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Triaxial shapes in the interacting vector boson model
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A new dynamical symmetry limit of the two-fluid interacting vector boson model (IVBM), defined through
the chain Sp(12, R) ⊃ U(3, 3) ⊃ U∗(3) ⊗ SU(1, 1) ⊃ SU∗(3) ⊃ SO(3), is introduced. The SU∗(3) algebra
considered in the present paper closely resembles many properties of the SU∗(3) limit of the interacting boson
model-2, which have been shown by many authors geometrically to correspond to the rigid triaxial model. The
influence of different types of perturbations on the SU∗(3) energy surface, in particular the addition of a Majorana
interaction and an O(6) term to the model Hamiltonian, is studied. The effect of these perturbations results in
the formation of a stable triaxial minimum in the energy surface of the IVBM Hamiltonian under consideration.
Using a schematic Hamiltonian that possesses a perturbed SU∗(3) dynamical symmetry, the theory is applied
for the calculation of the low-lying energy spectrum of the nucleus 192Os. The theoretical results obtained agree
reasonably with the experimental data and show a very shallow triaxial minimum in the energy surface for the
ground state in 192Os, suggesting that the proposed dynamical symmetry might be appropriate for the description
of the collective properties of different nuclei, exhibiting triaxial features.
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I. INTRODUCTION

It has been known for a long time that in certain mass
regions nuclei with static deformation show deviations from
a rigid axially symmetric picture. The possibility of static
triaxial shapes for the ground state of nuclei is a long-standing
problem in nuclear structure physics despite the fact that very
few candidates have been found experimentally [1,2]. In the
geometrical approach the triaxial nuclear properties are usually
interpreted in terms of either the γ -unstable (or γ -soft) rotor
model of Wilets and Jean [3] or the rigid triaxial rotor model
of Davydov et al. [4]. These models exploit the geometrical
picture of the nucleus according to the collective model (CM)
of Bohr and Mottelson, expressed in terms of the intrinsic
variables β and γ where the former specifies the ellipsoidal
quadrupole deformation and the latter the degree of axial
asymmetry. To describe the deviations from axial symmetry
the model of Wilets and Jean assumes that the potential energy
is independent of the γ degree of freedom, whereas in the
model of Davydov et al. one considers a harmonic oscillator
potential with a minimum at finite values of γ producing a
rigid triaxial shape of the nucleus.

Recently, analytical solutions of the Bohr Hamiltonian
regarding the triaxial shapes using the Davidson poten-
tial [5] and the sextic oscillator [6] were obtained, where
the triaxial shapes are assumed from the very beginning.
The former, called the Z(5)-D solution, is shown to cover the
region between a triaxial vibrator and the rigid triaxial rotator,
whereas the Z(5) solution corresponds to the critical point of
the shape phase transition from a triaxial vibrator to the rigid
triaxial rotator. Triaxiality was also studied in the framework
of the algebraic collective model [7], and the onset of rigid
triaxial deformation was considered [8].

An alternative description of nuclear collective excitations
is provided by the interacting boson model (IBM), which,
in contrast to the geometrical models, is of an algebraic

nature. To accommodate the triaxial shapes in the IBM, several
approaches can be adopted. It was shown that the triaxial
shapes can occur in three different cases:

(1) In the IBM-1 framework, in which no distinction between
protons and neutrons is made, the inclusion of higher-order
(three-body) terms is needed [9,10].

(2) In the sdg-IBM framework (using s, d, and g bosons), the
presence of the g boson also suffices [11,12].

(3) In the IBM-2 framework, in which protons and neutrons are
used as distinct entities, the inclusion of one- and two-body
terms suffices [13–16].

In the IBM-1 framework the triaxial shapes are usually
obtained by adding three-body terms of the type [d†d†d†](L) ·
[d̃d̃ d̃](L) (see, e.g., Ref. [9]). These terms generate a relatively
broad region of triaxiality in the parameter space of the
Hamiltonian. In Ref. [17] it is shown that by adding to the
consistent-Q formalism Hamiltonian a cubic combination
(Q̂ × Q̂ × Q̂)(0) of the most general quadrupole operator
Q̂χ coupled to zero angular momentum, called the cubic
consistent-Q Hamiltonian, there exists a very tiny region of
triaxiality around χ ≈ ±√

7/2 between the prolate and oblate
phases. The Q̂ cubic term is interpreted as a correction to the
quadrupole-quadrupole scalar product, which in combination
with the latter can generate stable triaxial shapes.

The study of the effects of various multipole interactions
within the framework of the sdg-IBM on the equilibrium
shape of the ground state in deformed nuclei has revealed
that a hexadecapole interaction involving a g boson is needed
to induce a triaxial shape. Over the years, microscopic and
phenomenological evidence has been gathered that shows the
importance of the g boson in deformed regions. Including the
g boson, in a recent study in the sdg-IBM, no shape or phase
transitions toward stable triaxial shapes were found [12].

An important feature offered by the IBM-2 [18] is the
possibility to get triaxial shapes [13–16] in addition to the
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axially symmetric ones, only taking into account explicitly the
proton-neutron degrees of freedom or the two-fluid character
of the nuclear system. The triaxial shapes then arise as a
result of different deformations of the proton and neutron
fluids. The microscopic conditions leading to two-fluid triaxial
structure are found when the proton bosons are particle-like
(i.e., below mid-shell) and the neutron bosons are hole-like
(above mid-shell) or vice versa. A new critical-point Y(5)
symmetry [19] from axially deformed to triaxial shapes was
proposed and suggested to be of importance in considering
triaxial shapes in the phase diagram of the IBM-2.

In the present paper we exploit an algebraic approach,
complementary to IBM, for the description of triaxial nuclei
and show how within the framework of the phenomenological
interacting vector boson model (IVBM) one might obtain
triaxial shapes. The IVBM and its recent applications for the
description of diverse collective phenomena in the low-lying
energy spectra (see, e.g., the review article [20]) exploit the
symplectic algebraic structures and the Sp(12, R) is used as
a dynamical symmetry group. Symplectic algebras have been
applied extensively in the theory of nuclear structure. They are
used generally to describe systems with a changing number
of particles or excitation quanta and in this way provide for
larger representation spaces and richer subalgebraic structures
that can accommodate the more complex structural effects as
realized in nuclei with nucleon numbers that lie far from the
magic numbers of closed shells.

The symplectic symmetries emerge as appropriate dynami-
cal symmetries for the many-body theory of collective motion,
considering the nucleus from a hydrodynamic perspective [21].
For example, the one-fluid symplectic model of Rowe and
Rosensteel [22], based on the non-compact dynamical algebra
Sp(6, R), allows for the description of rotational dynamics
in a continuous range from irrotational to rigid rotor flows.
The extension of the Sp(6, R) symplectic model to the case
of two-fluid nuclear systems leads naturally to the Sp(12, R)
dynamical symmetry. In this respect the symplectic IVBM
can be considered as a generalization of the symplectic model
of Rowe and Rosensteel (contained as a submodel of the
Sp(12, R) IVBM) when the nuclear many-body system is
viewed as consisting of two different interacting subsystems.

The different shapes that take place within the framework
of the two-fluid IVBM were investigated in Ref. [23]. It was
shown that there exist three distinct shapes corresponding to
the three dynamical symmetries of IVBM: (1) spherical shape,
Up(3) ⊗ Un(3); (2) γ -unstable deformed shape, O(6); and (3)
axially deformed shape, SU(3) ⊗ UT (2). It turns out that these
are not all the possible shapes associated with the algebraic
structures of the IVBM that might arise. The aim of this paper
is to show that the IVBM possesses a very rich phase structure,
which also contains, beyond the spherical and axially deformed
shapes, triaxial shapes. For this purpose we propose a different
dynamical symmetry limit of the IVBM, which in some aspects
is related to one of the dynamical symmetries of the IBM-
2, namely the SU∗(3) one. The SU∗(3) limit of IBM-2 was
discussed extensively in Refs. [24–26]. The latter gives rise to
the Dieperink tetrahedron [13], which has an extra dimension
compared to the Casten triangle [27], and to a new, triaxial
shape phase of the model.

It was shown in the literature that the exact SU∗(3)
symmetry possesses a large degeneracy in the level spectra
which in actual nuclei is not observed and hence the SU∗(3)
symmetry probably does not appear in its pure form and
must be perturbed. In many cases, the energy spectra exhibit
transitional patterns and might be situated between the SU∗(3)
and O(6) or SU(3) and SU∗(3) dynamical limits. In this respect,
we study the influence of different types of perturbations on
the SU∗(3) dynamical symmetry energy surface of the IVBM.
It is shown that the proposed dynamical symmetry limit might
be of relevance for the description of the collective properties
of different nuclei exhibiting triaxial features.

II. THE ALGEBRAIC STRUCTURE OF THE
NEW DYNAMICAL SYMMETRY

It was suggested by Bargmann and Moshinsky [28] that
two types of bosons are needed for the description of nuclear
dynamics. They showed that the consideration of only a
two-body system consisting of two different interacting vector
particles will suffice to give a complete description of N

three-dimensional oscillators with a quadrupole-quadrupole
interaction. The latter can be considered as the underlying
basis in the algebraic construction of the phenomenological
IVBM.

The algebraic structure of the IVBM [20,23,29] is realized
in terms of creation and annihilation operators of two kinds of
vector bosons u

†
m(α), um(α) (m = 0,±1), which differ in an

additional quantum number α = ±1/2 (or α = p and n)—the
projection of the T -spin (an analog to the F -spin of IBM-2 or
the I -spin of the particle-hole IBM). In the present paper, we
consider these two bosons just as elementary building blocks
or quanta of elementary excitations (phonons) rather than
real fermion pairs, which generate a given type of algebraic
structures. Thus, only their tensorial structure is of importance
and they are used as an auxiliary tool, generating an appropriate
dynamical symmetry. These elementary excitations carry an
angular momentum l = 1; that is, they transform as vectors
with respect the rotational group SO(3). In this regard, the s

and d bosons of the IBM-1 can be considered as bound states
of elementary excitations generated by the two vector bosons.

The microscopic foundation of the IVBM is beyond the
scope of the present paper. (A short discussion on this matter
can be found in Ref. [20].) Nevertheless, some remarks
concerning this topic can be very useful for the readers who
are not familiar with the IVBM.

It is known that the IBM is now standard and the s

and d bosons are viewed as working approximations of
the composite S and D bosons made up of nucleons held
together by the pairing and quadrupole forces. Additional
degrees of freedom are further incorporated in the extended
versions of the model (e.g., the inclusion of p, f , and g

bosons; the inclusion of the isospin, the F -spin and the
particle-hole I -spin). In this respect, the natural question about
the connection between the IVBM and the standard versions of
IBM arises. The answer is obtained [30] by means of the boson
mapping technique, which is widely applied to the problems
of microscopic foundation of the IBM [31]. It is shown [30]
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that the IVBM boson space can be mapped on the ideal boson
space of the IBM, including, beyond the standard s and d

bosons (IBM-1), also the p bosons. The latter (together with
the f bosons) are shown to play a crucial role in the description
of the deformed asymmetric shapes in nuclei, in which the
octupole and dipole (cluster) degrees of freedom must be taken
into account. This specific version of the IBM is denoted
as IBM-3.5 (intermediate between IBM-3 and IBM-4). The
interaction between these secondary s, d, and p bosons is
induced by the interaction between the vector bosons.

A similar situation occurs also in the specific isospin-
invariant version of the fermion dynamical symmetry model
[32] applied to the sd-shell nuclei, in which the states
constructed from the nucleon pairs are built from two p-objects
(l = 1), as well as in the IVBM.

The introduction of a p boson (p-object) in nuclei with
mixed quadrupole-octupole deformation has been pointed out
by many authors, including also microscopic considerations
[33,34]. The need for the p boson was suggested by schematic
shell-model calculations [35], in which collective pairs of both
positive (S and D pairs) and negative parity (P and F pairs)
are used as building blocks. The p boson has been introduced
in different studies of clustering phenomena in nuclei as well,
where the dipole degrees of freedom are connected with the
relative motion of the clusters [36].

In the most general case the two-body model Hamiltonian
should be expressed in terms of the generators of the group
Sp(12, R). In addition to the non-compact “symplectic dynam-
ical symmetry limits” (subgroup chains starting with some of
the symplectic subalgebras of Sp(12, R); see Refs. [20,37]),
in some special cases the two-body model Hamiltonian can be
written in terms of the generators of the subgroups of the max-
imal compact subgroup U(6) ⊂ Sp(12, R) only. The following
lattice of group-subgroup chains of Sp(12, R) takes place
(excluding the “symplectic limits” given in Refs. [20,37]):

U(3) ⊗ UT (2) −→ SU (3) ⊗ UT (2)

U(6) −→ O±(6) −→ SU±(3) ⊗ SO(2)
SO(3)

Sp(12,R) Up(3) ⊗ Un(3) −→ SOp (3) ⊗ SOn(3)

U(3, 3) −→ SUp(3) ⊗ SUn(3) −→ SU ∗(3)

U∗(3) ⊗ U(1, 1)
(1)

Compared to the lattice given in Ref. [23], here a new
reduction chain [the last one in Eq. (1)] is considered. As it
can be seen, the IVBM has a very rich algebraic structure
of subgroups. The first three dynamical limits of the IVBM
given in Eq. (1) and the geometries corresponding to them are
considered in Ref. [23]. In this paper we are concentrating
on the last reduction chain of the dynamical symmetry group
Sp(12, R) of the IVBM for studying the triaxiality in atomic
nuclei. As we will see throughout the paper, this dynamical
symmetry is appropriate for nuclei in which the one type of
particles is particle-like and the other is hole-like.

All bilinear operators of the creation and annihilation
operators of the two kinds of vector bosons

u
†
k(α)u†

m(β), u
†
k(α)um(β), uk(α)um(β) (2)

define the boson representation of the Sp(12, R) algebra. We
also introduce the following notations: u

†
m(α = 1/2) = p

†
m

and u
†
m(α = −1/2) = n

†
m. In terms of the p- and n-boson

operators, the Weyl generators of the ladder representation
of U(3, 3) are

p
†
kpm, p

†
kn

†
m, −nkpm, −n†

mnk, (3)

which are obviously a subset of symplectic generators (2). The
first-order Casimir operator of U(3, 3) is

C1[U(3, 3)] =
∑

k

(p†
kpk − n

†
knk) (4)

and does not differ essentially from the operator T0 defined in
Ref. [23]:

T0 = 1
2C1[U(3, 3)] + 3

2 . (5)

The algebra U∗(3) = {Akm ≡ p
†
kpm − n

†
mnk} can also be

defined in the following way:

M = Np − Nn, (6)

LM = L
p

M + Ln
M, (7)

QM = Q
p

M − Qn
M, (8)

where the one-fluid operators entering in Eqs. (6)–(8) are
given by

Np =
√

3(p† × p)(0), (9)

L
p

M =
√

2(p† × p)(1)
M , (10)

Q
p

M =
√

2(p† × p)(2)
M , (11)

and

Nn =
√

3(n† × n)(0), (12)

Ln
M =

√
2(n† × n)(1)

M , (13)

Qn
M =

√
2(n† × n)(2)

M . (14)

The U(1, 1) generators can be obtained from the U(3, 3)
ones (3) simply by contraction. As shown later, the two
algebras U(1, 1) and U∗(3) are mutually complementary within
a given irreducible representation (irrep) of U(3, 3) [38].

The second-order Casimir operator of U∗(3) can be
defined as

C2[U∗(3)] =
∑
ij

AijAji . (15)

The SU∗(3) algebra is obtained by excluding the operator (6),
which is the single generator of the O(2) algebra, whereas
the angular momentum algebra SO(3) is generated by the
generators LM only.

The U(3, 3) irreps are positive-discrete-series irreps charac-
terized by their lowest weight {f3 + 1

2 , f2 + 1
2 , f1 + 1

2 , f ′
3 +

1
2 , f ′

2 + 1
2 , f ′

1 + 1
2 }, where {f1 + 1

2 , f2 + 1
2 , f3 + 1

2 } and {f ′
1 +

1
2 , f ′

2 + 1
2 , f ′

3 + 1
2 } are two partitions. The lowest-weight state

of such irreps is also the lowest-weight state of an irrep
{f1 + 1

2 , f2 + 1
2 , f3 + 1

2 } ⊗ {f ′
1 + 1

2 , f ′
2 + 1

2 , f ′
3 + 1

2 } of the
maximal compact subgroup Up(3) ⊗ Un(3). It turns out that
there exist three cases for the partitions [38]: (i) f1 = ν > 0,
f2 = f3 = f ′

1 = f ′
2 = f ′

3 = 0; (ii) f ′
1 = −ν > 0, f1 = f2 =
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f3 = f ′
2 = f ′

3 = 0; and (iii) f1 = f2 = f3 = f ′
1 = f ′

2 = f ′
3 =

ν = 0. The U(3, 3) irreps contained in either irrep 〈(1/2)6〉
or 〈(1/2)53/2〉 of Sp(12, R) can be denoted by the shorthand
notation [ν], ν ∈ Z, defined as follows:

[ν] = {
(1/2)2, ν + 1

2 ; (1/2)3} if ν > 0, (16)

= {
(1/2)3; (1/2)2,−ν + 1

2

}
if ν < 0, (17)

= {(1/2)3; (1/2)3} if ν = 0. (18)

The branching rules can be written as

〈(1/2)6〉 ↓
+∞∑

ν=−∞,ν=even

⊕[ν] (19)

and

〈(1/2)53/2〉 ↓
+∞∑

ν=−∞,ν=odd

⊕[ν]. (20)

It can be shown [38] that the label ν specifying the U(3, 3)
irreps in Eqs. (16)–(20) has a very simple meaning: it is just
the eigenvalue of the first-order Casimir operator (4) of U(3, 3),
i.e., ν = Np − Nn.

The U∗(3) irreps are characterized by their highest weight
[n1, n2, n3]3, where n1, n2, n3 are some integers satisfying
the inequalities n1 � n2 � n3. We note that [n1, n2, n3]3 may
assume negative as well as non-negative values and hence
correspond to mixed irreps of U∗(3) [39].

The U(1, 1) irreps contained in a positive-series irrep [ν]
of U(3, 3) are also positive-discrete-series irreps characterized
by their lowest weight Np + 3

2 , Nn + 3
2 [38]. We denote such

irreps by the shorthand notation [Np,Nn] = {Np + 3
2 , Nn +

3
2 }. The U(1, 1) and U∗(3) groups are complementary within
any irrep [ν] of U(3, 3) or, in other words, the irreps [Np,Nn] ⊗
[n1, n2, n3]3 of U(1, 1) ⊗ U∗(3), contained in a given irrep
[ν] of U(3, 3), are multiplicity free and there is a one-to-one
correspondence between the labels [n1, n2, n3]3 of the U∗(3)
irreps and the labels [Np,Nn] of the associated U(1, 1)
irreps. The precise relation is [n1, n2, n3]3 ≡ [Np, 0,−Nn]3

and Np − Nn = ∑3
k=1 nk = ν [38]. Then the SU∗(3) irreps

are (μ, ν) = (Np,Nn). This is just the case when the one
type of particles is particle-like and the other is hole-like and
the corresponding algebra can be identified with the SU∗(3)
one defined in Refs. [24–26]. Indeed, the SU∗(3) algebra can be
related to the SU(3) = {LM = L

p

M + Ln
M,QM = Q

p

M + Qn
M}

one defined in Ref. [23] by means of the transformation

n
†
k → nk,

(21)
nk → −n

†
k,

which actually coincides with the particle-hole conjugation.
According to this the new operator n

†
k of SU∗(3) transforms

under the conjugate SU(3) representation of (1, 0), namely
the irrep(0, 1). Thus the allowed SU∗(3) representations are
given by

(λ,μ) =
min(Np,Nn)∑

k=0

(Np − k,Np − k). (22)

This corresponds to the reduction

Sp(12, R) ⊃ U(3, 3)

⊃ SUp(3) ⊗ SUn(3) ⊃ SU∗(3) ⊃ SO(3), (23)

that is, through the maximal compact subalgebra SUp(3) ⊗
SUn(3) ⊃ U(3, 3). Consider, for example, Np = 2 and Nn =
2; then according to Eq. (22) one finds

(2, 0) ⊗ (0, 2) = (2, 2) + (1, 1) + (0, 0). (24)

The (2, 2) irrep contains a K = 0 band with L = 0, 2 and a
K = 2 band with L = 2, 3, 4, while the (1, 1) irrep contains
a K = 1 band with L = 1, 2 and the (0, 0) irrep contains a
K = 0 band with only L = 0. It is clear that this spectrum is
very different from the spectrum of Np = 2 and Nn = 2 in the
SU(3) case. Whereas in the particle-particle case the ground
band belongs to the (Np + Np, 0) irrep, in the particle-hole
case the ground band turns out to belong to the (Np,Np) irrep.

The transformation (21) corresponds to application of
the transformation Qn

M → −Qn
M , Ln

M → Ln
M in the n-boson

SUn(3) algebra. This changes the common SU(3) quadrupole
operator QM = Q

p

M + Qn
M of the combined pn-system into

that given by Eq. (8). A similar type of SU∗(3) algebra for
IBM-2, generated by QM = Q

p

M − Qn
M together with the

angular momentum operators, is given in Ref. [25]. The
transformation (21), being a special case of a wider class
of transformations known as inner automorphisms, does not
change the commutation relations of SU(3) algebra; however,
it changes the commutation relations of its complimentary
SUT (2) algebra to those corresponding to the non-compact
subalgebra SU(1, 1) ⊂ Sp(12, R) [see Eq. (1)].

It is known that representation theory does provide all of
the embeddings, but it does not provide all of the dynamical
symmetries [40]. The inner automorphisms can provide new
dynamical symmetry limits, sometimes referred as to “hidden”
[40] or “parameter” symmetries [41]. It is shown in the next
sections that the (perturbed) SU∗(3) algebra provides a new
physically distinct dynamical symmetry limit of the IVBM.
Indeed, the geometrical interpretation of this dynamical
symmetry is that of a prolate (proton) axially deformed rotor
coupled to the oblate (neutron) axially deformed rotor [or
vice versa, when the inner automorphism (21) is performed
with respect to the p bosons], which in some circumstances
corresponds to a triaxial shape of the compound nucleus in its
ground-state configuration.

The most general Hamiltonian with SU∗(3) symmetry
consists of the Casimir invariants of SU∗(3) and its subgroup
SO(3),

H = aC2[SU∗(3)] + bC2[SO(3)], (25)

where

C2[SU∗(3)] = 1
6Q2 + 1

2L2 (26)

and the quadrupole operator Q is given by Eq. (8).
The spectrum of this Hamiltonian is determined by

H = a(λ2 + μ2 + λμ + 3λ + 3μ) + bL(L + 1). (27)

054318-4



TRIAXIAL SHAPES IN THE INTERACTING VECTOR . . . PHYSICAL REVIEW C 84, 054318 (2011)

III. SHAPE STRUCTURE

In the present paper we are interested in the shapes
corresponding to the new dynamical symmetry limit. The
geometry associated with a given Hamiltonian can be obtained
by the coherent state method. The standard approach to obtain
the geometry of the system is to express the collective variables
in the intrinsic (body-fixed) frame of reference.

Within the IVBM, the (unnormalized) coherent state (CS)
(or intrinsic state) for the ground-state band for even-even
nuclei can be expressed as [23]

|N ; ξ, ζ 〉 ∝
[∑

k

(ξkp
†
k + ζkn

†
k)

]N

| 0 〉, (28)

where the collective variables ξk and ζk are components of
three-dimensional complex vectors. For static problems these
variables can be chosen real.

Usually, when some geometrical considerations concerning
the choice of the intrinsic frame are taken into account,
the treatment of the problem is significantly simplified. The
geometry can be chosen such that

−→
ξ and

−→
ζ to span the xz

plane with the x axis along
−→
ξ and

−→
ζ is rotated by an angle

θ about the out-of-plane y axis,
−→
ξ · −→

ζ = r1r2 cos θ . In this
way, the condensate can be parametrized in terms of two real
coordinates r1 and r2 (the lengths of the two vectors) and their
relative angle θ (r1, r2 � 0 and 0 � θ � π ) [23]:

|N ; r1, r2, θ〉 = 1√
N !

(B†)N | 0〉 (29)

with

B† = 1√
r2

1 + r2
2

[r1p
†
x + r2(n†

x cos θ + n†
z sin θ )], (30)

where | 0 〉 is the boson vacuum.
We simply study the SU∗(3) Hamiltonian

H = kC2[SU∗(3)], (31)

expressed only by the second-order SU∗(3) Casimir operator.
In the present section, we set k = −1.

The ground-state energy surface is obtained by calculating
the expectation value of the boson Hamiltonian (31) in
the CS (29):

E(N ; r1, r2, θ ) = 〈N ; r1, r2, θ |H |N ; r1r2, θ〉
〈N ; r1, r2, θ |N ; r1, r2, θ〉 . (32)

The equilibrium “shape” is determined by minimizing the
energy surface with respect to r1, r2, and θ . It is convenient
to introduce a new dynamical variable ρ = r2/r1 [23] as a
measure of “deformation,” which together with the parameter
θ determines the corresponding “shape.”

The expectation value of Eq. (31) with respect to Eq. (29)
gives the following energy surface:

E(N ; ρ, θ ) = 2

3
(kN )

[
1 + ρ4 − ρ2(3 cos2 θ − 1)

(1 + ρ2)2
+ 4

]
.

(33)

FIG. 1. (Color online) The scaled energy surface ε(ρ, θ ) in the
SU∗(3) limit for k = −1.

The scaled energy ε(ρ, θ ) = E(N ; ρ, θ )/kN is given in Fig. 1.
From the figure, one can see that the global minimum occurs
at ρ0 = 0, which, as is shown further, corresponds to an oblate
deformed shape.

To see to what geometry the energy surface (33) depicted in
Fig. 1 corresponds, we consider the relation of the parameter
θ with the commonly used asymmetry parameter γ of the
geometric CM of Bohr and Mottelson. A relation between
standard CM shape variables used to describe the deformation
of the collective motion and the shape parameters in the
intrinsic state of the IVBM can be obtained by calculating
the expectation value of the quadrupole moments of the
corresponding dynamical symmetry with respect to the IVBM
coherent state. In the CS of the IVBM, the effective deforma-
tion γeff can be defined in the usual way as [42]

tan γeff =
√

2
〈Q2〉
〈Q0〉 , (34)

where 〈Qμ〉 denotes the expectation value of the μth compo-
nent of the quadrupole operator.

For the SU∗(3) algebra with the generators (8) one obtains

tan γeff =
√

3(1 − ρ2 cos2 θ )[−1 − ρ2

2 (−3 cos 2θ + 1)
] . (35)

Expression (35) gives a relation between the “projective”
IVBM CS deformation parameters {ρ, θ} and the standard
collective model parameter γeff, determining the triaxiality of
the nuclear system. From Eq. (35) it is easily seen that for the
equilibrium values of the IVBM shape parameters |ρ0| = 0
and θ arbitrary in the SU∗(3) limit one obtains |γeff| = 60◦ and
hence it corresponds to an oblate deformed shape.

Finally, we note that for k > 0 the minima of the SU∗(3)
energy surface (related to the maxima of Fig. 1 simply by an
inversion) are at |ρ| �= 0 (|ρ| = 1) and θ0 = 0◦. For k > 0,
there is a second (local) extremum placed at |ρ0| = 1 and θ0 =
90◦, which according to Eq. (35) corresponds to |γeff| = 30◦
and hence to a triaxial maximum. In the next section we see
that the addition of some perturbation terms to the Hamiltonian
(31) changes the structure of the energy surface and a stable
triaxial minimum appears.
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IV. PERTURBATION OF THE SU*(3)
DYNAMICAL SYMMETRY

As it was mentioned, the exact SU∗(3) symmetry shows a
large degeneracy in the level spectra, which in actual nuclei
is not observed. In some cases, the energy spectra can be
situated between the SU∗(3) and O(6) or SU(3) and SU∗(3)
dynamical limits. Indeed, several systematic studies [43] have
shown that transitional nuclei exhibit the triaxial features.
A number of signatures of γ -soft and γ -rigid structures in
nuclei have been discussed [1,2,43]. In Ref. [44] it was
shown that the empirical deviations from the O(6) limit of
the IBM, in the Pt and Xe, Ba regions, can be interpreted by
introducing explicitly triaxial degrees of freedom, suggesting
a more complex and possibly intermediate situation between
γ -rigid and γ -unstable properties. In this respect, we study
the influence of different types of perturbations on the SU∗(3)
dynamical symmetry of the IVBM. We consider only the two
types of perturbation terms on the SU∗(3) energy surface,
namely the inclusion of a Majorana interaction and an O(6)
term.

A. The Majorana perturbation

The Hamiltonian, to which a Majorana term is added, takes
the form

HI = k
1

N − 1
C2[SU∗(3)] + a

1

N − 1
M3, (36)

where the Majorana operator is defined as

M3 = 2(p† × n†)(1) · (p × n)(1) (37)

and it is related to the U(3) second-order Casimir invariant
C2[U(3)] via the relation

C2[U(3)] = N (N + 2) − 2M3. (38)

In Eq. (36) the appropriate scaling factors in N are included.
The classical limit of the Majorana term (37) is given by

the following expression:

E(N ; ρ, θ ) = aN (N − 1)
ρ2 sin2 θ

(1 + ρ2)2
. (39)

The scaled energy surface of the Hamiltonian (36) [Eqs. (33)
and (39)] is shown in Figs. 2 and 3 in the form of a three-
dimensional plot and a contour plot, respectively. The values
of the model parameters used are k = −1, a = −3. From the
figures, according to Eq. (35), it is clear that a stable triaxial
minimum results at θ0 = 90◦ and |ρ0| = 1, which becomes
deeper and deeper with the increasing absolute value of the
parameter a.

The inspection of the energy surfaces for different values
of the parameter a (at fixed k = −1) shows that, for small
negative values of the parameter a (|a| � 0.4) and realistic
values of ρ ∈ [0, 1.5], the minimum is at ρ0 = 0, correspond-
ing to an oblate deformed shape. In the interval |a| ≈ 0.5–0.8
there exist two degenerate minima at |ρ0| = 0 and |ρ0| = 1,
θ0 = 90◦, respectively, while for a � −0.86 a stable triaxial
minimum (θ0 = 90◦, |ρ0| = 1) occurs. This triaxial minimum
persists and for positive values of the parameter k (k = 1)

FIG. 2. (Color online) The scaled energy surface ε(ρ, θ ) in the
SU∗(3) limit, when a Majorana term is added. The values of the model
parameters used are k = −1, a = −3.

when a < −2, and also becomes more pronounced with the
further increasing of the absolute value of a.

In the present work we are mainly interested in the
ground-state properties of the energy surfaces considered.
Nevertheless, to see to what extent the structure of the
theoretical energy levels corresponds to a real experimental
pattern and how the energy spectrum generated by the pure
SU∗(3) Hamiltonian (31) is influenced by the inclusion of the
Majorana interaction, we consider the following Hamiltonian:

H = kC2[SU∗(3)] + k′C2[SO(3)] + aM3, (40)

where the rotational term in Eq. (40) is added to lift the
degeneracy of the states with different angular momentum.

In Fig. 4 we plot the theoretical predictions for the ground-
state band, γ band, and K+ = 4+ band energies, obtained
with the Hamiltonian (40) with the following values of the
model parameters: k = −0.0136 MeV, k′ = 0.0343 MeV and
a = −0.0131 MeV. The values of the latter are determined by

FIG. 3. (Color online) Contour plot of the scaled energy surface
ε(ρ, θ ) in the SU∗(3) limit, when a Majorana term is added. The
values of the model parameters used are k = −1, a = −3. Only the
region ρ > 0 is depicted.
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FIG. 4. (Color online) Detailed energy spectrum, obtained
with the Hamiltonian (40), corresponding to the parameters k =
−0.0136 MeV, k′ = 0.0343 MeV, and a = −0.0131 MeV, compared
with the experimental data for 192Os. Different SU∗(3) irreps
associated with the bands under consideration are also indicated.
Data are taken from Refs. [6,45].

using a minimization χ2 procedure. The theoretical results are
compared to the experimental data [6,45] for the 192Os nucleus.
The latter is considered in the literature (see, e.g., Refs. [2,6])
as being a triaxial one. From the figure one can see that the
theoretical predictions are far from perfect [especially for the

FIG. 5. (Color online) The scaled ground-state energy surface
ε(ρ, θ ) in 192Os for the model parameters obtained in the fitting
procedure in the form of (top) three-dimensional and (bottom) contour
plots.

FIG. 6. (Color online) The ground-state band (GSB) for the
Hamiltonian (40) as a function of the strength parameter a. The
values of the rest of the model parameters are k = −0.0136 MeV,
k′ = 0.0343 MeV. The SU∗(3) irrep corresponding to the GSB is
(12, 4).

ground-state band (GSB)], but nevertheless the structure of the
energy spectrum of 192Os is reasonably reproduced in general.
The fit is performed for all states of the ground-state band and
γ band simultaneously. That is why we obtain average fits
along the entire bands, and the states at the bottom for these
two bands are overestimated.

The quality of the obtained results is not surprising taking
into account the very simple form of the Hamiltonian that is
used. The improvement of the theoretical results obviously
requires a more realistic interaction, which should be incor-
porated into the model Hamiltonian. As we said, the present
work is focused on the ground-state properties of the energy
surface and the calculations carry a very schematic character.

FIG. 7. (Color online) The γ band for the Hamiltonian (40) as
a function of the strength parameter a. The values of the rest of
the model parameters are k = −0.0136 MeV, k′ = 0.0343 MeV. The
SU∗(3) irrep corresponding to the γ band is (10, 6).
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FIG. 8. (Color online) The scaled energy surface ε(ρ, θ ) corresponding to the Hamiltonian (41) for g = 0, 0.4, and 0.65, respectively.

We plot the ground-state energy surface in 192Os for the
model parameters obtained in the fitting procedure in the
form of three-dimensional and contour plots in Fig. 5. From
the figure one can see that a very shallow triaxial minimum
for the ground state in 192Os is observed, which corresponds
to γeff = 30◦. The latter is separated from the neighboring
oblate minimum by only �1 keV (see the energy scale in
Fig. 5); that is, the two observed minima are practically
degenerate. From the contour plot in Fig. 5 it can be seen
that this extremely shallow triaxial minimum is soft along
the θ direction, which corresponds to γ softness (the change
of ρ at fixed θ0 = 90◦ changes the asymmetry parameter
γeff). The structure of the energy surface obtained in our
schematic calculations for 192Os supports the consideration
of this nucleus as being a transitional one between axially
symmetric prolate and oblate deformed ones, passing through
a γ -soft triaxial region. Indeed, some theoretical calculations
[17,46] predict a very tiny region of triaxiality between
the prolate and oblate shapes. The self-consistent Hartree-
Fock-Bogoliubov calculations with Gogny D1S and Skyrme
SLy4 forces predict that the prolate-to-oblate transition takes
place at neutron number N = 116, i.e., exactly the case for
192Os.

The evolution of the ground-state band and γ band for the
Hamiltonian (40) as a function of the strength parameter a is
shown in Figs. 6 and 7, respectively. The values of the rest of
the model parameters are kept the same as given above. From
the figures one can see that the inclusion of the Majorana term
does not change the level spacings for either the ground state

or the γ bands and hence preserves the character of the bands.
One can see also that the energy levels of both the GSB and
the γ band are affected in the same manner as a function of
the strength of the Majorana interaction.

B. Phase transition between O(6) and SU*(3) limits

The transition from the SU∗(3) to the O(6) limit can be
realized by the following Hamiltonian:

HII = (1 − g)
1

N − 1
P †P − g

1

N − 1
C2[SU∗(3)], (41)

varying the parameter g from g = 0 (O(6) γ -unstable limit)
to g = 1 (SU ∗(3) limit). The O(6) pairing operator is defined
as P † = 1

2 (p† · p† − n† · n†). The P †P operator in Eq. (41) is
related to the quadratic Casimir operator C2[O(6)] of O(6) by
the equation C2[O(6)] = −4P †P + N (N + 4).

In Fig. 8 we show the scaled energy surfaces corresponding
to the Hamiltonian (41) for three different values of g, namely
g = 0, 0.4, and 0.65, respectively. For g = 0 we have the
typical energy surface for the γ -unstable deformed shape.

The evolution of the energy surfaces for the same values of
the parameter g is shown as contour plots in Fig. 9. Numerical
studies show that the triaxial minimum (θ0 = 90◦,|ρ0| = 1)
persists for the values of g in the interval 0 < g � 0.85,
where for small values of g it is very shallow and becomes
more pronounced with the increase of g (up to g ≈ 0.8).
From Fig. 8 it can be seen that a second local minimum
appears at ρ0 = 0 for g = 0.65. Around g ∼ 0.84 the two

FIG. 9. (Color online) A contour plot of the scaled energy surface ε(ρ, θ ) corresponding to the Hamiltonian (41) for g = 0, 0.4, and 0.65,
respectively. Only the region ρ > 0 is depicted.
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minima become degenerate (up to g � 0.88) and for g �
0.89 the second minimum at ρ0 = 0 becomes a global one
in the interval ρ ∈ [0, 1.5] [just as in the case when the
SU∗(3) symmetry is perturbed by the Majorana interaction
for comparatively small values of the parameter a, |a| < 0.7].
The geometry of the SU∗(3) (g = 1) limit for ρ0 = 0, as was
mentioned, corresponds to that of an oblate deformed rotor
(|γeff| = 60◦).

From the results obtained in the last two sections it can be
concluded that the two types of perturbations disturb the exact
SU∗(3) symmetry energy surface in a similar way and lead to
the same geometrical structure underlying both Hamiltonians
under consideration.

V. SUMMARY

A new dynamical symmetry limit of the two-fluid
interacting vector boson model, defined through the
chain Sp(12, R) ⊃ U(3, 3) ⊃ U∗(3) ⊗ SU(1, 1) ⊃ SU∗(3) ⊃
SO(3), is introduced. The SU∗(3) algebra considered in the
present paper closely resembles many properties of the SU∗(3)
limit of IBM-2, which have been shown by many authors
geometrically to correspond to the rigid triaxial model.

We studied the influence of different types of perturba-
tions on the SU∗(3) dynamical symmetry energy surface. In

particular, the addition of a Majorana interaction and an O(6)
term to the model SU∗(3) Hamiltonian is investigated. It is
shown that the effect of these perturbations results in the
formation of a stable triaxial minimum in the energy surface
of the IVBM Hamiltonian under consideration.

The effect of the Majorana interaction on the energy
levels of the ground-state band and the γ band is studied as
well. Using a schematic Hamiltonian (possessing a disturbed
SU∗(3) dynamical symmetry), the theory is applied for the
calculation of the low-lying energy spectrum of the nucleus
192Os, which is considered in the literature as being triaxial.
The theoretical results obtained agree reasonably with the
experimental data and show a very shallow triaxial minimum in
the energy surface for the ground state in 192Os. This suggests
that the proposed dynamical symmetry might be appropriate
for the description of the collective properties of different
nuclei, exhibiting triaxial features. More investigations in this
direction are further required.
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