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Mixing of quasiparticle excitations and γ vibrations in transitional nuclei
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Evidence of strong coupling of quasiparticle excitations with γ vibration is shown to occur in transitional nuclei.
High-spin band structures in 166,168,170,172Er are studied by employing the recently developed multiquasiparticle
triaxial projected shell model approach. It is demonstrated that a low-lying K = 3 band observed in these nuclei,
the nature of which has remained unresolved, originates from the angular-momentum projection of triaxially
deformed two-quasiparticle (qp) configurations. Furthermore, it is predicted that the structure of this band depends
critically on the shell filling: in 166Er the lowest K = 3 2-qp band is formed from proton configuration, in 168Er
the K = 3 neutron and proton 2-qp bands are almost degenerate, and for 170Er and 172Er the neutron K = 3 2-qp
band becomes favored and can cross the γ -vibrational band at high rotational frequencies. We consider that these
are a few examples in even-even nuclei, where the three basic modes of rotational, vibrational, and quasiparticle
excitations coexist close to the yrast line.
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I. INTRODUCTION

Major advances in experimental techniques have made it
feasible to perform detailed measurements of atomic nuclei
at the extremes of angular-momentum, isospin, and stability.
Detailed spectroscopic studies have provided deep insights
in our understanding of nuclear many-body problem. Band
structures in some nuclei have been observed with many
bands and up to extremely high angular momentum. With
the near completion of the new advanced kind of γ -ray
detector GRETINA in USA, one would expect a vast amount
of high-quality data covering the regions that have never been
reached before.

The classification and the interpretation of the rich band
structures is a challenge to nuclear theory. The three basic
modes of excitations of rotational, vibrational, and quasiparti-
cle constitute the primary origin of the observed bands in nuclei
[1]. In spherical nuclei, the energy spectrum is primarily built
on the quasiparticle excitations, while as in well-deformed
nuclei rotational bands are observed and are classified using
the Nilsson scheme. On the other hand, in transitional nuclei
the excitation spectrum is quite rich and intricate and depict
interplay of all the three modes of excitations [2–6].

Rotational bands built on vibrations in β and γ degree
of deformation are observed in many transitional nuclei. In
particular, well-developed γ bands are known to exist in
most of the transitional regions of the nuclear chart and
a considerable effort has been devoted to understand the
detailed structure of these bands. These bands are traditionally
interpreted in the phonon picture with the observed K = 2 and
4 bands built on one- and two-γ -phonon excitations [7–11].
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Recently, these bands have been re-interpreted using the
microscopic triaxial projected shell model (TPSM) [12–15].
It has been demonstrated that three-dimensional projection of
angular momentum from the triaxially deformed vacuum state
of an even-even system leads to K = 0, 2, and 4 bands that
correspond to the ground, γ , and γ γ bands observed in nuclei.
In a more recent development [16–19], the TPSM approach
has been generalized to include quasiparticle (qp) excitations,
and it was demonstrated that the projection from triaxially
deformed qp states can result into various excited bands. These
are the structures that couple γ vibration to qp excitations,
based on which rotational bands are built. Thus, these bands
have characteristics of all three excitation modes in nuclei and
are, therefore, the best places to show up the interplay among
them. These recent developments in TPSM approach have
greatly enhanced the model predictability and may provide
new insights into the observed bands with unknown structures.
As a matter of fact, by using this approach, the interpretation
of complicated band structures has reached a quantitative
level [20,21].

In 168Er and 170Er, well-developed K = 3 bands have been
observed that are populated as intensively as γ bands [22–25].
The K = 3 band is placed between the K = 2 and K = 4
bands, and, as a matter of fact, crosses the γ band in 170Er at
about I = 12 and becomes quite low in energy. The structure
of these bands has remained unresolved and the purpose of
the present work is to shed light on the origin of these low-
lying K = 3 bands. It is demonstrated, using the generalized
TPSM approach [16,17], that these bands are examples of
qp excitations that are admixed with γ vibration, and their
correct description critically depends on the choice of the basis
deformation. In the present work, we also evaluate the intra-
and interband electromagnetic transition probabilities, and it is
shown that the deformation used in the present work provides a
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better agreement for the transition calculations in comparison
to our earlier work on the ground-state configuration only [26].
The TPSM approach has already been discussed in our earlier
publications [12–17], and in the following we shall provide
only a few details of the model that are relevant to the
discussion of the results.

II. OUTLINE OF THE THEORY

For even-even systems, the TPSM basis are composed of
projected 0-qp state (or qp-vacuum | �〉), two-proton, two-
neutron, and 4-qp configurations, that is,

P̂ I
MK | �〉; P̂ I

MKa
†
p1a

†
p2 | �〉; P̂ I

MKa
†
n1a

†
n2 | �〉;

P̂ I
MKa

†
p1a

†
p2a

†
n1a

†
n2 | �〉,

(1)

where the three-dimensional angular-momentum operator [27]
is given by

P̂ I
MK = 2I + 1

8π2

∫
d�DI

MK (�) R̂(�), (2)

with R̂(�) being the rotation operator and DI
MK (�) the D

function. The qp states are obtained by usual BCS calculations
for the deformed single-particle states. Particle number is
conserved on average through the introduction of the first-
order Lagrange multipliers. The values of the corresponding
neutron and proton chemical potentials are obtained by the
constraint for given neutron and proton numbers of nuclei
under consideration. This ensures the correct shell filling [27].

It is important to note that for the case of axial symmetry,
the qp-vacuum state has K = 0 [27], where as in the present
case of triaxial deformation, the vacuum state | �〉, as well
as any configuration in (1), is a superposition of all possible
K values. Rotational bands with the triaxial basis states
in (1) are obtained by specifying different values for the
K-quantum number in the angular-momentum projector in
Eq. (2). The allowed values of the K-quantum number for
a given intrinsic state are obtained through the following
symmetry consideration. For Ŝ = e−ıπĴz , we have

P̂ I
MK |�〉 = P̂ I

MKŜ†Ŝ|�〉 = eıπ(K−κ)P̂ I
MK |�〉. (3)

For the self-conjugate vacuum or 0-qp state, κ = 0 and,
therefore, it follows from the above equation that only K =
even values are permitted for this state. For 2-qp states,
a†a†|�〉, the possible values for K-quantum number are both
even and odd, depending on the structure of the qp state. For
example, for a 2-qp state formed from the combination of the
normal and the time-reversed states having κ = 0, only K =
even values are permitted. For the combination of the two
normal states, κ = 1, only K = odd states are permitted.

As in the earlier PSM calculations, we use the pairing plus
quadrupole-quadrupole Hamiltonian [27]

Ĥ = Ĥ0 − 1

2
χ

∑
μ

Q̂†
μQ̂μ − GMP̂ †P̂ − GQ

∑
μ

P̂ †
μP̂μ, (4)

with the last term in (4) being the quadrupole-pairing force.
The corresponding triaxial Nilsson mean-field Hamiltonian,

TABLE I. The deformation parameters used in the calculation
for 166,168,170,172Er. The axial deformation ε is taken from Ref. [29]
(converted from β values given there to ε by multiplying 0.95 factor).
The triaxial deformation parameter is denoted by ε ′.

166Er 168Er 170Er 172Er

ε 0.325 0.321 0.319 0.314
ε ′ 0.126 0.125 0.110 0.110

which is obtained by using the Hartree-Fock-Bogoliubov
(HFB) approximation, is given by

ĤN = Ĥ0 − 2

3
h̄ω

{
εQ̂0 + ε′ Q̂+2 + Q̂−2√

2

}
. (5)

Here Ĥ0 is the spherical single-particle Hamiltonian, which
contains a proper spin-orbit force [28]. The interaction
strengths are taken as follows: The QQ-force strength χ is
adjusted such that the physical quadrupole deformation ε is
obtained as a result of the self-consistent mean-field HFB
calculation [27]. The monopole pairing strength GM is of the
standard form

GM =
(

G1 ∓ G2
N − Z

A

)
1

A
(MeV), (6)

where − (+) is for neutron (proton). In the present calculation,
we use G1 = 20.12 and G2 = 13.13, which approximately
reproduce the observed odd-even mass difference in this
region. This choice of GM is appropriate for the single-particle
space employed in the model, where three major shells are used
for each type of nucleons (N = 3, 4, 5 for protons and N =
4, 5, 6 for neutrons). The quadrupole pairing strength GQ is
assumed to be proportional to GM , and the proportionality
constant being fixed as 0.16. These interaction strengths are
consistent with those used earlier for the same mass region
[12,13,27]. Deformation parameters used to construct the qp
basis are listed in Table I.

III. RESULTS AND DISCUSSION

The angular-momentum projected energies from 0-qp,
2-qp, and 4-qp configurations, calculated with deformation
parameters given above, are depicted in Figs. 1 and 2 for
the four Er isotopes studied in the present work. These are
the so-called band diagrams, defined in the projected shell
model [27] approach. In these figures, the projected energies
of only the lowest few 2- and 4-qp configurations are plotted
for clarity. It has been already stated that the admissible K

values for the triaxial vacuum state are K = 0, 2, 4, . . . and
the projection from these possible values give rise to the
ground-state band with K = 0, γ band with K = 2, γ γ band
with K = 4, and etc. The calculated unperturbed band heads
of γ and γ γ bands are roughly at energies of (relative to
the ground state) 0.7033, 2.0643 for 166Er, 0.7009, 1.9651
for 168Er, 0.8659, 2.0730 for 170Er, and 0.8659, 2.073 for
172Er (all in MeV). The anharmonicity in γ vibration appears
automatically from the calculations and correctly describes the
experimental data [13,30,31].
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FIG. 1. (Color online) Band diagrams for 166–168Er isotopes. The
labels (K , n-qp) indicate the K value and the quasiparticle character of
the configuration, for instance, (3, 2p) corresponds to the two-proton
configuration with K = 3.

The projected bands from 2-qp states result into both
even- and odd-K values depending on the combination of
the qp states. The bands with K = 1, 3, . . . are obtained by
combining two normal states and are traditionally referred
to as aligned bands. In many nuclei in the rare-earth region
these aligned bands cross the ground-state band, giving rise
to the phenomenon of backbending. Although for the four
erbium isotopes studied in the present work, these aligned
bands do not cross the ground-state band, they are noted to
follow γ bands very closely and interact with them. It is
quite interesting to observe from Figs. 1 and 2 that for 166Er,
proton 2-qp band with K = 3 is lower than the corresponding
neutron band, for 168Er the two bands are nearly degenerate,
and in cases of 170,172Er the neutron band is lower than the
proton band. The relative change in the K = 3 band structures
is attributed to the shell filling of neutrons and protons. As
neutron number increases, the neutron Fermi level changes,
while the proton Fermi level remains almost unchanged for
the isotopes. The proton and neutron character of the bands
can be probed through measurement of g factors of the bands.
Four-qp bands in Figs. 1 and 2 are observed to lie higher, and
do not become yrast up to the highest angular-momentum state
studied in the present work.
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FIG. 2. (Color online) Same as in Fig. 1, but for 170–172Er isotopes.

In the second stage, the projected bands, obtained above, are
then mixed through diagonalization of the shell model Hamil-
tonian in (4). In band diagrams of Figs. 1 and 2 only the lowest
bands were shown, but in the diagonalization process the
projected states employed is nearly 40 for all nuclei. Figure 3
depicts the calculated bands after diagonalization and also
displays the corresponding available experimental data. It is
important to point out that, although the bands in Fig. 3
are labeled as γ , γ γ , and K = 3 bands, these are only the
dominant components in the wave function. The projected
states after diagonalization are in general mixed. In particular,
2-qp K = 3 band has a significant contribution from 0-qp
K = 2 configuration at higher angular momenta.

For 166Er, the agreement between the TPSM and the
experimental energies for the yrast and the γ bands is
exceedingly good. There is only I = 4 bandhead state known
for the γ γ band [30] and it is also reproduced quite well. It is
noted from Fig. 3 that the K = 3 band, which is a projected
band from 2-qp proton configuration, is predicted above the
known γ band but is lower than the γ γ band. We hope that
future high-spin experimental studies shall be able to populate
this band. In the lower panels of Fig. 3, the results for the other
three studied isotopes also display a good agreement with the
available experimental data. In 168Er, the known experimental
data for the γ γ band [31] are also described correctly. The 2-qp
proton and neutron K = 3 bands are almost degenerate for
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FIG. 3. (Color online) Comparison of the TPSM energies af-
ter configuration mixing with the available experimental data for
166–172Er. Data are taken from [22,30–32].

168Er, and the observed five states of this band are noted to be
reproduced quite well. The interesting prediction is that there
are two almost identical K = 3 bands that have predominantly
proton and neutron structures, respectively.

In 170Er, the K = 3 band is populated as intensively as the γ

band and is known up to I = 20 [22]. Furthermore, this band
crosses the γ band at I = 12 and becomes the first excited
band above this spin value. The present work reproduces these
properties and what is more interesting is that the observed
small staggering in the γ band at higher spins is also borne
out by the TPSM results. The K = 3 proton 2-qp band also
crosses the γ band and becomes the second excited band above
I = 14.

Figure 4 presents a more detailed comparison of the
observed and the calculated K = 3 bands for 170Er. The
calculated K = 3 2-qp neutron band agrees quite well with
the experimental band, however, at the top of the band some
discrepancies are quite evident. There could be several reasons
for these discrepancies. The bulk of the discrepancy could
be attributed to the fixed mean field assumed in the present
study. The Nilsson potential is chosen for the mean field and
is determined by the input deformation parameters ε and ε′.
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FIG. 4. (Color online) Detailed comparison of the calculated K =
3 bands in 170Er with experimental data [22].

The pairing potential, on the other hand, is obtained from
the monopole interaction using the BCS ansatz. In a more
accurate self-consistent treatment, projection before variation,
the mean field and the pairing potential are known to vary
with qp excitation and angular momentum. Very similar to
170Er, the heavier isotope 172Er is also predicted to exhibit
a band crossing picture between the K = 3 band [32] and
the γ band. The two bands follow very closely for the entire
spin region, and interact with each other. Thus the K = 3
band in both transitional 170Er and 172Er nuclei, although they
have two-quasiparticle structure, interact strongly with the γ

vibration.
To probe the mechanism behind the appearance of the K =

3 band, close to the yrast line, in the Er isotopes we have
studied the behavior of the projected energies as a function of
deformation parameters ε and ε′. As an example, the variation
of the projected energies are shown in Fig. 5 for 170Er. In the
upper panel of the figure, the variation is depicted as a function
of the axial deformation ε with fixed triaxial deformation ε′ =
0.11. For low axial deformation values, the K = 3 band is
higher than the K = 1 band. However, above ε = 0.25 K = 3
band depicts a large downward shift and becomes lower than
the K = 1 and γ γ band. The other bands are noted to be
less sensitive to the axial deformation. The dependence of the
projected energies on ε′, shown in the lower panel of Fig. 5,
is calculated for fixed ε = 0.319. This dependence, first of
all, clearly demonstrates that the ground-state minimum has
ε′ = 0.11 and this value has been considered in all our earlier
calculations. This figure also shows that the K = 3 band is less
sensitive to ε′ as compared to the other bands. Therefore, it
can be concluded from the present results that the appearance
of the low-excitation K = 3 band is primarily due to the axial
deformation.
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FIG. 5. (Color online) Behavior of the projected energies of
various configurations as a function of axial and triaxial deformations
for 170Er. In the upper panel, the projected energies have been
evaluated for a fixed value of ε ′ = 0.11 and in the lower panel
ε = 0.319 has been chosen.

The question obviously arises on the relevance of the triaxial
deformation in the structure of K = 3 bands. To investigate
this question we have also performed axial projected shell
model calculations using the original projected shell model
code [33]. The parameters used in this study are exactly same
as those used in the above triaxial study, except that now the
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FIG. 6. (Color online) Band diagrams for 170Er by using axial
projected shell model code [33].

triaxial deformation is absent. The advantage of the axial study
is that it provides a direct information on the K structure of the
quasiparticle states. The results of the axial study are plotted
in Fig. 6. The ground-state band with K = 0 is the projection
from the qp-vacuum state with axial symmetry, and all other
bands in Fig. 6 are the projected bands from the 2-qp states.
The lowest 2-qp band is the neutron band with K = 3 and
is formed from the Nilsson states of [651]1/2 and [633]7/2,
and proton 2-qp band is formed from [523]7/2 and [541]1/2.
Although, the K = 3 band is lower in this axial case as well,
the obtained band structures are completely different from
those in the triaxial study. First of all, as expected, there is no
γ band as in the triaxial case and also in the observed data.
Secondly, the bandhead of the K = 3 band is higher in the axial
case as compared to the corresponding experimental bandhead.

TABLE II. Comparison of known experimental yrast-band B(E2) values (in w.u., and associated errors in parentheses) and calculated ones
for 166,168,170,172Er isotopes.

(I, K)i → (I,K)f 166Er (expt.) 166Er (theor.) 168Er (expt.) 168Er (theor.) 170Er (expt.) 170Er (theor.) 172Er (theor.)

(2, 0)i → (0, 0)f 214 (10) 245.02 207 (6) 242.51 208 (4) 244.96 241.07
(4, 0)i → (2, 0)f 311 (20) 351.63 318 (12) 347.77 350.83 345.59
(6, 0)i → (4, 0)f 347 (45) 390.38 440 (30) 385.67 388.15 383.01
(8, 0)i → (6, 0)f 365 (50) 413.07 350 (20) 407.62 370 (30) 408.88 404.47
(10, 0)i → (8, 0)f 371 (46) 429.60 302 (21) 423.73 320 (22) 423.20 419.99
(12, 0)i → (10, 0)f 442.77 334 (22) 437.17 375 (20) 434.33 432.71
(14, 0)i → (12, 0)f 453.01 449.09 443.35 443.66
(16, 0)i → (14, 0)f 459.62 459.93 450.50 453.02
(18, 0)i → (16, 0)f 461.29 469.96 445.86 460.55
(20, 0)i → (18, 0)f 456.51 479.35 459.95 466.01
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TABLE III. Calculated interband B(E2) values (in w.u.) from the
K = 3 to γ band for 170,172Er isotopes.

(I, K)i → (I, K)f 170Er (theor.) 172Er (theor.)

(4, 3)i → (2, 2)f 0.18 0.01
(6, 3)i → (4, 2)f 0.68 0.03
(8, 3)i → (6, 2)f 4.53 0.07
(10, 3)i → (8, 2)f 91.27 0.64
(12, 3)i → (10, 2)f 105.16 23.33
(14, 3)i → (12, 2)f 40.04 110.24
(16, 3)i → (14, 2)f 0.64 84.16
(18, 3)i → (16, 2)f 0.29 0.23
(20, 3)i → (18, 2)f 0.07 0.01

Therefore, although the axial deformation is important for the
K = 3 band to appear, the strong mixing with γ degree of
freedom is crucial to explain its excitation and the rotational
behavior.

In the present work we have also evaluated the B(E2)
transition probabilities, which are presented in Table II along
the yrast bands for the studied isotopes. Furthermore, we
calculated the interband transitions between K = 3 and γ

bands for 170,172Er as these two bands cross for these isotopes,
and the transitions are displayed in Table III. The B(E2) values
have been calculated using the standard effective charges of
ep = 1.5e and en = 0.5e. It is evident from Table II that
calculated B(E2) describe the known transitions well. For
the interband transitions in 170,172Er between the K = 3 and
K = 2 band shown in Table III, it is interesting to note that
in the crossing region of the two bands (around spin 12), very
enhanced B(E2) is predicted. The large inter-band B(E2) values
indicate a considerable overlap between the wave functions,
implying a strong mixing between the quasiparticles and the
γ vibration.

IV. SUMMARY

In summary, we have presented evidences for strong
coupling of quasiparticle excitations with γ vibration in
transitional nuclei. High-spin band structures in a series of

erbium isotopes 166,168,170,172Er have been studied by using the
recently developed multiquasiparticle triaxial projected shell
model approach. The spotlight of the present investigation has
been the K = 3 band observed in some of these nuclei that
is populated as strongly as the γ band. In the framework of
triaxial angular-momentum projection, we have shown that
this band has mainly a structure of triaxially deformed 2-qp
state projected to the K = 3 component. This is to compare
with the traditional γ and γ γ bands, which are based on
triaxially deformed 0-qp state projected to the K = 2 and
4 components, respectively. It has been further shown that
the detailed structure and position of the K = 3 band depend
sensitively on the shell filling. In 166Er the lowest K = 3 2-qp
band is formed from proton configuration, in 168Er the K = 3
neutron and proton 2-qp bands are almost degenerate, and for
170,172Er the neutron K = 3 2-qp band becomes favored. The
prediction of systematic appearance of two K = 3 bands with
proton and neutron structures, close to the yrast line, awaits
experimental confirmation.

The calculations presented in the present article have
clearly demonstrated that a simple model based on schematic
pairing plus quadrupole-quadrupole interaction with three-
dimensional angular-momentum projection technique can
describe the near yrast band structures in transitional nuclei
in a quantitative manner. A drawback in the present analysis
is the uncertainty in the strength parameters of the schematic
interaction. In future studies we are planning to adopt a recently
developed mapping procedure [34,35] to microscopically
determine the strength parameters. In this new approach
the energy surfaces obtained from the schematic effective
interaction with free strength parameters are optimized to
reproduce the energy surfaces retrieved from a realistic density
functional approach.
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