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Effect of neutron halos on excited states of nuclei
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The differential cross sections of the inelastic scattering leading to the excitation of short-lived states in the
stable 13C and 9Be nuclei as well as the radioactive 11Be nucleus have been analyzed. Signatures of neutron halos
in the excited states located close to the neutron emission thresholds have been investigated by applying a recently
developed modified diffraction model. The abnormally large rms radius was identified for the 3.089-MeV 1/2+

state of 13C. Significantly enlarged diffraction radii were found for the 1.68-MeV 1/2+ and the 3.05-MeV 5/2+

states of 9Be. The analysis of the diffraction radii of the weakly bound radioactive 11Be nuclei have shown that
the 1.78-MeV 5/2+ and 3.41-MeV 3/2+ states in 11Be have the same diffraction radii as the 1/2+ ground state,
which is known as the best example of a state with one-neutron halo.
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I. INTRODUCTION

One of the most remarkable discoveries in nuclear physics
from the end of the past century was the observation of
neutron halos in some neutron-rich light nuclei [1]. The
very term exotic nuclei was originally applied to nuclei
possessing neutron halos [2]. This phenomenon manifests
itself in the existence of a dilute surface region containing
only neutrons (typically one or two) around a core with normal
nuclear density. Formation of nuclear states located near the
neutron emission thresholds and possessing enhanced radii
was predicted long ago [3]. The physical reason of this effect
is weak binding energy between the valence neutrons and
the core, leading to long “tails” of their wave functions and
consequently to an enhancement of nuclear radius. The effect is
expected to be especially prominent for the neutrons occupying
the s orbit, because in this case a centrifugal barrier is absent.
The average distance between the valence neutrons and the
center of the nuclear core in two-component nuclei such as
11Be, 11Li, and 14Be can reach up to 7 fm [4,5], that is, about
three times larger than their rms radii.

Neutron halos have been almost exclusively observed in
ground states (g.s.) of some neutron-rich radioactive nuclei
located close to the neutron drip line. Nevertheless, ideas
about universality of the halo phenomenon were expressed
soon after its discovery (see, e.g., Refs. [6,7]). Namely, Otsuka
et al. held: ”The neutron halo should not be limited to exotic
nuclei and should be seen in excited states of large number
of nuclei on and off the β-stability line, for instance, the
first 1/2+ state of 13C” [7]. Apparently, the observation of
halos in the first excited states (1/2+, Ex = 3.089 MeV)
of 13C and 12B (1−, Ex = 2.62 MeV) was first reported by
Liu et al. [8], who employed the asymptotic normalization
coefficient (ANC) method to estimate the radii of these states.
The identities of some properties of halos in the ground states
of the neutron-rich nuclei and those in the excited states of the
stable nuclei were discussed in Ref. [9].

Observation of halos in the excited states can drastically
extend the existing knowledge about exotic states of nuclei,

because some new features of nuclear structure might become
apparent. The main reason why there was no search for
halos in the excited states was the absence of reliable
methods for measuring the radii of the short-lived (τ1/2 �
10−10 s) nuclear states. Indirect and usually nonquantitative
information sometimes can be obtained from the nuclear form
factors [10]; in particular, in Ref. [11] the analysis of the Hoyle
state in 12C was carried out by inelastic electron scattering.

Recently [12–15], we proposed a modified diffraction
model (MDM) for determining the nuclear radii for such
short-lived excited states and applied it to determine the rms
radii of 12C in the excited states lying near and above the
α-particle breakup threshold. Our approach allowed us to
determine the enhanced radius of the famous Hoyle state
(02

+, Ex = 7.65 MeV), and it seems to be an effective method
to study cluster and α-condensation properties of light nuclei,
which received the bulk of attention in recent years [16–19].
It is challenging to extend this method to the states of the light
stable nuclei located close to the neutron emission thresholds,
especially to those where the existence of neutron halos could
be expected. Besides determining the nuclear sides in the
excited states below the neutron emission threshold, such
a study would provide additional information that could be
useful for further development of the method. One application
of the MDM relates to determining the diffraction radii for
some short-lived states located above the neutron emission
threshold in order to look for theirenhancement.

In this paper, the MDM is applied to determine the
diffraction radii of the 1/2+states of 13C and 9Be from the
existing data of the inelastic 3He- and α-particle scattering.
The data of 11B +12C scattering are analyzing with the aim to
extract the diffraction radii of 11B in the 5/2+ and 3/2+ states
that are the members of the 1/2+ g.s. band in 11B.

II. MODIFIED DIFFRACTION MODEL

A diffraction scattering model [20], a fairly rough ap-
proximation for calculating the differential cross sections, is
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adequate to determine nuclear radii from experimental data.
Its advantage consists in operating with a single parameter
having the dimension of length, the diffraction radius, which
is directly determined from the positions of the minima
(maxima) of the experimental angular distributions. In more
accurate approaches, for example, the optical model, the
nuclear radius manifests in an implicit and ambiguous manner
in the parameters of the real and imaginary parts of the
optical potential, which in turn are determined by fitting the
calculations to the measured cross sections; therefore, these
depend on the quality of both the fit and the data.

The adiabatic approximation, which is used in the diffrac-
tion model, implies freezing a target nucleus during a collision.
Because of this, inelastic scattering is replaced by elastic
scattering that takes place on the nuclear surface modified
in the process of forming the excited state. Accordingly, the
total reaction amplitude consists of two parts. One describes
the elastic scattering on a black disk, corresponding to the
initial state, and the second corresponds to the additional
elastic scattering, which is a contribution from the edge. As
a result, the differential cross sections are described by the
squares of the cylindrical Bessel functions of various orders
from the argument proportional to some radial parameter Rdif

(diffraction radius), which depends on both nuclear structure
and interaction dynamics. If a diffraction radius is conserved in
the elastic and inelastic scattering, then certain phase relations
(so-called Blair phase rules) between the angular distributions
of the elastic and inelastic scattering appear [20]. Because
these relations are fulfilled very well in many cases of inelastic
scattering with excitation of levels at which one should expect
constant real nuclear radii (e.g., for the lowest members of
the rotational band), the deviations from it can serve as an
indicator of changes in the size of a nuclear state.

We have developed a modified diffraction model [12–14],
which assumes that the rms 〈R∗〉 radius of the excited state
can be determined by the difference of diffraction radii of the
excited and the ground states using the following relations:

R0
dif(el) = 〈R0〉 + 〈R1〉 + �el, (1)

R∗
dif(in) = 〈

R∗〉 + 〈R1〉 + �in, (2)

〈R∗〉 = 〈R0〉 + [
R∗

dif(in) − R0
dif(el)

] + (�el − �in). (3)

Here 〈R0〉 and 〈R1〉 are the rms matter radii of the colliding
nuclei in their ground states, which are assumed to be known.
Namely, it is assumed that the rms matter radius of the
“normal” nucleus coincides with the radius of the proton
distribution in the nucleus (i.e., the radius of the matter
distribution of neutrons in the nucleus coincides with the radius
of the proton distribution), 〈R0〉 = √

〈R2 〉p. The matter radius
of the proton distribution in the nucleus can be estimated (see,
e.g., [21] with reference to the book [22]) as

〈R2〉p = 〈R2〉ch − 0.77 + 0.11N/Z.

The values of rms charge radii of the nuclei 〈R2〉ch are taken
from Ref. [23]. R∗

dif(in) and R0
dif(el) are the diffraction radii

determined from the positions of the minima and maxima
of the experimental angular distributions of the inelastic
and elastic scattering, respectively. Parameters �el and �in

represent the difference between the diffraction radii and the

FIG. 1. Schematic view of the density superposition of the
colliding 12C nuclei in the elastic diffraction scattering. The vertical
dashed lines correspond to the rms radii of the colliding nuclei.

sum of “true” (e.g., rms) radii of the nuclear states involved in
the reactions (Fig. 1), and thus they determine the distance
to which the colliding nuclei must approach to evoke a
diffraction. Values of � include all the structural and dynamic
effects that are neglected in the diffraction model. For the
elastic scattering, the �el value can be determined directly
from experimental data. Energy dependence of �el in the c.m.
system for various combinations of colliding nuclei was shown
in Fig. 5 of Ref. [13].

A common feature of �el values is their monotonic decrease
with energy, meaning that diffraction occurs at a stronger
overlap of nuclear densities as the energy increases. Such
behavior correlates with the known fact that the diffraction
radius is close to the strong absorption radius. We also note
that for the projectiles with lower average densities (deuterons,
6Li), diffraction takes place at a smaller distance between the
colliding nuclei.

To determine the radius of a nucleus in the excited state, we
should make some assumptions about a behavior of unknown
quantities �in. Though it cannot be strictly justified, it is
reasonable to suggest that �in and �el are similar in their
main aspects. In Refs. [12–14], we used

�in = �el. (4)

This means that the radius of the excited state is determined in
MDM not absolutely, but relative to the radius of the ground
state by adding the difference of both diffraction radii. One of
the arguments in favor of Eq. (4) is that the Blair phase rules
have been confirmed by numerous examples to be valid, as
mentioned previously.

Applications of the MDM for the inelastic scattering of 2H,
3He, 4He, 6Li, and 12C on 12C in a wide range of energies
allowed us to get consistent values of the rms radii of 12C
in several levels for which enlarged sizes were expected. In
particular, we showed that the Hoyle state, in line with the
expectations, really has an abnormally large radius. The results
were confirmed by another independent method that used the
inelastic rainbow scattering of 3He and 4He on 12C [12,14].
In addition, the analysis of the available data of the inelastic
scattering from 11B and 13C [24] has shown that the spectra
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of these nuclei also contain the α-cluster states with extended
sizes, which can be considered as the analogs of the Hoyle
state.

In this study, we use the MDM to determinate the radii of the
nuclear states, for which we expect the existence of a neutron
halolike structure. Of course, we do not argue in advance that
Eq. (4) remains valid for nuclei with very different distributions
of the nucleon density or that it will not depend on energy.

III. DETERMINATION OF THE DIFFRACTION RADII

A. Diffraction radii for the excited states of 13 C

The first 1/2+ excited state of 13C at Ex = 3.089 MeV is
located 1.86 MeV below the 12C + n threshold. Determination
of its radius with the MDM has a special significance for the
method in general, because it allows us to compare our results
with those obtained by an independent approach [8] (the ANC
method).

The available data of the 3He + 13C inelastic scattering at
Ec.m. = 30–40 MeV [25–28], as well as the α = 13C inelastic
scattering at similar energies [29,30] and at 388 MeV [31],
are explored for the diffraction analysis. Figure 2(a) shows
an example of the differential cross sections of the 3He +
13 C elastic and inelastic scattering. According to the Blair
phase rule, the elastic and inelastic (to 1/2+ state) angular
distributions should be in phase. However, Fig. 2(a) shows
that the minima and maxima positions of the inelastic cross
section are systematically shifted toward the smaller angles
with respect to their corresponding positions in the elastic
angular distribution. This fact is a signature [12,13,32] of the
increased diffraction radius of the 1/2+ state.

The diffraction radii at each specific energy are determined
by averaging the data obtained from the positions of several
minima and maxima at small angles, which are identified

(a) (b)

FIG. 2. (Color online) Differential cross sections of the
(a) 3He + 13C and (b) 4He + 13C elastic [25] and inelastic [26]
scattering at E(3He) = 39.6 MeV and E(4He) = 388 MeV [31]. The
shift toward smaller angles of the minima and maxima positions in the
inelastic scattering relatively to those in the elastic cross sections is
clearly seen. The arrows in this and the following figures indicate the
minimum and maximum positions used to determine the diffraction
radii.

(a) (b)

FIG. 3. (Color online) Differential cross sections of the inelastic
4He + 9Be scattering at 35.5 MeV leading to the excitation of
the lowest 9Be states with (a) positive parity: 1.68-MeV 1/2+ and
3.05-MeV 5/2 + states and (b) negative parity: 0.00-MeV 3/2− and
2.43-MeV 5/2− states. Data are from Ref. [33]. The shift mentioned
in the caption of Fig. 2 is seen for the positive parity levels and absent
for the negative ones.

as extremes of the squared Bessel functions. Normally, the
positions of 2–3 minima and maxima are used for the analysis
as shown in Figs. 2 and 3. More details about the procedure
are given in Ref. [13]. In the most cases, deviations from the
average values do not exceed 0.10 fm. The energy-averaged
differences (R∗

dif − R0
dif) of the diffraction radii between the

3.089-MeV 1/2+ state and the ground state are 0.53 ±
0.12 fm for the α-particle scattering and 0.40 ± 0.07 fm for
the 3He scattering in the low-energy region. The diffraction
radius of the 3.089-MeV state determined from the α-particle
scattering at Eα = 388 MeV [31] [Fig. 2(b)] is also found to
be larger than that for the ground state.

The diffraction radii for the other excited states located
between the 3.089-MeV level and the cluster states, analogs of
the Hoyle state (see Ref. [24]), are identical with the diffraction
radius of the ground state within the error bars. This fact
confirms the exceptional character of the 3.089-MeV 1/2+
state of 13C.

B. Diffraction radii for the excited states of 9 Be

This nucleus has two well-developed rotational bands of
different parities based on the ground and first excited states,
correspondingly. The first three states in the π band are g.s.
3/2−, 2.43-MeV 5/2−, and 6.38-MeV 7/2− states. The four
lowest states in the σ band are 1.68-MeV 1/2+, 3.05-MeV
5/2+, 4.70-MeV 3/2+, and 6.76-MeV 9/2+. We analyze the
existing scattering data: α + 9Be at 35.5, 50, and 65 MeV,
and 3He + 9Be at 50 MeV [33–35]. They all contain the
elastic and inelastic (with excitation of the 2.43-MeV 5/2−
state) differential cross sections. Transitions to some positive
parity levels were measured only for the α + 9Be scattering at
35.5 MeV [33]. The differential cross sections of the elastic and
inelastic (to the 1.68-, 2.43-, and 3.05-MeV states) scattering
are shown in Fig. 3(a).
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TABLE I. Diffraction radii of 9Be in the excited states
obtained from the analysis of the scattering data.

Ex (MeV), J π Rdif (fm)a

0.00, 3/2− 5.18 ± 0.03
1.68, 1/2+ 6.38 ± 0.14
2.43, 5/2− 5.25 ± 0.05
3.05, 5/2+ >6.3
6.38, 7/2− 5.27 ± 0.13

aThe diffraction radii of 3/2− and 5/2− states are obtained
by averaging the data of the α particle and 3He scattering at
different energies.

The systematical shift of the minimum and maximum
positions of the inelastic angular distribution corresponding
to the formation of the 1.68-MeV 1/2+ state with respect to
the elastic-scattering cross section is observed, which clearly
indicates the difference of the diffraction radii for the first
excited and the ground states. On the other hand, no significant
deviations from the Blair rules are seen in the cross sections
corresponding to the transitions to the negative parity levels,
as one can see from Fig. 3(b).

The extracted diffraction radii for the lowest states of 9Be
are shown in Table I. For the ground and the 2.43-MeV states,
the values of Rdif practically do not depend either on the
energy or the type of the projectiles. As the doublet, 6.38-MeV
7/2− and 6.76-MeV 9/2+ were not resolved in the data of
Ref. [33], and we attributed the spin-parity value 7/2− to the
whole group. [An argument in favor of such a choice is the
much larger cross section of the transition to the 5/2− state in
comparison with that to the 5/2+ one; see Figs. 3(a) and 3(b)].
The value of the corresponding diffraction radius is close to
those obtained for other two members of the π band.

The diffraction radii for the two states with positive parity,
the members of the σ band, are significantly (∼1 fm) larger.

Thus, from the inelastic scattering data, it follows that the
lowest excited states with Jπ = 1/2+ in the 13C and 9Be have
abnormally large diffraction radii.

IV. DISCUSSION

A. Neutron halo in the excited state of 13C

Because the MDM has no the strict theoretical foundation
and is based on empirical systematics, we should compare
the results obtained within this model with the data for
some reference excited state with a known “true” radius. In
the case of the threshold α-cluster states, we refer to the Hoyle
state, which is known to have a larger size. Applicability of
the MDM and, in particular, Eq. (4) was demonstrated in
the detailed and consistent studies of the diffraction radius
dependences from the energy and different types of incident
particles and was confirmed by independent rainbow scattering
analysis [12–14]. It is difficult to analyze the neutron halo in the
excited states because of the lack of experimental data. The
only object with which it is possible to make a comparison
is the first excited state of 13C. According to Eqs. (1)–(3),
the rms radius of 13C in the 3.089-MeV 1/2+ excited state

determined from the analysis of the data at low energies (at
Ec.m. � 40 MeV, the average value of R∗

dif = 5.97 fm) is
found to be 〈R∗〉 = 2.74 ± 0.06 fm. This value is about
0.4 fm larger than the rms radius of 13C in its ground state,
〈R0〉 = 2.33 fm. The increased rms radius does not automati-
cally mean the appearance of a halo, but a natural explanation
of such enhancement in this particular case is that the s-state
wave function of the valence neutron has asymptotically a
long exponential “tail” exp(−kr), which strongly increases
the probability for the neutron to be outside the 12C core. The
corresponding length parameter 1/k = (με)−1/2 is equal to
3.5 fm, which gives a rough estimation of the average distance
between a neutron and the 12C core (i.e., the halo radius):

Rh(13C) = 〈R(12C)〉 + 1/k = 5.8 fm. (5)

This estimate implies that the 3.089-MeV 1/2+ excited state is
a single-particle one. An argument in favor of this suggestion
follows from an analysis of the 12C(d,p)13C reaction. The
spectroscopic factors for the 1/2− g.s. and the 3.089-MeV
1/2+ and 3.85-MeV 5/2+ excited states have large values:
0.77, 0.65, and 0.58, respectively [36], in accordance with
their expected single-particle nature.

Using a more accurate expression for the radius of a one-
neutron halo from Ref. [37],

(A + 1)〈R2〉(A+1) = A〈R2〉A + [A/(A + 1)]R2
h, (6)

we obtain Rh(13C) = 5.88 ± 0.39 fm, which is in good
agreement with the estimate given previously.

Calculations of the matter-density profiles [6] of 13C in the
1/2+ excited state and 11Be in the 1/2+ halo ground state
demonstrated their similarity (see Fig. 2 in Ref. [6]). We find
that Rh(13C) is a little smaller than the halo radius of 11Be
in the 1/2+ ground state, Rh = 6.65 fm. This is reasonable,
because the binding energy of the valence neutron in 11Be is
0.5 MeV, versus 1.86 MeV for 13C.

The 13C nucleus was examined in Ref. [8], where an
analysis of the 12C(d,p)13C cross section at 12 MeV within the
ANC approach led to the conclusion that a neutron halo should
exist in the 3.089-MeV 1/2+ excited state of this nucleus. The
extracted value of the halo radius, Rh(13C) = 5.04 ± 0.75 fm
calculated in Ref. [8], is similar to our result (within the error
bars).

The criteria for a halo formation have been explored in a
number of studies. The most stringent of them [38],

BnA
2/3 < 2 MeV, (7)

where Bn is the binding energy of the valence neutron, is not
fulfilled even for the ground state of 11Be. A more benign
condition [38,39], which requires that the probability P of a
neutron staying out of the potential should be larger than 50%,
suggests

BnA
2/3 < 10 MeV, (8)

which agrees well with the available data. For the considered
state of 13C, BnA

2/3 = 10.3, and the probability P = 55% [39].
Thus, we can conclude from this analysis that 13C in the

3.089-MeV 1/2+ state really has a neutron halo with a radius
of between 5 and 6 fm.
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FIG. 4. (Color online) Energy dependence of the diffraction radii
determined from the elastic (open symbols) and inelastic (filled
symbols) scattering data for the α + 13C (squares) and 3He + 13C
(circles) systems; the energy dependences of Rdif from the elastic
and inelastic (to the 7.56-MeV 0+

2 state) α + 12C scattering [13] are
shown by the dashed lines.

Based on this result, we conclude that the rms radius of this
state determined by applying Eqs. (3) and (4) to the data at
Eα = 388 MeV is strongly overestimated, because it leads to
an unrealistically large radius of the halo, Rh = 10.5 ± 0.9 fm.
The energy dependences of the diffraction radii for the elastic
and inelastic scattering to the 3.089-MeV state scattering of
3,4He on 13C are shown in Fig. 4(a) and compared with the
similar data for α + 12C scattering. The diffraction radii for
the α + 13C elastic scattering behave in accordance with the
previously established systematics. The solid line connecting
their values at different energies runs parallel to similar lines,
corresponding to both the elastic scattering of α + 12C and the
inelastic one of the Hoyle state. The energy dependence of the
diffraction radii for the inelastic α + 13C scattering is shown
by a gently descending solid line in Fig. 4(a). Thus, these
diffraction radii are smoothly reduced with energy rise, which
indicates an increase of the [R∗

dif (in) − R0
dif(el)] difference with

energy.
According to Eq. (3), the observed energy dependence of

the [R∗
dif(in) − R0

dif(el)] difference means that the (�in − �el)
difference also increases with energy. Consequently, at higher
energies, �in > �el and a diffraction in the inelastic channel
occurs at larger distances than a diffraction in the elastic
scattering. Note that a similar increase of the [R∗

dif(in) − R0
dif

(el )] difference with energy was already observed in Ref. [13]
for the inelastic d + 12C scattering, leading to the excitation of
the Hoyle state. Thus, the energy dependence of the diffraction
radii in the inelastic scattering involving nuclear states with
very low nucleonic densities may be different from that
observed in “normal” cases. Alternatively, we cannot exclude
the possibility of general inadequacy of the diffraction model
at such high energies. A definite conclusion cannot be drawn
because of the lack of data. The limits of application of Eq. (4)
should continue to be studied in further investigations.

B. Comparison of the 9Be and 11Be diffraction radii

Theory predicts that 9Be has a two-center α + α + n

quasimolecular structure with valence neutrons occupying π

FIG. 5. Rotational states of 8Be, 9Be (K = 3/2−and K = 1/2+

bands) and 11Be. In the lower panel, the AMD predictions for the
neutron density distributions of Togashi et al. [40] are shown together
with the inverse values of the moments of inertia.

and σ orbits (see, e.g., Ref. [19]) (Fig. 5). The ground state is
only 1.67 MeV below the neutron emission threshold, even less
than for the 3.089-MeV state in 13C. However, the rms radius of
9Be is equal to 2.39 fm, that is, similar to those of neighboring
stable nuclei without any signatures of the existence of a
halo [though condition (9) for its formation is fulfilled].
Antisymmetrized molecular dynamic (AMD) calculations [40]
also do not predict an extended neutron density distribution for
the 9Be ground state.

The first excited 1/2+ (Ex = 1.68 MeV) state is 20 keV
above the neutron-decay threshold. It is a well-developed
state with a long half-life (	 ≈ 220 keV) and well-established
α + α + n cluster structure [19,40], where the valence neutron
occupies the s orbit. The diffraction radii for this state and
for the second member of the σ band (3.05 MeV 5/2+) are
significantly larger than the radii of the negative-parity states
(see Table I). The lack of accuracy of the data concerning the
excitation of the 3.05-MeV 5/2+ state allows us to make only
a very rough estimate of its radius (Table I). However, the
main result is that 9Be in this state retains the large diffraction
radius in spite of the increase of the angular momentum by two
units. The [R∗

dif(in) − R0
dif(el)] differences are approximately

three times larger than these values for 13C. Remember that
9Be in the states of the σ band has the enhanced moment of
inertia in comparison with the states of the π band (Fig. 5).
The diffraction radii of levels belonging to the rotational π

band of 9Be are the same (see Table I) regardless of whether
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they are above or below the neutron threshold. The diffraction
radii for negative states are ≈1.1 fm less that those for the
states with positive parity.

Obviously, the scientific terms are defined as they first
appear, and the term halo is introduced for the ground state
of neutron-rich nuclei close to the drip line. An explanation
of this phenomenon is usually associated with the long
“tail” of the wave function of the valence neutron. Until now,
the question of how to treat the enhanced nuclear structure in
the above-threshold states was not considered, partly because
of the evident difficulty of precise determining the “real” radius
of a neutron unbound state in the continuum. Discussion of any
theoretical aspects of the problem is outside the scope of this
paper. We restrict this discussion to determining the diffraction
radii of the states; the radii of the rotational states in continuum
have not been measured previously.

It is worthwhile to compare the diffraction radii for the
rotational σ band of 9Be with the similar ones of 11Be. We
already pointed out that the ground 1/2+ state of 11Be is the
most striking example of an one-neutron halo. The excited
1.78-MeV 5/2+ and 3.41-MeV 3/2+ states, lying above
the neutron emission threshold, form a rotational band with
the parameters very close to the σ band of 9Be (Fig. 5). The
quasielastic and inelastic 11Be + 12C scattering leading to
formation of the ground and both excited states of 11Be (Fig. 6)
has been measured in Refs. [41] and [42]. We are well aware
that the analysis of these data within the MDM can be only
qualitative (because of nonsystematic character of the data),
but nevertheless we try to extract the diffraction radii for these
states (see Table II).

We find that the diffraction radii for the previously
mentioned excited states in 11Be do not differ for the g.s.
and are also sufficiently enlarged. Then, just as in the case
of 9Be, neither an increase of the angular momenta nor the
possibility of decay by a neutron emission lead to a change
of the diffraction radii. Because these above-threshold states
belong to the rotational band, the angular momentum barrier
can stabilize them against a neutron decay. The approximate
equality of the diffraction radii for the ground (bound)

(a) (b)

FIG. 6. (Color online) Differential cross sections of the 11Be +
12C scattering: (a) quasielastic scattering at Ec.m. = 282 MeV [41];
(b) inelastic scattering leading to the excitation of the 1.78-MeV 5/2+

and 3.41-MeV 3/2+ states of 11Be at Ec.m. = 385 MeV [42].

TABLE II. Diffraction radii for the ground and the excited states
of 11 Be obtained from the analysis of the 11Be + 12C scattering data.

Reaction Ec.m. Ex J π Rdif R∗
dif − R0

dif

(MeV) (MeV) (fm) (fm)

11Be + 12C 282 0.00 1/2+ 5.60 ± 0.07
384 1.78 5/2+ 5.72 ± 0.17 0.12 ± 0.18
384 3.41 3/2+ 5.77 ± 0.15 0.17 ± 0.17

and the excited (unbound) states suggests that these states
have radii of equal rms. This suggestion requires additional
theoretical studies, which, we hope, can be stimulated by our
results determining the diffraction radii for the above-threshold
excited states in 11Be.

V. CONCLUSIONS

A modified diffraction model previously used for determin-
ing the radii of the exotic α-cluster states in 12C [12–14] was
used to analyze the 4He and 3He inelastic scattering on 13C and
9Be, leading to the excitation of states for which the existence
of neutron halos might be expected. The rms radius of 13C in
the 3.09-MeV 1/2+ state located 1.86 MeV below the neutron
emission threshold was found to be 〈R〉 = 2.74 ± 0.06 fm. It
is significantly greater than the 13C radii, in both the ground
and the second excited 3.68-MeV 3/2− states, even though the
latter is located nearer to the 12C + n threshold. Assuming that
the 1/2+ state has a halo, we calculated its radius to be equal
Rh = 5.88 ± 0.39 fm. This value is consistent with the result of
an independent analysis of 12C(d,p)13C data [8]. Comparison
with the 1/2+ ground state of 11Be showed clear similarity of
the properties of both 1/2+ states; the slightly more developed
halo in 11Be is easily explained by the lower binding energy
of the valence neutron.

The results concerning the 1/2+state of 13C demonstrated
the applicability of MDM for measuring the radii of the nuclear
states that are not cluster structures. However, the relation
between the diffraction and the rms radii probably is more
complicated than supposed earlier for the α-cluster states
[12–14] and requires further investigation.

In spite of the difficulty of precisely determining the
“real” radii of neutron-unbound states in the continuum, the
determination of the diffraction radii for such states is a
problem worthy of further examination. Thus, several states
located above the neutron emission thresholds in 9Be and 11Be
with the anomalously large diffraction radii were identified.
The very large diffraction radius was determined for the
1.68-MeV 1/2+ state of 9Be. For the next member of the
σ band, the 3.05-MeV 5/2+ state, we also found the same
enhanced diffraction radius. We found that 11Be in the excited
1.78-MeV 5/2+ and 3.41-MeV 3/2+ states, lying above the
neutron threshold, have diffraction radii approximately equal
to that of the ground state. These levels have much in common
with the positive parity band in 9Be: the inverted sequence
of the 5/2+ and 3/2+ states and similar enhanced moments
of inertia. These states above the neutron emission threshold
form the rotational band, so that the angular-momentum barrier
stabilize them against neutron decay.
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