ρ0/20, unless otherwise
indicated.

Some combinations of physics inputs yielded results that
were sensitive to velocity cuts. As discussed later, some
choices of mean-field parameters affect the formation of IMFs.
Systems that produced large IMFs sometimes had significantly
different results for the isospin transport ratio if those large
fragments were included in the analysis. These effects will be
discussed in more detail in the next section. Systems without
IMFs or with many small IMFs showed no dependence on
whether the highest mass fragment was considered alone
or whether all fragments matching a particular velocity cut
were considered together, for any forward-moving velocity
cut from 0 to 1/2 of the initial velocity of the projectile in the
center of mass. For the remainder of this paper, our analysis
focuses either on the asymmetry of the largest forward-moving
fragment without IMFs or on the asymmetry of all forward-
moving fragments. Free nucleons are not included in the
analysis.

IV. RESULTS

A. Mean-field effects

We start with a simple MI description of the mean field.
As done in Ref. [33], we use a mean field with an isoscalar
compressibility of K = 380 MeV, a screened cross section,
and no light cluster production. We vary the coefficient (Sint)
and density dependence coefficient (γi) of the symmetry
energy in Eq. (2). The results when following the heavy residue
are shown in Fig. 1(a) for the 124Sn + 112Sn (positive Ri) and
112Sn + 124Sn (negative Ri) systems at an impact parameter
of 6 fm. The x axis represents the strength of the interaction
term, Sint, in Eq. (2) at saturation density. Three density
dependencies, γi = 1/3, 1, and 2, are shown by triangles,
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FIG. 1. (a) Isospin transport ratio of the 124Sn + 112Sn and
112Sn + 124Sn systems as a function of the symmetry energy
interaction coefficient, for a momentum-independent mean field. (b)
Results from combining the two systems.

squares, and circles. Lines are drawn to guide the eye. For
all γi , a larger Sint leads to an isospin transport ratio closer
to 0 (horizontal dotted line), which matches the expectation
that a higher symmetry energy leads to more diffusion and
faster isospin equilibration. Consistent with that expectation,
the most equilibration occurs for the smallest value of γi

(triangles), which corresponds to a higher symmetry energy
at subsaturation densities. This confirms that isospin diffusion
is sensitive to the strength of the symmetry energy in the
subsaturation neck region, as anticipated.

The isospin transport ratios for the 124Sn + 112Sn and
112Sn + 124Sn systems converge for γ = 1/3 and Sint = 24,
indicating complete equilibration, but the value of Ri at
these points is definitely different from 0. This offset can
be attributed to the mass asymmetry of the system, as may
be demonstrated by a very simple calculation. Assuming that
nucleons are only transferred between the nuclei, and none are
lost to free space or to light fragments, simple algebra shows
that complete equilibration leads to Ri,eq = (A1 − A2)/(A1 +
A2). This result will be modified by pre-equilibrium emission,
but the effect on the transport ratio will be small. In our system
this calculation leads to Ri,eq = 0.051, which is consistent with
the observed equilibration in Fig. 1(a). However, Ri,eq = 0 is
more intuitive, and noting that the two systems provide similar
information, we can restore the expectation of a 0 for complete

iγ
0.5 1 1.5 2

i
R

0

0.2

0.4

0.6

MI
K = 380
K = 210

FIG. 2. Effect of the compressibility of the symmetric equation
of state on isospin diffusion, as a function of the density dependence
of the symmetry energy. MI, momentum independent.

equilibration by combining information from both systems,

Ri,mix = (Ri,124+112 − Ri,112+124)/2,

as demonstrated in Fig. 1(b). Unless stated otherwise, we use
the quantity Ri,mix for the remainder of this paper, and for
simplicity, we relabel it Ri . Having established that varying
either Sint or γi produces changes resulting only from the
overall strength of the symmetry energy at subsaturation
densities, for the calculations discussed in the remainder of
the paper we vary only γi and set Sint = 19 MeV [Esym(ρ0) =
31.5 MeV], as for the middle set of points in Fig. 1.

Next we examine the effect of changing the isoscalar
compressibility, still using an MI mean field. In Fig. 2, the
simulations with compressibility K = 210 MeV are shown
by squares and those with K = 380 MeV by circles, as a
function of the density dependence of the symmetry energy.
Recall that the accepted value of K is 231 ± 5 MeV [23],
so K = 380 MeV lies well outside the accepted uncertainties.
However, varying the compressibility even this much produces
very little change in the isospin transport ratio, although there
is slightly less diffusion for the K = 210 MeV case than for
the K = 380 MeV case.

In elliptic flow data at higher energies, including momen-
tum dependence had an effect similar to increasing the stiffness
of the mean field. That is why the MD mean field, with
curvature K = 210 MeV, was often compared to the MI mean
field, with K = 380 MeV [33]. However, for isospin diffusion
at 50 MeV/nucleon, the momentum dependence has a much
different effect than the compressibility. First, it changes the
dynamics of the reaction, enhancing the likelihood of IMF
production and, in particular, leading to the production of
larger IMFs. This arises because the depth of the attractive
potential is smaller at high relative momenta, and it is easier
for groups of particles to escape. A density profile of the MI
and the MD systems is shown in Fig. 3 at t = 270 fm/c,
highlighting the difference in IMF production.
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FIG. 3. (Color online) Density profiles from sample calculations
within the reaction plane at t = 270 fm/c, after the residues have
separated, following an equation of state that is (a) momentum
independent (MI) and (b) momentum dependent (MD). The z axis is
the beam direction, and the color scale represents density, normalized
to saturation density.

The emerging IMFs have a large effect on the diffusion
signal. When all forward-moving fragments are used as the
isospin tracer, including both the projectile-like residue and
IMFs, an MD EoS gives rise to more diffusion than an MI EoS
(Fig. 4; open triangles and filled circles, respectively), resulting
in smaller values of Ri . Only very small IMFs are produced
in MI simulations. The isospin diffusion results are essentially
unchanged when the small IMFs are included, so the respective
result is not shown separately in Fig. 4. By contrast, when
looking at just the largest residue, the inclusion of momentum
dependence (open circles) does not have a consistent effect
relative to simulations without momentum dependence. In this
case, there is less diffusion for large γi , resulting in large Ri

values, but more diffusion for small γi . Thus, inclusion of the
momentum dependence of the mean field has two effects on
the diffusion signal. It increases the overall rate of isospin
diffusion, but if the overall rate of diffusion is slow, as is the
case for large γi , many of the diffused particles are stuck in
the neck and contribute to the IMFs rather than to the heavy
residue. If the diffusion rate is fast, as is the case for small γi ,
the neck and the residue reach equilibrium, and the inclusion
of IMFs does not change the diffusion signal. This is similar
to an effect of IMFs reported by Zhang et al. in Ref. [30]
following the ImQMD code, although the dependence on γi is
different there.

iγ
0.5 1 1.5 2

i
R

0

0.2

0.4

0.6

MI
MD, residue
MD, forward

FIG. 4. Effect of momentum dependence on isospin diffusion,
as a function of the density dependence of the symmetry energy.
The diffusion into the largest residue is compared to the diffusion
into all forward-moving fragments. MD, momentum dependent; MI,
momentum independent.

On the other hand, the increase in diffusion owing to the
momentum dependence contradicts the results of Rizzo et al. in
Ref. [39], who report the opposite effect within the stochastic
mean-field (SMF) model. They report that the inclusion of
momentum dependence in the mean field, which causes greater
isoscalar repulsion, increases the rate at which the residues
separate and thus reduces the interaction time. The momentum
dependence corresponds to a reduction of the effective mass
compared to the free mass, which means that particles with
a given canonical momentum will be moving faster in an
MD mean field than in an MI mean field. This speeds up the
interaction of the colliding nuclei. Our simulations do show
that the residues move apart from each other more quickly
when isoscalar momentum dependence is included. However,
the formation of density clumps in the neck, which results
in emission of IMFs after the neck snaps, anchor the neck,
causing it to persist longer and allowing more diffusion to
occur. This effect is visible in the density profiles of the system
at 162 fm/c, when the neck in the MI case [Fig. 5(a)] has
already broken up but that in the MD case [Fig. 5(b)] has
not. This effect occurs even when the density fluctuations in
the neck do not persist as IMFs at the end of the reaction.
This suggests that the major effect of the symmetric mean
field in isospin transport is to influence the time and manner
of the neck breakup. The explicit inclusion of stochastic
effects in the SMF model produces density fluctuations leading
to IMFs even for MI mean fields, which may cause the
neck to break up similarly regardless of the momentum
dependence of the mean field. The amount of time during
which the residues interact would then depend only on the
velocity of the residues, producing the different trend in their
calculations.

This same dependence on the manner of the neck breakup
is evident in the impact parameter dependence of the isospin
transport ratio. Figure 6 shows the transport ratio as a function
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FIG. 5. (Color online) Density profiles within the reaction plane
at t = 162 fm/c, normalized to saturation density. (a) When following
a momentum-independent (MI) equation of state (EoS) and (b) when
following a momentum-dependent (MD) EoS.

of the impact parameter. The line style corresponds to the
density dependence of the symmetry energy. As expected, less
diffusion takes place (larger Ri) at large impact parameters,
where the overlap region is smaller and the residues continue to
move faster. The amount of diffusion changes monotonically
in the MI case [Fig. 6(a)]. When momentum dependence is
included, however, this monotonicity disappears [Fig. 6(b)]
for central and midperipheral collisions. This is again caused
by the large IMFs, which are only created if there is
a sufficient overlap region. For peripheral collisions (b >

7 fm), the density fluctuations in the neck extend the lifetime
of the neck, increasing the interaction time and the amount of
equilibration, but not creating large enough IMFs to carry away
the asymmetry. For midperipheral collisions (5 fm � b �
7 fm), the residue equilibration varies significantly but flattens
out on average. When including all forward-moving fragments
[Fig. 6(c)], the monotonicity is restored in this region. For the
smallest impact parameter (b = 4 fm) shown in Fig. 6, the
amount of equilibration indicated by both tracers decreases
(larger Ri values). In this region, the motion of matter squeezed
out of the overlap region competes with the diffusion process.
Comparison of Figs. 6(a)–6(c) reveals the smallest effect from
the momentum dependence of the mean field at large impact
parameters, while still being sensitive to γi . For midperipheral
collisions, the dependence on the mechanism of neck breakup
owing to the momentum dependence of the mean field is
reduced when looking at all forward-moving fragments.
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FIG. 6. Impact parameter dependence of isospin diffusion for
(a) the momentum-independent (MI) equation of state (EoS), (b)
the momentum-dependent (MD) EoS, to the heavy residue, (c) and
the MD EoS, to all forward-moving fragments.

B. In-medium cross sections

We now move in our considerations from the mean field
to the in-medium nucleon cross sections. As discussed in
Sec. II B, we examine free cross sections and two parametriza-
tions of in-medium reductions. Prior to this point, we have
been using the screened cross section.

The effect of the different cross-section parametrizations
is shown in Fig. 7, when following the MI EoS. Clearly,
less diffusion occurs for the free cross section (triangles) than
for either reduced one, and this effect is most pronounced
for small γi . This contradicts the conclusion arrived at within
the IBUU04 code in Ref. [29], where it was found that the
free cross section produced more diffusion than the reduced
cross section for very stiff symmetry energies (γi > 2), with
less effect in the range of γi considered here. Similarly, the
ImQMD05 code is largely insensitive to the cross section over
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FIG. 7. Effect of different cross-section parametrizations on
isospin diffusion.

a range of density dependencies similar to that considered
here [30]. However, both of those results were obtained with
MD mean fields, which are considered here only later in Fig. 9.
In Fig. 7, the difference between the Rostock and the screened
cross sections, shown as squares and circles, respectively, is
larger than the difference between the free and the Rostock.
More importantly, the sensitivity to γi is strongly affected by
the cross section.

The screened and Rostock cross sections lead to similar
stopping in HICs because they produce similar viscosities
[34]. However, they suppress the overall number of NN
collisions by different factors, and as discussed in Sec. II B, the
screened cross section reduces the np cross section more than
the nn or pp. In these simulations, NRostock ≈ 3

4Nfree, while
Nnn,pp,screened ≈ 1

4Nfree and Nnp,screened ≈ 0.15Nfree, where N

is the total number of NN collisions over the course of the
simulation. It is not simply the number of collisions that
affects the isospin transport. From Shi and Danielewicz [26],
we expect the isospin diffusion rate to depend inversely on
the np cross section, without depending on the nn or pp cross
sections at all. However, Ref. [26] studied diffusion in nuclear
matter near equilibrium, and the dependence on cross sections
may be different in HICs. Figure 8 shows the isospin transport
values when the np cross section is reduced by a constant factor
relative to the free cross sections. As expected, changing the
nn and pp cross sections leads to only very small changes,
so these are not shown. The x axis is the reduction factor
employed, with the limit of no collisions at the left of the axis
(σnp/σnp,free = 0) and free-space cross sections at the right.
Line and marker styles represent the density dependence of
the symmetry energy, γi . The trend of each line indicates that
collisions have two major effects on the amount of isospin
diffusion. For nearly free cross sections on the right side of
the plot, increasing the cross section decreases the amount
of diffusion. This matches the intuition, formally derived in
Ref. [26], that collisions impede isospin diffusion. A nucleon
that undergoes a collision or series of collisions with a high

np,freeσ/npσ
0 0.5 1

i
R

0

0.2

0.4

0.6

 = 2iγ
 = 1iγ
 = 1/3iγ

FIG. 8. Sensitivity of isospin diffusion to np cross-section reduc-
tion by a constant factor. The x axis is the fractional reduction relative
to free cross sections. Horizontal lines represent the results obtained
using the screened cross section, from Fig. 1.

momentum transfer forgets its original direction of motion,
which impedes the equilibration effects of the mean field.

For the very small cross sections on the left in Fig. 8,
however, increasing the cross section increases diffusion.
The NN collisions can cause isospin transport by knocking
nucleons out of the momentum space of one nucleus, causing
them to be transferred to the other nucleus or expelled as free
nucleons. This process is largely isospin independent but will
contribute to isospin equilibration via simple mixing. The hook
at the low end of the γi = 1/3 (triangles, dot-dashed line) line
shows that this yields a finite contribution to isospin diffusion
for even a strong symmetry potential at subsaturation densities.
For γi = 2 (solid line), this is the dominant contribution
and approaches the point where diffusion would increase by
increasing the cross section at any point on the curve. For even
stiffer symmetry energies, this could easily lead to the free
cross section producing more diffusion, as seen in the IBUU04
study. For reference, three horizontal lines are drawn to
indicate the value of Ri from the screened cross section. Except
for the γi = 1/3 case (dot-dashed line), a uniform reduction
of the free cross section never produces as much diffusion
as the screened cross section. This indicates that the strong
density dependence of the screened cross section is particularly
favorable for overall isospin equilibration. Therefore, the exact
form of the in-medium cross section is the important quantity,
not merely the viscosity or the net collision number.

A similar hierarchy of cross-section effects is evident
with an MD EoS, with the stipulation that one takes the
IMFs into account. As shown in Fig. 9, the IMFs included
in the forward-moving fragments modify the signal differ-
ently for the different cross sections. The screened cross
section (circles) is strongly affected by the inclusion of IMFs
[Fig. 9(b)], while the Rostock (squares) is affected modestly
and the free cross section (triangles) is affected little. This
may open an avenue to experimentally constrain the cross
sections. A careful comparison of Fig. 9 to Fig. 7 also
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FIG. 9. Isospin equilibration for a momentum-dependent (MD)
equation of state with in-medium cross-section reductions. (a) Results
for heavy residues only; (b) results for all forward-moving fragments.

reveals that the results obtained using the screened cross
section are most strongly modified by using a mean field
with momentum dependence. This can be understood as the
competition between the collisions and the mean field: as the
importance of the collisions grows, the changes in the mean
field become less important. Figure 9 also shows that with an
MD mean field, the Rostock and free cross sections produce
very similar results, except for the very stiff symmetry energy,
γi = 2. This is consistent with the results of Ref. [29].

The difference in dynamics that gives rise to the different
IMF dependencies is evident in Fig. 10, where the asymmetry
of all fragments greater than mass 2 at the final time of the
124Sn + 112Sn simulations is plotted against their rapidity
in the reaction center of mass, accumulated over many
simulations. The two different symbols represent two different
γi values in the EoS used in the simulations, and Figs. 10(a) and
10(b) show results for the screened and Rostock cross sections,
respectively. The tight clumps of fragments at the largest
absolute rapidities are the large residues, and all other points
represent IMFs. While the fragment asymmetry is similar
between the two cross sections for a given γi , the IMFs are
more evenly spread in rapidity with the Rostock cross section
[Fig. 10(b)], whereas they are more likely to be concentrated
at a larger absolute rapidity with the screened cross section

y
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δ
0
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(b) Rostock

δ

0
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0.3
(a) screened

 = 2iγ
 = 1/3iγ

0

FIG. 10. (Color online) Distribution of fragments in isospin
asymmetry and rapidity, using (a) screened and (b) Rostock in-
medium cross sections.

Fig. 10(a)]. This indicates less stopping for the IMFs from
the screened cross section, even though the residue rapidity
is unchanged. Related to this, but not illustrated, is that the
produced IMFs tend to be larger in the screened case compared
to the Rostock case, but of quite similar asymmetry. Note that
there are no IMFs close to the residue in rapidity. Because this
is a snapshot taken on the time scale of the nuclear reaction, the
effect cannot be attributed to the long-term impact of Coulomb
repulsion. Rather it is the effect of the residue “gobbling up”
nearby fragments. Because the IMFs are moving faster in the
screened case, they are closer to the residue and are more likely
to be absorbed. This, combined with the mass difference of the
IMFs, causes the different degree of response to the inclusion
of IMFs in the isospin transport ratio. The dependence on IMF
mass and rapidity distributions can be measured, and this may
provide additional constraints on the in-medium cross-section
reduction.

C. Cluster production

Next we examine the effects of light cluster production
in the nuclear medium. This is a distinct process from the
formation of IMFs during the breakup of the neck. IMFs are
the result of density fluctuations, whereas cluster production
is a fast nucleation process, the result of inelastic particle
collisions. It is unclear how to combine the information
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FIG. 11. Effect of in-medium cluster production on isospin
equilibration for a momentum-independent (MI) mean field (a) and a
momentum-dependent (MD) mean field (b).

about light fragments produced from these two mechanisms;
nevertheless, it is interesting to examine the change in
dynamics that results. Figure 11 shows the changes in the
isospin transport ratio caused by including cluster production,
when examining all forward-moving fragments. Specifically,
the figure compares the results of simulations with and without
clustering when employing an MI mean field [Fig. 11(a)]
and when employing an MD mean field [Fig. 11(b)]. In both
cases, the inclusion of cluster production (squares) reduces
the amount of diffusion and decreases the sensitivity of
the diffusion to the symmetry energy. The increased value
of the isospin transport ratio for small γi better matches
the predictions of ImQMD05 [30], bolstering the idea that
clustering in a BUU model is required for comparison to
results from QMD models and to experimental data. However,
the maximum isospin transport ratio for large γi here is still
significantly lower than that reported for ImQMD05. The
effect of clustering is very similar to the effect of increasing
the cross section in Sec. IV B. In fact, with this new collision
channel open, more collisions occur. This reduces the influence
of other effects. Comparing Figs. 11(a) and 11(b), there is
little difference between the MD and the MI simulations,
once clustering is included. Similarly, the differences between
cross-section parametrizations are reduced when clustering is
included; compare Figs. 12 and 9. The difference between the
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FIG. 12. Effect of cluster production and of in-medium cross-
section reductions on isospin equilibration, using a momentum-
dependent mean field.

residue and the forward-moving fragment tracers is also less
with the inclusion of cluster production, and for the free and
Rostock cross sections, it becomes a small, nearly constant
offset in the value of the isospin transport ratio. Interestingly,
the simple dependence on collisions number, which was
lost when momentum dependence was included, has been
restored.

However, the effect of including clustering goes well
beyond the increased number of collisions. The extra kinetic
energy released by the cluster formation causes the neck to
fragment into many smaller pieces rather than a few large
IMFs, as shown in the density plot at t = 270 fm/c in Fig. 13.
The fragmentation process also continues longer, as evidenced
by the shape of the residues, which have not yet reached a
spherical shape. Additionally, the whole neck region tends to
expel its asymmetry with less dependence on γi , as shown in
Fig. 14 (compare Fig. 10). This effect was predicted by Shi

z (fm)
-40 -20 0 20 40

x 
(f

m
)

-40

-20

0

20

40

0

0.2

0.4

0.6

0.8

1

FIG. 13. (Color online) Density profile within the reaction plane
at t = 270 fm/c, normalized to saturation density, when cluster
production is incorporated and a momentum-dependent mean field is
employed.
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FIG. 14. (Color online) Distribution of fragments in isospin
asymmetry and rapidity, when cluster production is incorporated and
a momentum-dependent mean field is employed, for two choices of
symmetry energy.

and Danielewicz [40]. They argued that the clusters modify the
liquid-gas phase transition, forming droplets in the low-density
gas phase and causing it to behave more like the liquid phase.
This results in less isospin migration to the neck and, thus,
less diffusion taking place through the neck. Another result
is that the IMFs are smaller and have asymmetries similar
to the residue, and both these effects reduce the importance
of including them in the isospin transport ratio. Note that
the isospin distribution of the IMFs in Fig. 14 is similar to
that in Fig. 10 for γi = 1/3, while the diffusion represented
in Fig. 12 is more similar to that previously displayed for
γi = 2. This indicates that the effect of clustering on isospin
diffusion may be distinguished from the effect of the symmetry
energy by examining both the IMFs and the projectile-like
residues.
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FIG. 15. (Color online) A comparison of isospin equilibration
data to results of simulations that incorporate an MD mean field,
cluster production, and one of two parametrizations of in-medium
cross-section reductions.

Finally, it is interesting to consider a comparison to
the data, with all the discussed effects included. Figure 15
includes simulation results using an MD mean field, cluster
production, and both cross-section reductions, compared to the
experimental data (shaded region) from Ref. [10]. Simulations
are carried out at impact parameters of both 6 fm (filled
symbols) and 7 fm (open symbols), to represent the uncertainty
in the impact parameter in the data. The results compare well
with the data but, unfortunately, do not tightly constrain the
density dependence of the symmetry energy γi , especially
when the Rostock cross sections (squares) are used. This calls
for further investigation into the uncertainties in the transport
model. As presented here, many of these uncertainties affect
the distribution of mass, isospin, and rapidity between IMFs
and heavy residues, which can be experimentally measured.
The decreased dependence on γi once all effects are included,
compared to previous BUU results, also argues for more
precise experimental measurements. Isospin diffusion exper-
iments have been proposed at both the NSCL and the Rare
Isotope Beam Facility at RIKEN to measure the isospin signals
from both IMFs and heavy residues with a high precision.

V. CONCLUSION

We have used the pBUU transport model code to explore
the effect of various aspects of the input physics and transport
description on isospin diffusion. Consistent with previous
studies, we found diffusion to be more significant if the
symmetry energy is higher at subsaturation densities. This can
occur when the symmetry energy is more weakly dependent
on the density. Turning our attention to the influence of other
transport quantities, we found some unexpected sensitivities.
For example, we found that the inclusion of momentum
dependence in the isoscalar mean field produced density
fluctuations in the neck, prolonging the diffusion process and
giving rise to IMFs. In addition, the choice of in-medium
NN cross section can also affect isospin diffusion, both
producing a change in the IMF distribution and altering the
balance between a mean-field-driven diffusion process and
a collision-driven mixing. Depending on the magnitude of
the in-medium cross section and density dependence of the
mean field, we found that NN cross sections can enhance
diffusion, for very small cross sections, or reduce diffusion,
for large cross sections, comparable to the values in free
space. This study has examined for the first time the effect
of including in-medium cluster production on the isospin
diffusion process. Previous studies have looked at the effect
of IMF formation but have not looked at in-medium cluster
production in a way similar to pBUU. We found that cluster
production reduced diffusion by causing the neck to become
more isospin symmetric.

In all cases that produce IMFs, considering either the
residue alone or all forward-moving fragments yields different
isospin diffusion signals, with the residue values for the isospin
transport ratio consistent with less diffusion. These can be
considered two observables of isospin diffusion, each sensitive
to the input physics, and they can both be exploited to im-
prove constraints on the symmetry energy from comparisons
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between data and calculations. To do this, however, it is impor-
tant to have experimental data that originates unambiguously
from the projectile residue, and this is not the case in the
published isospin diffusion data. New experiments aim to
measure and compare the different diffusion signals from IMFs
and large residues, and this should help to constrain the effects
studied here.

The large effects observed in this study suggest that
more work is needed to pin down the input physics in
transport models other than the symmetry energy. Similar
studies will be needed on other observables, both within the
same code and between different codes and different models.
Observables of the symmetry energy are sensitive enough to
the collision dynamics that the differences between BUU and

QMD dynamics need to be understood and accounted for.
To constrain all of these sensitive transport quantities and
conclusively determine the value of the symmetry energy at
subsaturation density, it would be helpful to explore and obtain
a consistent map of many observables in a multiparameter
physics input space.
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H. H. Wolter, Phys. Rev. C 72, 064620 (2005).
[28] F. Rami et al. (FOPI Collaboration), Phys. Rev. Lett. 84, 1120

(2000).
[29] B.-A. Li and L.-W. Chen, Phys. Rev. C 72, 064611 (2005).
[30] Y. Zhang, D. D. S. Coupland, P. Danielewicz, Z. Li, H. Liu,

F. Lu, W. G. Lynch, and M. B. Tsang (submitted to Phys. Rev.
C), arXiv:1009.1928v1 (2011).

[31] P. Danielewicz and G. F. Bertsch, Nucl. Phys. A 533, 712 (1991).
[32] P. Danielewicz, Nucl. Phys. A 545, 21c (1992).
[33] P. Danielewicz, Nucl. Phys. A 673, 375 (2000).
[34] P. Danielewicz, Acta. Phys. Pol. B 33, 45 (2002).
[35] G. D. Westfall et al., Phys. Rev. Lett. 71, 1986 (1993).
[36] J. Cugnon, D. L’Hote, and J. Vandermeulen, Nucl. Instr. Methods

Phys. Res. B 111, 215 (1996).
[37] H.-J. Schulze, A. Schnell, G. Röpke, and U. Lombardo, Phys.
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